THE RESTRICTED DETOUR POLYNOMIALS OF A

 HEXAGONAL CHAIN AND A LADDER GRAPHA. A. ALI 1 and G. A. MOHAMMED-SALEH ${ }^{2, *}$
${ }^{1}$ Retired Professor, Mosul University, Mosul, Iraq
${ }^{2}$ University of Salahaddin/Erbil- College of Science- Department of Mathematics, Erbil, Iraqi kurdistan Region

Abstract

The restricted detour distance $D^{*}(u, v)$ between two vertices u and v of a connected graph G is the length of a longest $u-v$ path P in G such that $\langle V(P)\rangle=P$. The restricted detour polynomial of G, is a graph distance polynomial defined on restricted detour distance. The restricted detour polynomials and restricted detour indices of hexagonal graphs and ladder graphs are obtained in this paper.

Keywords: Restricted detour distance, restricted detour index, restricted detour polynomial, hexagonal graph, ladder graph.

2000 AMS Subject Classification: 05C12, 05C38, 05C62.

1. Introduction

Let G be a connected graph, and let u and v be any two vertices of G.The (standard) distance $d(u, v)$ between u and v in G is the length of a shortest $u-v$ path P in G [8]. It is clear that the induced subgraph $\langle V(P)\rangle$ is P itself. Based on this observation, Chartrand, et al [4],in 1993 defined the detour distance $d^{*}(u, v)$ between vertices u and v as the length of a longest $u-v$ path P for which

[^0]$\langle V(P)\rangle=P$. Later on, Chartrand, et al and any other authors (see [5] and [6]). Defined the concepts of detour distance $D(u, v)$ between vertices u and v in G, as the length of a longest $u-v$ path P, without assuming the induced condition $\langle V(P)\rangle=P$. Therefore, in order to differentiate between the two concepts, we shall call the detour distance with the induced condition, the restricted detour distance between u and v, and denote it by $D_{G}^{*}(u, v)$ or simply $D^{*}(u, v)$. From this definition of the concept D^{*} on the vertex set $V(G)$, we notice that $D^{*}(u, v)=0$ if and only if $u=v$, and $D^{*}(u, v)=1$ if and only if $u v$ is an edge of G. However, the triangle inequality does not hold in general [4], therefore the restricted detour distance is not metric on $V(G)$.

An induced $u-v$ path of length $D^{*}(u, v)$ will be called a restricted (or an induced) detour path. Moreover, a connected graph G is called a restricted detour graph if $D^{*}(u, v)=d(u, v)$ for every pair u, v of vertices in G. It is clear that all trees, complete graphs, and complete bipartite graphs are restricted detour graphs. However, every cycle of order $p \geq 5$ is not restricted detour.

For more properties and results on restricted detour distances, one may see [4].

2. Restricted Detour Polynomials

Let G be a (p, q) connected graph. The concept of Hosoya polynomial $H(G ; x)$ is based on standard distance, (See [7], [9], and [10]), and the concept of detour polynomials $D(G ; x)$ of G, (See [2] and [3]) is based on detour distance. On the same line, the concept of restricted detour polynomial, denoted by $D^{*}(G ; x)$ or $H^{*}(G ; x)$, see [1], is defined as follows:
(2.1) $D^{*}(G ; x)=\sum_{u, v} x^{D_{G}^{*}(u, v)}$,
where the summation is taken over all unordered pairs u, v of vertices of G. The index of G with respect to restricted detour distance is denoted by $d d^{*}(G)$ and defined by
(2.2) $d d^{*}(G)=\sum_{u, v} D_{G}^{*}(u, v)$,
and will be called restricted detour index of G.
It is clear that
(2.3) $d d^{*}(G)=\left.\frac{d}{d x} D^{*}(G ; x)\right|_{x=1}$.

One can easily notice that

$$
\begin{equation*}
D^{*}(G ; x)=\sum_{k \geq 0} C^{*}(G, k) x^{k}, \tag{2.4}
\end{equation*}
$$

in which $C^{*}(G, k)$ is the number of unordered pairs of vertices u, v of G such that $D_{G}^{*}(u, v)=k$.

Let u be any vertex of G, and let $C^{*}(u, G ; k)$ be the number of vertices v of G such that $D^{*}(u, v)=k$. Then, the polynomial is defined by

$$
\text { (2.5) } D^{*}(u, G ; x)=\sum_{k \geq 0} C^{*}(u, G ; k) x^{k},
$$

is called the restricted detour polynomial of vertex u.
It is clear that
(2.6) $D^{*}(G ; x)=\frac{1}{2}\left(\sum_{u \in V(G)} D^{*}(u, G ; x)+p\right)$.

