Available online at http://scik.org
J. Math. Comput. Sci. 10 (2020), No. 5, 2008-2014
https://doi.org/10.28919/jmcs/4813
ISSN: 1927-5307

ON SOME TERNARY LCD CODES

NITIN S. DARKUNDE ${ }^{1, *}$, ARUNKUMAR R. PATIL ${ }^{2}$

${ }^{1}$ School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
${ }^{2}$ Department of Mathematics, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The main aim of this paper is to study $L C D$ codes. Linear codes with complementary dual ($L C D$) are those codes which have their intersection with their dual code as $\{0\}$. In this paper we will give rather alternative proof of Massey's theorem [8], which is one of the most important characterization of $L C D$ codes. Let $L C D[n, k]_{3}$ denote the maximum of possible values of d among $[n, k, d]$ ternary $L C D$ codes. In [4], authors have given upper bound on $L C D[n, k]_{2}$ and extended this result for $L C D[n, k]_{q}$, for any q, where q is some prime power. We will discuss cases when this bound is attained for $q=3$ and see some new constructions of $L C D$ codes.

Keywords: linear code; dual of linear code; generator matrix.
2010 AMS Subject Classification: 68P30, 11T71.

1. Introduction

A linear code with complementary dual (or $L C D$ code) was first introduced by Massey[8] in 1964. Afterwards, $L C D$ codes were extensively studied and applied in different fields. Recently, Dougherty et al.[4] gave a linear programming bound on the largest size of an $L C D$ code. In 2015, Carlet and Guilley [1] have given different types of constructions of $L C D$ codes. Further in 2017, Galvez et al.[4] gave bounds on $L C D$ codes in binary case.

[^0]Let $G F(q)$ be a finite field with q elements $[6,9]$, where $q=p^{k}$, for some prime p and $k \in \mathbb{Z}_{+}$. By $(G F(q))^{n}$, we mean a cartesian product of $G F(q)$ with itself n number of times, which is a vector space of dimension n over $G F(q)$. A k-dimensional vector subspace of $(G F(q))^{n}$ over $G F(q)$ is called as $[n, k]_{q}$-linear code $[9,10,11]$. For a linear code C, its (minimum) distance[9] is denoted by $d=d(C)$ and defined as $\min \{d(x, y): x \neq y, x, y \in C\}$, where $d(x, y)$ is usual Hamming distance between two codewords in C. These values of n, k, d are called as parameters of corresponding code. A generator matrix[9] for a code C is denoted by matrix G whose row vectors form a basis for C, whereas a parity check matrix[9] H for code C is a matrix whose rows form a basis for dual code C^{\perp}. Also, $v \in C \Longleftrightarrow v H^{T}=0$ and $v \in C^{\perp} \Longleftrightarrow v G^{T}=0$. A linear code of distance d is u-error-detecting $[9] \Longleftrightarrow d \geq u+1$, whereas a code C is v-errorcorrecting $[6,9] \Longleftrightarrow d \geq 2 v+1$, where $u, v \in \mathbb{Z}_{+}$. Hence $t=\left\lfloor\frac{(d-1)}{2}\right\rfloor$, is the error correcting capability of a code. For practical purposes we should have linear codes with distance as large as possible.

2. Preliminaries

Here, we will see a brief introduction of $L C D$ codes.
Definition 2.1([4, 8]): A linear code with complementary dual is a code C, for which we have $C \cap C^{\perp}=\{0\}$.
Example 2.1: $C=\{00,01\} \subseteq(G F(2))^{2}$.
There are some linear codes which are not $L C D$. For example: $C=\{0000,1010,0101,1111\} \subseteq$ $(G F(2))^{4}$ is not a $L C D$ code, because for this code, we have $C^{\perp}=\{0000,1010,0101,1111\}$ and hence, their intersection is non trivial.

