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1. Introduction 

Let G  be a connected graph, and let u  and v  be any two vertices of G .The 

(standard) distance ( , )d u v  between u  and v  in G  is the length of a shortest u v  

path P  in G [8]. It is clear that the induced subgraph ( )V P   is P  itself. Based on 

this observation, Chartrand, et al [4],in 1993 defined the detour distance *( , )d u v  

between vertices u  and v  as the length of a longest u v  path P  for which 
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( )V P P  . Later on, Chartrand, et al and any other authors (see [5] and [6]). 

Defined the concepts of detour distance ( , )D u v  between vertices u  and v  in G , as 

the length of a longest u v   path P , without assuming the induced condition 

( )V P P  . Therefore, in order to differentiate between the two concepts, we shall 

call the detour distance with the induced condition, the restricted detour distance 

between u  and v , and denote it by * ( , )GD u v  or simply *( , )D u v . From this definition 

of the concept  *D  on the vertex set ( )V G , we notice that *( , ) 0D u v   if and only if 

u v , and *( , ) 1D u v   if and only if uv  is an edge of G . However, the triangle 

inequality does not hold in general [4], therefore the restricted detour distance is not 

metric on ( )V G . 

An induced u v  path of length *( , )D u v will be called a restricted (or an 

induced) detour path. Moreover, a connected graph G is called a restricted detour 

graph if *( , ) ( , )D u v d u v for every pair ,u v of vertices in G . It is clear that all trees, 

complete graphs, and complete bipartite graphs are restricted detour graphs. However, 

every cycle of order 5p  is not restricted detour. 

For more properties and results on restricted detour distances, one may see [4]. 

2. Restricted Detour Polynomials 

 Let G be a ( , )p q connected graph. The concept of Hosoya polynomial 

( ; )H G x is based on standard distance, (See [7], [9], and [10]), and the concept of 

detour polynomials ( ; )D G x of G , (See [2] and [3]) is based on detour distance. On 

the same line, the concept of restricted detour polynomial, denoted by *( ; )D G x or 

*( ; )H G x , see [1], is defined as follows: 

(2.1)  
* ( , )*

,

( ; ) ,GD u v

u v

D G x x           

where the summation is taken over all unordered pairs ,u v of vertices of G . The 

index of G with respect to restricted detour distance is denoted by *( )dd G and 

defined by 

(2.2) * *

,

( ) ( , ),G

u v

dd G D u v           

and will be called restricted detour index of G .  

It is clear that 
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(2.3) * *

1
( ) ( ; )

x

d
dd G D G x

dx 
 .         

One can easily notice that 

(2.4) * *

0

( ; ) ( , ) ,k

k

D G x C G k x


          

in which *( , )C G k is the number of unordered pairs of vertices ,u v of G such that 

* ( , )GD u v k . 

 Let u be any vertex of G , and let *( , ; )C u G k  be the number of vertices v of 

G such that *( , )D u v k . Then, the polynomial is defined by 

(2.5) * *

0

( , ; ) ( , ; ) ,k

k

D u G x C u G k x


         

is called the restricted detour polynomial of vertex u . 

It is clear that 

(2.6) * *

( )

1
( ; ) ( , ; ) .

2 u V G

D G x D u G x p


 
  

 
        

We illustrate these concepts in the next example. 

Example:  Let 3Q  be the 3-cube graph, and let u  be any vertex in 3Q  as shown in 

Fig.2.1. From the symmetry of 3Q ,we have  

 * *

3 3( ; ) 4[1 ( , ; )]D Q x D u Q x  . 

 

 

 

 

  

 
Fig.2.1. The 3-cube 3Q . 

By direct calculation using Fig.2.1,we obtain the restricted detour distances from 

vertex u  to the other vertices 1 2 7, ,...,v v v which, respectively, are 1, 1, 1, 4, 4, 3, 4. 