We illustrate these concepts in the next example.
Example: Let Q_{3} be the 3-cube graph, and let u be any vertex in Q_{3} as shown in
Fig.2.1. From the symmetry of Q_{3}, we have

$$
D^{*}\left(Q_{3} ; x\right)=4\left[1+D^{*}\left(u, Q_{3} ; x\right)\right] .
$$

Fig.2.1. The 3-cube Q_{3}.
By direct calculation using Fig.2.1,we obtain the restricted detour distances from vertex u to the other vertices $v_{1}, v_{2}, \ldots, v_{7}$ which, respectively, are $1,1,1,4,4,3,4$. Thus

$$
D^{*}\left(u, Q_{3} ; x\right)=1+3 x+x^{3}+3 x^{4},
$$

and so

$$
D^{*}\left(Q_{3} ; x\right)=8+12 x+4 x^{3}+12 x^{4},
$$

and
$d d^{*}\left(Q_{3}\right)=72$.
In 2010, Abdullah and Muhammed-Saleh [1] obtained the restricted detour polynomials and restricted detour indices of some special graphs.

In this paper, we obtain the restricted detour polynomial and index of a hexagonal graph consisting of one row of m hexagons.

3. Restricted Detour Polynomials of Hexagonal Graphs

Let $J_{m}, m \geq 1$, be a hexagonal chain consisting of one row of m hexagons h_{1}, h_{2}, \ldots, h_{m} as depicted in Fig.3.1. Then, $p\left(J_{m}\right)=4 m+2, q\left(J_{m}\right)=5 m+1$.

Fig.3.1. A hexagonal graph J_{m}.
From Fig.3.1 and taking care of the symmetry of J_{m}, we have the following reduction formula:

$$
\begin{equation*}
D^{*}\left(J_{m} ; x\right)=D^{*}\left(J_{m-1} ; x\right)+F_{m}(x), \quad m \geq 2, \tag{3.1}
\end{equation*}
$$

in which
(3.2) $F_{m}(x)=2 D^{*}\left(u_{1}, J_{m} ; x\right)+2 D^{*}\left(u_{2}, J_{m} ; x\right)-\left(3 x+x^{3}+2 x^{4}\right)$.

We shall find $D^{*}\left(u_{i}, J_{m} ; x\right), i=1,2$.
Remark. All restricted detour distance $D^{*}($,$) in this section are calculated in the$ graph J_{m}.

Proposition 3.1. For $m \geq 2$ and $i=2,3, \ldots, m$
(1) $D^{*}\left(u_{1}, u_{2 i+1}\right)=2 i+2\left\lceil\frac{i}{2}\right\rceil$,
(2) $D^{*}\left(u_{1}, u_{2 i}\right)=2 i+1+2\left\lfloor\frac{i}{2}\right\rfloor$,
(3) $D^{*}\left(u_{1}, u_{2 i+1}^{\prime}\right)=2 i+1+2\left\lfloor\frac{i}{2}\right\rfloor$,
(4) $D^{*}\left(u_{1}, u_{2 i}^{\prime}\right)=2 i+2\left\lceil\frac{i}{2}\right\rceil$.

Proof.

(1) From Fig.3.1, one may easily see that $D^{*}\left(u_{1}, u_{5}\right)=6, D^{*}\left(u_{1}, u_{7}\right)=10$, $D^{*}\left(u_{1}, u_{9}\right)=12$, and for each $2 \leq i \leq m$, a $\left(u_{1}, u_{2 i+1}\right)$ restricted detour is

$$
u_{1}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{3}, u_{4}, u_{5}, u_{5}^{\prime}, \ldots,\left(u_{2 i-1}, u_{2 i}, u_{2 i+1}\right)\left(\text { or } \ldots u_{2 i-1}^{\prime}, u_{2 i}^{\prime}, u_{2 i+1}^{\prime}, u_{2 i+1}\right)
$$