Note that, if C is $L C D$ code, then so is C^{\perp}. Let us state an important theorem given by Massey in [8] and give its alternate proof, which is new to the best of our knowledge, as we haven't made any use of idea of orthogonal projector, which has been used by Massey.

3. Main Results

Theorem 2.1([8]).: Let G be a generator matrix of a linear code over $G F(q)$. Then G generates an $L C D$ code if and only if $G G^{T}$ is invertible matrix.

Proof. Suppose $\operatorname{det}\left(G G^{T}\right) \neq 0$. We need to prove that C is an $L C D$ code. Suppose C is not $L C D$ code. Therefore there exists a non zero vector $v \in C \cap C^{\perp}$. Hence, we get $v \in C$ and $v \in C^{\perp}$. Since $v \in C$, therefore $\exists u \neq 0$ in $(G F(q))^{k}$ such that $v=u G$, where G is given to be a generator matrix for C. Next since $v \in C^{\perp}$, as a result of which, we get that $v G^{T}=0$. Consequently, $u G G^{T}=0$. Call $G G^{T}$ as A. But by hypothesis $A \in G L(k, G F(q))$. Hence we get homogeneous system $u A=0$, post-multiplying both sides by A^{-1}, we get $u=0$ and therefore we have, $v=0$, which is a contradiction to the hypothesis. Therefore, whenever $G G^{T}$ is invertible, then linear code generated by G must be $L C D$ code.

Conversely, suppose C is $L C D$ code. We need to prove that $\operatorname{det}\left(G G^{T}\right) \neq 0$. Suppose $\operatorname{det}\left(G G^{T}\right)=$ 0 . Therefore $G G^{T}$ is a singular linear transformation, hence there exists non zero vector $u \in$ $(G F(q))^{k}$ such that $u G G^{T}=0$. Let $v=u G$, which implies $v \neq 0$ and we get $v G^{T}=0$, hence $v \in C^{\perp}$. Now it remains to show that $v \in C$. Since we had taken v to be a non zero vector in $(G F(q))^{n}$ such that $v=u G$, we get $v \in C$. Therefore $\exists v \neq 0$ in $C \cap C^{\perp}$.

Elementary bounds:

Dougherty et al.[3] introduced a concept of $L C D[n, k]$ over binary fields. Recently Galvez et al.[4] had given an upper bound on $L C D[n, k]$ in binary case and also given some exact values for $k=2$ and for any n. They also extended this result for arbitrary values of q. Here we will obtain exact values of $L C D[n, k]$ in ternary case. Determination of values of $L C D[n, k]$ is analogous to determination of $A_{q}(n, d)$, where in the former case we used to concentrate on d and in a later case we used to concentrate on size of a code. Firstly, let us have some definitions.

Definition 2.2: For fixed values of n and k, we have
(1) $L C D[n, k]:=\max \{d$: there exists a binary $[n, k, d] L C D$ code $\}$.
(2) $L C D[n, k]_{3}:=\max \{d$: there exists a ternary $[n, k, d] L C D$ code $\}$.

Now we state a remark, which was a consequence of Lemma 2 from [4].
Remark 2.1: $L C D[n, k]_{q} \leq\left\lfloor\frac{n \cdot q^{k-1}}{q^{k}-1}\right\rfloor$, for $k \geq 1$.

As a consequence of it, for $q=3$ and $k=2$, we have $L C D[n, 2]_{3} \leq\left\lfloor\frac{3 n}{8}\right\rfloor$.
Now based on bound given above, we can obtain exact values of $L C D[n, 2]_{3}$.
Theorem 2.2: Let $n \geq 2$. Then $L C D[n, 2]_{3}=\left\lfloor\frac{3 n}{8}\right\rfloor$, for $n \equiv 3,4(\bmod 9)$.