Thus 

 * 3 4

3( , ; ) 1 3 3D u Q x x x x    , 

and so 

 * 3 4

3( ; ) 8 12 4 12D Q x x x x    , 

and 

       

 

 

 

       

     

 

     

3v  

7v  

5v  

6v  

2v  
4v  

1v  u  
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 *

3( ) 72dd Q  . 

 In 2010, Abdullah and Muhammed-Saleh [1] obtained the restricted detour 

polynomials and restricted detour indices of some special graphs. 

 In this paper, we obtain the restricted detour polynomial and index of a 

hexagonal graph consisting of one row of m  hexagons. 

3. Restricted Detour Polynomials of Hexagonal Graphs 

 Let , 1mJ m  , be a hexagonal chain consisting of one row of m  hexagons 1h , 

2h , …, mh as depicted in Fig.3.1. Then, ( ) 4 2mp J m  , ( ) 5 1mq J m  .  

 

 

 

 

 

Fig.3.1. A hexagonal graph mJ . 

From Fig.3.1 and taking care of the symmetry of mJ , we have the following 

reduction formula: 

(3.1) * *

1( ; ) ( ; ) ( ), 2m m mD J x D J x F x m   ,      

in which 

(3.2) * * 3 4

1 2( ) 2 ( , ; ) 2 ( , ; ) (3 2 )m m mF x D u J x D u J x x x x     .    

We shall find *( , ; ), 1, 2i mD u J x i  . 

Remark. All restricted detour distance *( , )D  in this section are calculated in the 

graph mJ . 

Proposition 3.1. For 2m  and i 2, 3,…, m  

(1) *

1 2 1( , ) 2 2
2

i

i
D u u i

 
   

 
, 

(2) *

1 2( , ) 2 1 2
2

i

i
D u u i

 
    

 
, 

(3) *

1 2 1( , ) 2 1 2
2

i

i
D u u i

 
     

 
, 

(4) *

1 2( , ) 2 2
2

i

i
D u u i

 
    

 
. 

 

                                                       

 

                                                      

1h  
2h  ... 1ih   ih  1ih   ... 1mh   mh  

1u  
2u  3u  

4u  5u  2 3iu   2 1iu   

2iu  2 2iu   
2 1iu   

2 2iu   
2 3iu   2 3mu   2 1mu   2 1mu   

2 2mu   
2mu  

2 1mu 
  

2mu  

2 1mu 
  

2 2mu 
  

2 3mu 
  

2 3iu 
  

2 1iu 
  

2 2iu 
  

2iu  2 2iu 
  

2 1iu 
  2 3iu 

  
5u  4u  3u  2u  1u  



A. A. ALI and G.  A. MOHAMMED-SALEH                                      1626 

Proof.  

(1) From Fig.3.1, one may easily see that *

1 5( , ) 6D u u  , *

1 7( , ) 10D u u  , 

*

1 9( , ) 12D u u  , and for each 2 i m  , a 1 2 1( , )iu u   restricted detour is 

 1u , 1u , 2u , 3u , 3u , 4u , 5u , 5u , …, ( 2 1iu  , 2iu , 2 1iu  ) (or … 2 1iu 
 , 2iu , 2 1iu 

 , 2 1iu  ), 

which is of length 2 2
2

i
i

 
  

 
. 

(2) We notice that *

1 4( , ) 7D u u  , *

1 6( , ) 9D u u  , *

1 8( , ) 13D u u  , …; and for 

4 i m   a 1 2( , )iu u  restricted detour is  

1u , 1u , 2u , 3u , 3u , 4u , 5u , 5u , …, ( 2 3iu  , 2 3iu 
 , 2 2iu 

 , 2 1iu 
 , 2 1iu  , 2iu ) (or … 2 2iu 

 , 

2 1iu 
 , 2iu , 2 1iu 

 , 2 1iu  , 2iu ),  

which is of length 2 1 2
2

i
i

 
   

 
. 

Parts (3) and (4) are proved using similar ways.  

Proposition 3.2. For 2m  ,  

(3.3) * 3 4 3

1

2

( , ; ) 1 2 2 2( 1)
m

i

m

i

D u J x x x x x x


       .     