which is of length $2 i+2\left\lceil\frac{i}{2}\right\rceil$.
(2) We notice that $D^{*}\left(u_{1}, u_{4}\right)=7, D^{*}\left(u_{1}, u_{6}\right)=9, D^{*}\left(u_{1}, u_{8}\right)=13, \ldots$; and for $4 \leq i \leq m$ a $\left(u_{1}, u_{2 i}\right)$ restricted detour is
$u_{1}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{3}, u_{4}, u_{5}, u_{5}^{\prime}, \ldots,\left(u_{2 i-3}, u_{2 i-3}^{\prime}, u_{2 i-2}^{\prime}, u_{2 i-1}^{\prime}, u_{2 i-1}, u_{2 i}\right)$ (or $\ldots u_{2 i-2}^{\prime}$, $\left.u_{2 i-1}^{\prime}, u_{2 i}^{\prime}, u_{2 i+1}^{\prime}, u_{2 i+1}, u_{2 i}\right)$,
which is of length $2 i+1+2\left\lfloor\frac{i}{2}\right\rfloor$.
Parts (3) and (4) are proved using similar ways.
Proposition 3.2. For $m \geq 2$,

$$
\begin{equation*}
D^{*}\left(u_{1}, J_{m} ; x\right)=1+2 x+x^{3}+2 x^{4}+2(x+1) \sum_{i=2}^{m} x^{3 i} . \tag{3.3}
\end{equation*}
$$

Proof.

From Fig.3.1, we get

$$
D^{*}\left(u_{1}, J_{m} ; x\right)=D^{*}\left(u_{1}, J_{1} ; x\right)+\sum_{i=2}^{m}\left[x^{D^{*}\left(u_{1}, u_{2 i+1}\right)}+x^{D^{*}\left(u_{1}, u_{2 i}\right)}+x^{D^{*}\left(u_{1}, u_{2+1}^{\prime}\right)}+x^{D^{*}\left(u_{1}, u_{2 i}^{\prime}\right)}\right] .
$$

Since
(3.4) $D^{*}\left(u_{1}, J_{1} ; x\right)=1+2 x+x^{3}+2 x^{4}$, then, from Preposition 3.1, we obtain

$$
\begin{aligned}
& D^{*}\left(u_{1}, J_{m} ; x\right)=1+2 x+x^{3}+2 x^{4}+2 \sum_{i=2}^{m} x^{2 i}\left[x^{1+2\left[\frac{i}{2}\right]}+x^{2\left[\frac{i}{2}\right]}\right] \\
& =1+2 x+x^{3}+2 x^{4}+2 \sum_{i=2}^{m} x^{2 i}\left[x^{i}+x^{i+1}\right]=1+2 x+x^{3}+2 x^{4}+2 \sum_{i=2}^{m}(1+x) x^{3 i} .
\end{aligned}
$$

Proposition 3.3 For $m \geq 4$, we have
(1) $D^{*}\left(u_{2}, u_{2 i+1}\right)=2 i+1+\left\lfloor\frac{i}{2}\right\rfloor$, for $i=2,3, \ldots, m$.
(2) $D^{*}\left(u_{2}, u_{2 i}\right)=2 i+2\left\lceil\frac{i}{2}\right\rceil$, for $i=3,4, \ldots, m$.
(3) $D^{*}\left(u_{2}, u_{2 i+1}^{\prime}\right)=2 i+2\left\lceil\frac{i}{2}\right\rceil$, for $i=2,3, \ldots, m$.
(4) $D^{*}\left(u_{2}, u_{2 i}^{\prime}\right)=2 i+1+\left\lfloor\frac{i}{2}\right\rfloor$, for $i=4,5, \ldots, m$.

Proof.

It is similar to that of proof Proposition 3.1.
Proposition 3.4 For $m \geq 4$,

$$
\begin{equation*}
D^{*}\left(u_{2}, J_{m} ; x\right)=1+2 x+x^{3}+2 x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+2(x+1) \sum_{i=4}^{m} x^{3 i} . \tag{3.5}
\end{equation*}
$$

Proof.