Proof. Our aim is to show the existence of $L C D$ codes with minimum distance achieving the bound in above remark.
(1) Let $n \equiv 3(\bmod 9)$, i.e. $n=9 m+3$, for some $m \in \mathbb{Z}_{+}$. Consider the linear code with the following generator matrix.

$$
G=\left[\begin{array}{l|l|l}
1 \ldots 1 & 2 \ldots 2 & 0 \ldots 0 \\
\underbrace{0 \ldots 0}_{3 m} & \underbrace{0 \ldots 0}_{3 m+2} & \underbrace{2 \ldots 2}_{3 m+1}
\end{array}\right]
$$

This code has minimum weight $3 m+1=\left\lfloor\frac{3(9 m+3)}{8}\right\rfloor$ and $G G^{T}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Hence $\operatorname{det}\left(G G^{T}\right)=2 \not \equiv 0(\bmod 3)$ and therefore this matrix is invertible. By theorem 2.1 above, this code is an $L C D$ code.
(2) Let $n \equiv 4(\bmod 9)$, i.e. $n=9 m+4$, for some $m \in \mathbb{Z}_{+}$. Consider the linear code with the following generator matrix.

$$
G=\left[\begin{array}{l|l|l}
1 \ldots 1 & 2 \ldots 2 & 0 \ldots 0 \\
\underbrace{0 \ldots 0}_{3 m+1} & \underbrace{0 \ldots 0}_{3 m+2} & \underbrace{2 \ldots 2}_{3 m+1}
\end{array}\right]
$$

This code has minimum weight $3 m+1=\left\lfloor\frac{3(9 m+4)}{8}\right\rfloor$ and $G G^{T}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. Hence $\operatorname{det}\left(G G^{T}\right)=4 \not \equiv 0(\bmod 3)$ and therefore this matrix is invertible. By theorem 2.1 above, this code is an $L C D$ code.

Now we will give one construction of ternary $L C D$ codes from primary constructions of linear codes. As far as we know, this construction have not yet been studied in the literature of $L C D$ codes.

Definition 2.3([9]): Let q be odd. Let C_{i} be an $\left[n, k_{i}, d_{i}\right]$ linear code over $G F(q)$, for $i=1,2$. Define $C_{1} \gamma C_{2}:=\left\{\left(c_{1}+c_{2}, c_{1}-c_{2}\right): c_{1} \in C_{1}, c_{2} \in C_{2}\right\}$. Then $C_{1} \gamma C_{2}$ is a linear code over $G F(q)$. This code is $\left[2 n, k_{1}+k_{2}\right]$-linear code over $G F(q)$.

Remark 2.2: If G_{1} and G_{2} is generator matrix of C_{1} and C_{2} respectively, then generator matrix G of $C_{1} \gamma C_{2}$ is given by $G=\left[\begin{array}{cc}G_{1} & G_{1} \\ G_{2} & -G_{2}\end{array}\right]$.
Theorem 2.3: Let C_{i} be $\left[n, k_{i}\right] L C D$ codes over $G F(3)$, for $i=1,2$. Then $C_{1} \gamma C_{2}$ is also a $L C D$ code over $G F(3)$.