Proof.  

From Fig.3.1, we get 

*
1 2 1( , )* *

1 1 1

2

( , ; ) ( , ; ) [ i

m
D u u

m

i

D u J x D u J x x 



  
*

1 2( , )iD u u
x

*
1 2 1( , )iD u u

x  
*

1 2( , )
]iD u u

x


. 

Since 

(3.4) * 3 4

1 1( , ; ) 1 2 2 ,D u J x x x x            

then, from Preposition 3.1, we obtain 

 * 3 4

1( , ; ) 1 2 2mD u J x x x x    
1 2 2

2 2 2

2

2 [ ]

i im
i

i

x x x

   
    

   



  

3 41 2 2x x x     2 1

2

2 [ ]
m

i i i

i

x x x 



 3 4 3

2

1 2 2 2 (1 )
m

i

i

x x x x x


      .  

 

 

Proposition 3.3 For 4m  , we have 

(1) *

2 2 1( , ) 2 1 ,
2

i

i
D u u i

 
    

 
 for 2,3,...,i m . 
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(2) *

2 2( , ) 2 2 ,
2

i

i
D u u i

 
   

 
 for 3,4,...,i m . 

(3) *

2 2 1( , ) 2 2 ,
2

i

i
D u u i

 
    

 
 for 2,3,...,i m . 

(4) *

2 2( , ) 2 1 ,
2

i

i
D u u i

 
     

 
 for 4,5,...,i m . 

Proof.  

It is similar to that of proof Proposition 3.1.  

Proposition 3.4 For 4m  , 

(3.5) * 3 4

2( , ; ) 1 2 2mD u J x x x x     5 6 7 8 9 10x x x x x x     3

4

2( 1)
m

i

i

x x


   .  

Proof.  

From Fig.3.1, (3.4), and Proposition 3.3, we get 

* *

2 2 1( , ; ) ( , ; )mD u J x D u J x 
*

2 2 1( , )

2

[ i

m
D u u

i

x 




*

2 2( )iD u u
x




*
2 2 1( )iD u u

x 


*
2 2( )

]iD u u
x


 

*

1 1( , ; )D u J x 
*

2 5( , )
(

D u u
x 

*
2 7( , )

)
D u u

x
*

2 4( , )
(

D u ux 
*

2 6( , )
)

D u u
x 

*
2 5( , )

(
D u u

x

  

*
2 7( , )

)
D u u

x



*
2 4( , )

(
D u ux




*
2 6( , )

)
D u u

x



2 1
2

4

2 [

im i

i

x

 
  

 




2 2

2 ]

i
i

x

 
  

   

3 4(1 2 2 )x x x     7 9( )x x  8 10( )x x  6 10( )x x  5 7( )x x   

2 1

4

2 ( )
m

i i i

i

x x x 



 . 

Simplifying the expression, we get (3.5).  

Proposition 3.5.  For 4m  , we have a reduction formula 

(3.6) * *

1( ; ) ( ; )m mD J x D J x  ( ),mF x  

where 

( ) ( )mF x R x  3

4

8( 1) ,
m

i

i

x x


   

 3 4( ) 4 5 3 6R x x x x     5 6 7 8 9 102 6 8 2 6 8x x x x x x     .   

Proof.  

From (3.2), we have, for 2m  , 

 *

1( ) 2 ( , ; )m mF x D u J x  *

22 ( , ; )mD u J x  3 4(3 2 )x x x  . 

From Proposition 3.2 and 3.4, we obtain, for 4m  : 
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 3 4 6 9( ) 2{1 2 2 2( 1)( )mF x x x x x x x       3

4

2( 1)
m

i

i

x x


    

 3 41 2 2x x x    5 6 7 8 9 102 2x x x x x x     3

4

2( 1) }
m

i

i

x x


   3 4(3 2 )x x x   . 

Simplifying the algebraic expression, we get ( )mF x as given in (3.6) 

Hence, the proof is completed.  

 Now, we state our main result. 