From Fig.3.1, (3.4), and Proposition 3.3, we get

$$
\begin{aligned}
& D^{*}\left(u_{2}, J_{m} ; x\right)=D^{*}\left(u_{2}, J_{1} ; x\right)+\sum_{i=2}^{m}\left[x^{D^{*}\left(u_{2}, u_{2 i+1}\right)}+x^{D^{*}\left(u_{2}+u_{2 i}\right)}+x^{D^{*}\left(u_{2}+u_{2+1}^{\prime}\right)}+x^{D^{*}\left(u_{2}+u_{i}^{\prime}\right)}\right] \\
& =D^{*}\left(u_{1}, J_{1} ; x\right)+\left(x^{D^{*}\left(u_{2}, u_{5}\right)}+x^{D^{*}\left(u_{2}, u_{7}\right)}\right)+\left(x^{D^{*}\left(u_{2}, u_{4}\right)}+x^{D^{*}\left(u_{2}, u_{6}\right)}\right)+\left(x^{D^{*}\left(u_{2}, u_{5}^{\prime}\right)}+\right. \\
& \left.x^{D^{*}\left(u_{2}, u^{\prime}\right)}\right)+\left(x^{D^{*}\left(u_{2}, u_{4}^{\prime}\right)}+x^{D^{*}\left(u_{2}, u_{6}^{\prime}\right)}\right)+2 \sum_{i=4}^{m}\left[x^{2 i+1+\left\lfloor\frac{i}{2}\right\rfloor}+x^{2 i+2\left[\frac{i}{2}\right]}\right] \\
& =\left(1+2 x+x^{3}+2 x^{4}\right)+\left(x^{7}+x^{9}\right)+\left(x^{8}+x^{10}\right)+\left(x^{6}+x^{10}\right)+\left(x^{5}+x^{7}\right)+ \\
& 2 \sum_{i=4}^{m} x^{2 i}\left(x^{i}+x^{i+1}\right) .
\end{aligned}
$$

Simplifying the expression, we get (3.5).
Proposition 3.5. For $m \geq 4$, we have a reduction formula

$$
\begin{equation*}
D^{*}\left(J_{m} ; x\right)=D^{*}\left(J_{m-1} ; x\right)+F_{m}(x), \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{m}(x)=R(x)+8(x+1) \sum_{i=4}^{m} x^{3 i}, \\
& R(x)=4+5 x+3 x^{3}+6 x^{4}+2 x^{5}+6 x^{6}+8 x^{7}+2 x^{8}+6 x^{9}+8 x^{10} .
\end{aligned}
$$

Proof.
From (3.2), we have, for $m \geq 2$,

$$
F_{m}(x)=2 D^{*}\left(u_{1}, J_{m} ; x\right)+2 D^{*}\left(u_{2}, J_{m} ; x\right)-\left(3 x+x^{3}+2 x^{4}\right) .
$$

From Proposition 3.2 and 3.4, we obtain, for $m \geq 4$:

$$
\begin{aligned}
& F_{m}(x)=2\left\{1+2 x+x^{3}+2 x^{4}+2(x+1)\left(x^{6}+x^{9}\right)+2(x+1) \sum_{i=4}^{m} x^{3 i}\right. \\
& \left.+1+2 x+x^{3}+2 x^{4} x^{5}+x^{6}+2 x^{7}+x^{8}+x^{9}+2 x^{10}+2(x+1) \sum_{i=4}^{m} x^{3 i}\right\}-\left(3 x+x^{3}+2 x^{4}\right) .
\end{aligned}
$$

Simplifying the algebraic expression, we get $F_{m}(x)$ as given in (3.6)
Hence, the proof is completed.
Now, we state our main result.
Theorem 3.6. For $m \geq 4$,

$$
\begin{align*}
& D^{*}\left(J_{m} ; x\right)=4 m+2+(5 m-1) x+3 m x^{3}+6 m x^{4}+(2 m-2) x^{5}+(6 m-6) x^{6}+ \tag{3.7}\\
& \quad(8 m-10) x^{7}+(2 m-2) x^{8}+(6 m-12) x^{9}+(8 m-16) x^{10}+ \\
& \quad 8(x+1) \sum_{k=4}^{m}(m+1-k) x^{3 k} .
\end{align*}
$$

Proof.

From Proposition 3.5, we have

$$
\begin{aligned}
D^{*}\left(J_{m} ; x\right) & =D^{*}\left(J_{m-1} ; x\right)+R(x)+8(x+1) \sum_{i=4}^{m} x^{3 i} \\
& =D^{*}\left(J_{m-2} ; x\right)+2 R(x)+8(x+1)\left[\sum_{i=4}^{m-1} x^{3 i}+\sum_{i=4}^{m} x^{3 i}\right] .
\end{aligned}
$$

Thus solving our reduction formula, we obtain

$$
\begin{align*}
& D^{*}\left(J_{m} ; x\right)=D^{*}\left(J_{3} ; x\right)+(m-3) R(x)+8(x+1) \sum_{k=4}^{m} \sum_{i=4}^{k} x^{3 i} \tag{3.8}\\
& \quad=D^{*}\left(J_{3} ; x\right)+(m-3) R(x)+8(x+1) \sum_{k=4}^{m}(m+1-k) x^{3 k} .
\end{align*}
$$

By direct calculation, we get

$$
D^{*}\left(J_{3} ; x\right)=14+16 x+9 x^{3}+18 x^{4}+4 x^{5}+12 x^{6}+14 x^{7}+4 x^{8}+6 x^{9}+8 x^{10} .
$$

Therefore, substituting $R(x)$, from (3.6), and $D^{*}\left(J_{3} ; x\right)$ in $(3,8)$ and simplifying, we get the required result (3.7).