Proof. It is given that C_{1} and C_{2} both are $L C D$ codes over $G F(3)$. Suppose G_{1} is generator matrix of C_{1} and G_{2} is generator matrix of C_{2}. Therefore by theorem 2.1 above, we have $\operatorname{det}\left(G_{1} G_{1}^{T}\right) \not \equiv 0(\bmod 3)$ and $\operatorname{det}\left(G_{2} G_{2}^{T}\right) \not \equiv 0(\bmod 3)$. Therefore, we have, $G G^{T}=\left[\begin{array}{cc}G_{1} & G_{1} \\ G_{2} & -G_{2}\end{array}\right]\left[\begin{array}{cc}G_{1}^{T} & G_{2}^{T} \\ G_{1}^{T} & -G_{2}^{T}\end{array}\right]$. As a result of it, we get $G G^{T}=\left[\begin{array}{cc}2 G_{1} G_{1}^{T} & 0 \\ 0 & 2 G_{2} G_{2}^{T}\end{array}\right]$. Now it remains to show that matrix $G G^{T}$ is invertible. Here $\operatorname{det}\left(G G^{T}\right)=\operatorname{det}\left(2 G_{1} G_{1}^{T}\right) \cdot \operatorname{det}\left(2 G_{2} G_{2}^{T}\right)=$ $2^{k_{1}} \operatorname{det}\left(G_{1} G_{1}^{T}\right) \cdot 2^{k_{2}} \operatorname{det}\left(G_{2} G_{2}^{T}\right)=2^{k_{1}+k_{2}} \cdot \operatorname{det}\left(G_{1} G_{1}^{T}\right) \cdot \operatorname{det}\left(G_{2} G_{2}^{T}\right)$. In this expression both the terms at the end are not divisible by 3 and $3 \nmid 2^{k_{1}+k_{2}}$. Therefore by Euclid’s lemma, we get $3 \nmid$ $2^{k_{1}+k_{2}} \cdot \operatorname{det}\left(G_{1} G_{1}^{T}\right) \cdot \operatorname{det}\left(G_{2} G_{2}^{T}\right)$ and consequently $C_{1} \gamma C_{2}$ is ternary $L C D$ code.

Lemma 2.1: For n and k integers greater than $0, L C D[n+1, k]_{3} \geq L C D[n, k]_{3}$.
Proof. Proof follows on similar lines as that of Lemma 3.1 from [3].
Theorem 2.4: (i) If n is an integer such that $3 \nmid n$, then $L C D[n, 1]_{3}=n$ and $L C D[n, n-1]_{3}=2$. (ii) If n is an integer such that $3 \nmid(n-1)$, then $L C D[n, 1]_{3}=n-1$ and $L C D[n, n-1]_{3}=2$.

Proof. (i) Consider ternary repetition code $C=\{\underbrace{0 \ldots 0}_{n}, \underbrace{1 \ldots 1}_{n}, \underbrace{2 \ldots 2}_{n}\}$. This code is $[n, 1, n]_{3}$ code, which have largest possible minimum distance. There are two choices for its generator matrices say G_{1} and G_{2}. Suppose $G_{1}=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]$ and $G_{2}=\left[\begin{array}{llll}2 & 2 & \ldots & 2\end{array}\right]$ respectively. Then $\operatorname{det}\left(G_{1} G_{1}^{T}\right)=n$ and $\operatorname{det}\left(G_{2} G_{2}^{T}\right)=2^{2} n$. Since, $3 \nmid n$, we have $\operatorname{det}\left(G_{1} G_{1}^{T}\right) \not \equiv 0(\bmod 3)$ and $\operatorname{det}\left(G_{2} G_{2}^{T}\right) \not \equiv 0(\bmod 3)$. Hence by Theorem 2.3 above, rows of these generator matrices will generate $L C D$ codes. Thus we get, $L C D[n, 1]_{3}=n$. Also, we know that if C is $L C D$ then so its dual C^{\perp}. In this case dual code is $L C D$ code having dimension as $n-1$. If $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C^{\perp}$, then $c_{1}+\cdots+c_{n} \equiv 0(\bmod 3)$ and hence we will have a choice of codeword $(1,2,0, \ldots, 0)$, whose weight is minimum. Therefore, we get $L C D[n, n-1]_{3}=2$.
(ii) If $3 \mid n$, then ternary repetition code C of length n having generator matrix $G=[1 \ldots 1]$
will not be a $L C D$ code, since in this case, $\operatorname{det}\left(G G^{T}\right)=n$. So we must try for another ternary code \widetilde{C} having a basis as $\mathscr{B}=\{0 \underbrace{1 \ldots 1}_{n-1}\}$. Then we get $\widetilde{C}=\{0 \underbrace{0 \ldots 0}_{n-1}, 0 \underbrace{1 \ldots 1}_{n-1}, 0 \underbrace{2 \ldots 2}_{n-1}\}$. Note that, this code \widetilde{C} have maximum possible minimum distance amongst all ternary linear codes, besides ternary repetition code. In present case, there are two choices for its generator matrices, say $G_{1}=\left[\begin{array}{ll}0 & \underbrace{1 \ldots 1}_{n-1}\end{array}\right]$ and $G_{2}=\left[\begin{array}{lll}0 & \underbrace{2 \ldots 2}_{n-1}\end{array}\right]$. As a result of which, we get $G_{1} G_{1}^{T}=n-1$ and $G_{2} G_{2}^{T}=2^{2}$. $(n-1)$. Consequently, $\operatorname{det}\left(G_{1} G_{1}^{T}\right)=n-1$ and $\operatorname{det}\left(G_{2} G_{2}^{T}\right)=2^{2}$. $(n-1)$. Hence by theorem 2.1 above, G_{1} and G_{2} will generate ternary $L C D$ code \widetilde{C} if and only if $3 \nmid(n-1)$.