Theorem 3.6 . For 4m  , 

(3.7) *( ; ) 4 2 (5 1)mD J x m m    3 4 53 6 (2 2)x mx mx m x     6(6 6)m x   

  7(8 10)m x  8(2 2)m x  9(6 12)m x  10(8 16)m x   

3

4

8( 1) ( 1 )
m

k

k

x m k x


   .        

Proof.   

From Proposition 3.5, we have 

 * *

1( ; ) ( ; )m mD J x D J x  ( )R x  3

4

8( 1)
m

i

i

x x


   

      *

2( ; )mD J x  2 ( ) 8( 1)R x x 
1

3 3

4 4

m m
i i

i i

x x


 

 
 

 
  . 

Thus solving our reduction formula, we obtain 

(3.8) * *

3( ; ) ( ; )mD J x D J x  ( 3) ( )m R x  3

4 4

8( 1)
m k

i

k i

x x
 

    

*

3( ; )D J x  ( 3) ( )m R x  3

4

8( 1) ( 1 )
m

k

k

x m k x


   .    

By direct calculation, we get 

* 3

3( ; ) 14 16 9D J x x x    4 5 618 4 12x x x   7 8 9 1014 4 6 8x x x x   . 

Therefore, substituting ( )R x , from (3.6), and *

3( ; )D J x in (3,8) and simplifying, we 

get the required result (3.7).  

Theorem 3.7. For 4m   , the restricted detour index of mJ is given by 

 * 3( ) 8mdd J m  228 2 9m m   

Proof.  

Taking the derivative of *( ; )mD J x with respect to x , we get 

* ( ; ) (5 1)mD J x m    2 3 49 24 (10 10)mx mx m x    5(36 36)m x   
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6(56 70)m x  7(16 16)m x  8(54 108)m x  9(80 160)m x   

3

4

8 ( 1 )
m

k

k

m k x


   3 1

4

8( 1) 3 ( 1 )
m

k

k

x k m k x 



   . 

Putting 1x  , we get 

 * ( ;1) 290 399mD J m    2

4

8 ( 1 6 5 6 )
m

k

m mk k k


     

290 399 8m    2

4 4

( 1)( 3) (6 5) 6
m m

k k

m m m k k
 

 
     

 
   

2290 399 8( 2 3)m m m     
4

8(6 5)( )( 3)
2

m
m m


    

1
48 ( 1)(2 1) 14

6
m m m

 
   

 

3 28 28 2 9m m m    . 

Corollary 3.8 . For 3m  , the restricted detour diameter of mJ  is 3 1m . 

Proof.  

It is clear that the highest power of x in *( ; )mD J x is 3 1m . 

Moreover, one may notice that *( ; )mD J x does not contain the terms 2x and 3 1kx   for 

4 k m  . 

4. The Restricted Detour Polynomial of the Ladder Ln 

 Let nP  be a path of order , 2n n  . The ladder graph nL  is 2 nK P . It is clear 

that ( ) 2np L n , ( ) 3 2nq L n  , and diam nL n . It is known [7] that the Hosoya 

polynomial of P  is given by 

(4.1) 
1

0

( ; ) ( )
n

k

n

k

H P x n k x




  .         

Let the vertices of nP  be 1 2, ,...., nu u u , and let the vertices of nL be labeled as shown in 

Fig. 4.1.  

 

 

 

Fig.4.1. The ladder , 2nL n  . 

Proposition 4.1. For 0k  ,  

(4.2) * ( , )
nL i i kD u u  

1
2

4

k
k

 
  

 
,        

2u  5iu   

... ... 

1u  
iu  4iu   i ku   

1nu   
nu  

nu  1nu 
  

i ku 
  

5iu 
  2u  1u  

 

  

 

... 

          

         

1iu   2iu   3iu   1i ku    

iu  1iu 
  

2iu 
  

3iu 
  4iu 

  
 

1i ku  
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(4.3)  * ( , )
nL i i kD u u 

  1 2
4

k
k

 
   

 
.         

Proof.  