Theorem 3.7. For $m \geq 4$, the restricted detour index of J_{m} is given by

$$
d d^{*}\left(J_{m}\right)=8 m^{3}+28 m^{2}-2 m+9
$$

Proof.

Taking the derivative of $D^{*}\left(J_{m} ; x\right)$ with respect to x, we get

$$
D^{* \prime}\left(J_{m} ; x\right)=(5 m+1)+9 m x^{2}+24 m x^{3}+(10 m-10) x^{4}+(36 m-36) x^{5}+
$$

$$
\begin{aligned}
& (56 m-70) x^{6}+(16 m-16) x^{7}+(54 m-108) x^{8}+(80 m-160) x^{9}+ \\
& 8 \sum_{k=4}^{m}(m+1-k) x^{3 k}+8(x+1) \sum_{k=4}^{m} 3 k(m+1-k) x^{3 k-1}
\end{aligned}
$$

Putting $x=1$, we get

$$
\begin{aligned}
& D^{* \prime \prime}\left(J_{m} ; 1\right)=290 m-399+8 \sum_{k=4}^{m}\left(m+1+6 m k+5 k-6 k^{2}\right) \\
&=290 m-399+8\left[(m+1)(m-3)+(6 m+5) \sum_{k=4}^{m} k-6 \sum_{k=4}^{m} k^{2}\right] \\
&=290 m-399+8\left(m^{2}-2 m-3\right)+8(6 m+5)\left(\frac{m+4}{2}\right)(m-3)- \\
& 48\left[\frac{1}{6} m(m+1)(2 m+1)-14\right]=8 m^{3}+28 m^{2}-2 m+9 .
\end{aligned}
$$

Corollary 3.8. For $m \geq 3$, the restricted detour diameter of J_{m} is $3 m+1$.

Proof.

It is clear that the highest power of x in $D^{*}\left(J_{m} ; x\right)$ is $3 m+1$.
Moreover, one may notice that $D^{*}\left(J_{m} ; x\right)$ does not contain the terms x^{2} and $x^{3 k-1}$ for $4 \leq k \leq m$.

4. The Restricted Detour Polynomial of the Ladder $\boldsymbol{L}_{\boldsymbol{n}}$

Let P_{n} be a path of order $n, n \geq 2$. The ladder graph L_{n} is $K_{2} \times P_{n}$. It is clear that $p\left(L_{n}\right)=2 n, q\left(L_{n}\right)=3 n-2$, and diam $L_{n}=n$. It is known [7] that the Hosoya polynomial of P is given by
(4.1) $H\left(P_{n} ; x\right)=\sum_{k=0}^{n-1}(n-k) x^{k}$.

Let the vertices of P_{n} be $u_{1}, u_{2}, \ldots ., u_{n}$, and let the vertices of L_{n} be labeled as shown in Fig. 4.1.

Fig.4.1. The ladder $L_{n}, n \geq 2$.
Proposition 4.1. For $k \geq 0$,

$$
\begin{equation*}
D_{L_{n}}^{*}\left(u_{i}, u_{i+k}\right)=k+2\left\lceil\frac{k-1}{4}\right\rceil \text {, } \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
D_{L_{n}}^{*}\left(u_{i}, u_{i+k}^{\prime}\right)=k+1+2\left\lfloor\frac{k}{4}\right\rfloor . \tag{4.3}
\end{equation*}
$$

Proof.