Further, we know that if \widetilde{C} is $L C D$ then so its dual \widetilde{C}^{\perp}. In this case, dual code is $L C D$ code having dimension as $n-1$. If $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \widetilde{C}^{\perp}$, then $c_{2}+\cdots+c_{n} \equiv 0(\bmod 3)$ and hence we will have a choice of codeword $(0,0, \ldots, 1,2)$ whose weight is minimum. Therefore, we get $L C D[n, n-1]_{3}=2$.

4. Conclusion

In this paper, we have given new construction of ternary $L C D$ codes, by using some primary constructions. Also, we have discussed some cases where the bound on $L C D[n, k]_{3}$ is attained. In a future study, we will try to generalize this result for any prime power q.

Acknowledgements

The corresponding author would like to thank the Swami Ramanand Teerth Marathwada University, Nanded for support under the minor research project entitled 'Study of LCD codes, Matrix-product codes and their applications' under which this work has been carried out.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

References

[1] C. Carlet, S. Guilley, Complementary Dual Codes for Counter-Measures to Side-Channel Attacks, in: R. Pinto, P. Rocha Malonek, P. Vettori (Eds.), Coding Theory and Applications, Springer International Publishing, Cham, 2015: pp. 97-105.
[2] C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, Linear Codes Over \mathbb{F}_{q} Are Equivalent to LCD Codes for $q>3$, IEEE Trans. Inform. Theory. 64 (2018), 3010-3017.
[3] S.T. Dougherty, J.L. Kim, B. Ozkaya, L. Sok, P. Solé, The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices, Int. J. Inform. Coding Theory, 4 (2017), 116-128.
[4] L. Galvez, J.-L. Kim, N. Lee, Y.G. Roe, B.-S. Won, Some bounds on binary LCD codes, Cryptogr. Commun. 10 (2018), 719-728.
[5] W.C. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, 2010.
[6] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, Elsevier, 1977.
[7] J.L. Massey, Reversible Codes, Inform. Control. 7 (1964), 369-380.
[8] J.L. Massey, Linear codes with complementary duals, Discrete Mathematics, 106/107 (1992), 337-342.
[9] S. Ling, C. Xing, Coding Theory-A First Course, Cambridge University Press, First Edition, 2004.
[10] A. Patil, N. Darkunde, Algorithmic Approach for Error-Correcting Capability and Decoding of Linear Codes Arising from Algebraic Geometry, in: S. Fong, S. Akashe, P.N. Mahalle (Eds.), Information and Communication Technology for Competitive Strategies, Springer Singapore, Singapore, 2019: pp. 509-517.
[11] N.S. Darkunde, A.R. Patil, On Some Error-Correcting Linear Codes, Asian J. Math. Comput. Res. 17 (2017), 56-62.

[^0]: *Corresponding author
 E-mail address: darkundenitin@gmail.com
 Received June 30, 2020