It is clear that $d_{P_{n}}\left(u_{i}, u_{i+k}\right)=k$. From Fig.4.1, we notice that there is a restricted detour between vertices u_{i} and u_{i+k}, for $k \geq 2$, in L_{n}, namely

$$
u_{i}, u_{i}^{\prime}, u_{i+1}^{\prime}, u_{i+2}^{\prime}, u_{i+2}, u_{i+3}, u_{i+4}, u_{i+4}^{\prime}, u_{i+5}^{\prime}, \ldots, u_{i+k-1}, u_{i+k}\left(\text { or } \ldots, u_{i+k}^{\prime}, u_{i+k}\right)
$$

which is of length $k+2\left\lceil\frac{k-1}{4}\right\rceil$. Hence (4.2) holds.
(b) If $k=0$, then $D_{L_{n}}^{*}\left(u_{i}, u_{i}^{\prime}\right)=1$, and if $k=1$, then $D_{L_{n}}^{*}\left(u_{i}, u_{i+1}^{\prime}\right)=2$. Also $D_{L_{n}}^{*}\left(u_{i}, u_{i+2}^{\prime}\right)=3, D_{L_{n}}^{*}\left(u_{i}, u_{i+3}^{\prime}\right)=4, D_{L_{n}}^{*}\left(u_{i}, u_{i+4}^{\prime}\right)=7$.

Thus, (4.3) holds for $k=0,1,2,3,4$. In general, we have a restricted detour between u_{i} and u_{i+k}^{\prime} in L_{n} of length $k+1+2\left\lfloor\frac{k}{4}\right\rfloor$, namely, for $k \geq 4$,

$$
u_{i}, u_{i}^{\prime}, u_{i+1}^{\prime}, u_{i+2}^{\prime}, u_{i+2}, u_{i+3}, u_{i+4}, u_{i+4}^{\prime}, \ldots, u_{i+k}, u_{i+k}^{\prime}\left(\text { or } \ldots, u_{i+k-1}^{\prime}, u_{i+k}^{\prime}\right),
$$

which is of length $k+1+2\left\lfloor\frac{k}{4}\right\rfloor$.
Let $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, and $S^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}$. From (4.1), we notice that the number of unordered pairs of vertices which are of distance k apart in P_{n} is $(n-k)$.Therefore, by Proposition 4.1, the number of unordered pairs of vertices of S (or of S^{\prime}) which are of restricted detour distance $k+2\left\lceil\frac{k-1}{4}\right\rceil$, for $k \geq 2$, in L_{n}, is $(n-k)$. Also, the number of unordered pairs u, u^{\prime} with $u \in S$ and $u^{\prime} \in S^{\prime}$, which are of restricted detour distance $1+k+2\left\lfloor\frac{k}{4}\right\rfloor$, for $k \geq 0$, in L_{n}, is $(n-k)$. Using this fact, we shall prove the following theorem.
Theorem 4.2. For $n \geq 3$,

$$
\begin{equation*}
D^{*}\left(L_{n} ; x\right)=2 n+(3 n-2) x+2(n-1) x^{2}+2 \sum_{k=2}^{n-1}(n-k) x^{k}\left(x^{2\left[\frac{k-1}{4}\right\rceil}+x^{1+2\left\lfloor\frac{k}{4}\right\rfloor}\right) \text {. } \tag{4.4}
\end{equation*}
$$

Proof.
From the symmetry of L_{n}, we have for all $i, j \in\{1,2, \ldots, n\}$,

$$
D_{L_{n}}^{*}\left(u_{i}, u_{j}\right)=D_{L_{n}}^{*}\left(u_{i}^{\prime}, u_{j}^{\prime}\right)
$$

and

$$
D_{L_{n}}^{*}\left(u_{i}, u_{j}^{\prime}\right)=D_{L_{n}}^{*}\left(u_{i}^{\prime}, u_{j}\right) .
$$

Since the order of L_{n} is $2 n$ and its size is ($3 n-2$), then by Proposition 4.1, we get

$$
\begin{aligned}
& D^{*}\left(L_{n} ; x\right)=2 n+(3 n-2) x+2 \sum_{k=2}^{n-1}(n-k) x^{k+2\left\lceil\frac{k-1}{4}\right\rceil}+2 \sum_{k=1}^{n-1}(n-k) x^{k+1+2\left\lfloor\frac{k}{4}\right\rfloor} \\
& =2 n+(3 n-2) x+2(n-1) x^{2}+2 \sum_{k=2}^{n-1}(n-k) x^{k+2\left\lfloor\frac{k-1}{4}\right\rceil}+2 \sum_{k=2}^{n-1}(n-k) x^{k+1+2\left[\frac{k}{4}\right\rfloor} .
\end{aligned}
$$

Hence, the proof is completed.
The next corollary determines the restricted detour diameter of L_{n}.
Corollary 4.3. For $n \geq 1$, let $m=\left\lfloor\frac{n}{4}\right\rfloor$, then

$$
\operatorname{Diam}^{*}\left(L_{n}\right)= \begin{cases}n+2 m-1, & \text { if } n \equiv 0(\bmod 4) \\ n+2 m, & \text { if } n \equiv 1 \operatorname{or} 2(\bmod 4) \\ n+2 m+1, & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

Proof.

Since $\operatorname{diam} P_{n}=n-1$, then

$$
\operatorname{Diam}^{*}\left(L_{n}\right)=\max \left\{(n-1)+2\left\lceil\frac{n-2}{4}\right\rceil, 1+(n-1)+2\left\lfloor\frac{n-1}{4}\right\rfloor\right\} .
$$

Let $n \equiv r(\bmod 4)$, then $n=4 m+r$, where $r=0,1,2$ or 3 .
If $r=0$, then

$$
\begin{aligned}
\operatorname{Diam}^{*}\left(L_{n}\right) & =\max \left\{n-1+2\left\lceil\frac{4 m-2}{4}\right\rceil, n+2\left\lfloor\frac{4 m-1}{4}\right\rfloor\right\} \\
& =\max \{n-1+2 m, n+2(m-1)\}=n+2 m-1
\end{aligned}
$$

If $r=1$, then

$$
\begin{aligned}
\operatorname{Diam}^{*}\left(L_{n}\right) & =\max \left\{n-1+2\left\lceil\frac{4 m-1}{4}\right\rceil, n+2\left\lfloor\frac{4 m}{4}\right\rfloor\right\} \\
& =\max \{n-1+2 m, n+2 m\}=n+2 m .
\end{aligned}
$$

If $r=2$, then

$$
\begin{aligned}
\operatorname{Diam}^{*}\left(L_{n}\right) & =\max \left\{n-1+2\left\lceil\frac{4 m}{4}\right\rceil, n+2\left\lfloor\frac{4 m+1}{4}\right\rfloor\right\} \\
& =\max \{n-1+2 m, n+2 m\}=n+2 m
\end{aligned}
$$

If $r=3$, then

$$
\begin{aligned}
\operatorname{Diam}^{*}\left(L_{n}\right) & =\max \left\{n-1+2\left\lceil\frac{4 m+1}{4}\right\rceil, n+2\left\lfloor\frac{4 m+2}{4}\right\rfloor\right\} \\
& =\max \{n-1+2(m+1), n+2 m\}=n+2 m+1 .
\end{aligned}
$$

We shall obtain the restricted detour index of L_{n}

Theorem 4.4. For $n \geq 2$, we have

$$
d d^{*}\left(L_{n}\right)= \begin{cases}\frac{1}{2} n\left(2 n^{2}+n-2\right), & \text { for even } n \\ \frac{1}{2}\left(2 n^{3}+n^{2}-6 n+5\right)+4\left(\left\lceil\frac{n-2}{4}\right\rceil+\left\lfloor\frac{n-1}{4}\right\rfloor\right), & \text { for odd } n\end{cases}
$$

Proof.

Assuming $n \geq 3$ and taking the derivative of $D^{*}\left(L_{n} ; x\right)$ with respect to x, and then putting $x=1$, we get from Theorem 4.2:

$$
\begin{aligned}
& d d^{*}\left(L_{n}\right)=3 n-2+4(n-1)+2 \sum_{k=2}^{n-1}(n-k)\left(2 k+1+2\left\lceil\frac{k-1}{4}\right\rceil+2\left\lfloor\frac{k}{4}\right\rfloor\right) \\
& =7 n-6+2 \sum_{k=2}^{n-1}\left\{n+(2 n-1) k-2 k^{2}\right\}+4 \sum_{k=2}^{n-1}(n-k)\left(\left\lceil\frac{k-1}{4}\right\rceil+\left\lfloor\frac{k}{4}\right\rfloor\right) \\
& =7 n-6+2\left\{n(n-2)+(2 n-1) \frac{n+1}{2}(n-2)-2\left[\frac{1}{6}(n-1) n(2 n-1)-1\right]\right\}+4 A,
\end{aligned}
$$

where
(4.5) $\quad A=\sum_{k=2}^{n-1}(n-k)\left(\left\lceil\frac{k-1}{4}\right\rceil+\left\lfloor\frac{k}{4}\right\rfloor\right)$.

Therefore,
(4.6) $d d^{*}\left(L_{n}\right)=\frac{2}{3} n^{3}+n^{2}-\frac{2}{3} n+4 A$.

We shall find the value of A. Expanding the summation in (4.5), we get

$$
\begin{aligned}
A= & {[(n-2)(1+0)+(n-3)(1+0)]+[(n-4)(1+1)+(n-5)(1+1)]+} \\
& {[(n-6)(2+1)+(n-7)(2+1)]+\ldots } \\
= & (2 n-5)(1)+(2 n-9)(2)+(2 n-13)(3)+\ldots=2 n(1+2+3 \ldots)-(5+18+39+\ldots) .
\end{aligned}
$$

If $4 \leq n$ is even, then
(4.7) $A=2 n \sum_{i=1}^{\frac{n-2}{2}} i-\sum_{i=1}^{\frac{n-2}{2}} i(4 i+1)=(2 n-1) \frac{1}{2}\left(\frac{n-2}{2}\right)\left(\frac{n}{2}\right)-4\left(\frac{1}{6}\right)\left(\frac{n-2}{2}\right)\left(\frac{n}{2}\right)(n-1)$

$$
=\frac{1}{4}\left(\frac{1}{3} n^{3}-\frac{1}{2} n^{2}-\frac{1}{3} n\right) .
$$

Thus, from (4.6) and (4.7), we get the formula for $d d^{*}\left(L_{n}\right)$ for even $n \geq 4$.
If n is odd, $n \geq 5$, then

$$
\begin{equation*}
A=2 n \sum_{i=1}^{\frac{n-3}{2}} i-\sum_{i=1}^{\frac{n-3}{2}} i(4 i+1)+\left(\left\lceil\frac{n-2}{4}\right\rceil+\left\lfloor\frac{n-1}{4}\right\rfloor\right) \tag{4.8}
\end{equation*}
$$

$$
\begin{aligned}
& =(2 n-1) \sum_{i=1}^{\frac{n-2}{2}} i-4 \sum_{i=1}^{\frac{n-2}{2}} i^{2}+\left(\left\lceil\frac{n-2}{4}\right\rceil+\left\lfloor\frac{n-1}{4}\right\rfloor\right. \\
& =(2 n-1) \frac{1}{2}\left(\frac{n-3}{2}\right)\left(\frac{n-1}{2}\right)-4\left(\frac{1}{6}\right)\left(\frac{n-3}{2}\right)\left(\frac{n-1}{2}\right)(n-2)+\left(\left[\frac{n-2}{4}\right\rceil+\left\lfloor\frac{n-1}{4}\right\rfloor\right) \\
& =\frac{1}{4}\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}-\frac{7 n}{3}+\frac{5}{2}\right)+\left(\left\lceil\frac{n-2}{4}\right\rceil+\left\lfloor\frac{n-1}{4}\right\rfloor\right)
\end{aligned}
$$

Thus, from (4.6) and (4.8), we obtain the required formula for $n \geq 5$.
Moreover, one may easily see that the formula for $d d^{*}\left(L_{n}\right)$ given in the theorem holds also for $n=2$ and 3 . Hence the proof is completed.

REFERENCES

[1] O. H. Abdullah and G. A. Muhammed-Saleh, Detour Hosoya polynomial of some compound graphs, Raf. J. Comp. Sci. \& Maths., 7 (1) (2010), 199-204.
[2] A. A. Ali and G. A. Mohammed-Saleh, The detour polynomials of ladder graphs, Raf. J. Comp. Sci. \& Maths., (2012) accepted.
[3] A. A. Ali and G. A. Mohammed-Saleh, The detour polynomials of the Corona of Graphs, Raf. J. Comp. Sci. \& Maths., (2012) accepted.
[4] G. Chartrand, G. L. Gohns and S. Tain, Detour distance in Graphs, Annals of Discrete Maths,55, (1993), 127-1336.
[5] G. Chartrand and P. Zhang, Distance in graphs-taking the long view, AKCE J. Graphs. Combin., 1(1) (2004), 1-13.
[6] G. Chartrand, H. Escuadro and P. Zhang, Distance in graphs-taking the long view, J. Combin. Math. Combin. Comput., (2005) To appear.
[7] I. Gutman, Some properties of the Wiener polynomial, Graph Theory Notes of New York, XXV, (1993), 13-18.
[8] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, (1969).
[9] H. Hosoya, On some counting polynomials in Chemistry, Discrete Applied Mathematics, 19, (1988), 239-257.
[10] B. E. Sagan, Y. N. Yeh and P. Zhang, The Wiener polynomial of a graph, International J. of Quantum Chemistry, 60, (1996), 959-969.

[^0]: * Corresponding author

 Received June 24, 2012