It is clear that ( , )
nP i i kd u u k  .  From Fig.4.1, we notice that there is a restricted 

detour between vertices iu  and i ku  , for 2k  , in nL , namely 

1 2, , , ,i i i iu u u u 
  

2 3 4 4 5, , , ,i i i i iu u u u u    
 

1,..., ,i k i ku u   (or ..., ,i k i ku u 
 ) 

which is of length 
1

2
4

k
k

 
  

 
. Hence (4.2) holds. 

(b) If 0k  , then * ( , ) 1
nL i iD u u  , and if 1k  , then *

1( , ) 2
nL i iD u u 

  . Also 

*

2( , ) 3
nL i iD u u 

  , *

3( , ) 4
nL i iD u u 

  , *

4( , ) 7
nL i iD u u 

  . 

Thus, (4.3) holds for 0,1,2,3,4k  . In general, we have a restricted detour between 

iu and i ku 
  in nL of length 1 2

4

k
k

 
   

 
, namely, for 4k  ,  

1 2, , , ,i i i iu u u u 
  

2 3 4 4, , , ,i i i iu u u u   
 ..., ,i k i ku u 

 (or 1..., ,i k i ku u  
  ), 

which is of length 1 2
4

k
k

 
   

 
. 

Let  1 2, ,..., nS u u u , and  1 2, ,..., nS u u u    . From (4.1), we notice that the 

number of unordered pairs of vertices which are of distance k apart in nP is 

( )n k .Therefore, by Proposition 4.1, the number of unordered pairs of vertices of 

S (or of S  ) which are of restricted detour distance 
1

2
4

k
k

 
  

 
, for 2k  , in nL , is 

( )n k . Also, the number of unordered pairs ,u uwith u S and u S  , which are of 

restricted detour distance 1 2
4

k
k

 
   

 
, for 0k  , in nL , is ( )n k . Using this fact, 

we shall prove the following theorem. 

Theorem 4.2. For 3n  , 

(4.4) *( ; ) 2nD L x n  (3 2)n x  22( 1)n x
1

2

2 ( )
n

k

k

n k x




 
1

2 1 2
4 4( )

k k

x x

   
   

    .  

Proof.  

From the symmetry of nL , we have for all i ,  1,2,...,j n , 

 * ( , )
nL i jD u u  * ( , )

nL i jD u u   

and 
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* ( , )
nL i jD u u  * ( , )

nL i jD u u . 

Since the order of nL  is 2n  and its size is (3 2)n , then by Proposition 4.1, we get 

 *( ; ) 2nD L x n  (3 2)n x 

11 2
4

2

2 ( )

kn k

k

n k x

    
 




1 1 2

4

1

2 ( )

kn k

k

n k x

     
 



   

 2 (3 2)n n x    22( 1)n x

11 2
4

2

2 ( )

kn k

k

n k x

    
 



 
1 1 2

4

2

2 ( )

kn k

k

n k x

     
 



  . 

Hence, the proof is completed.  

 The next corollary determines the restricted detour diameter of nL . 

Corollary 4.3. For 1n  , let 
4

n
m

 
  
 

, then 

 *

2 1, if 0(mod 4)

( ) 2 , if 1or 2(mod 4)

2 1, if 3(mod 4).

n

n m n

Diam L n m n

n m n

  


  
   

 

Proof.  

Since 1ndiam P n  , then 

 * 2
( ) max ( 1) 2 ,1

4
n

n
Diam L n

  
     

 

1
( 1) 2

4

n
n

 
   

 
. 

Let (mod 4)n r , then 4n m r  , where 0, 1, 2or3r  . 

If 0r  , then 

 * 4 2
( ) max 1 2 ,

4
n

m
Diam L n

  
    

 

4 1
2

4

m
n

 
  

 
 

         max 1 2 ,n m   2( 1)n m  2 1n m   . 

If 1r  , then 

 * 4 1
( ) max 1 2 ,

4
n

m
Diam L n

  
    

 

4
2

4

m
n

 
  

 
 

   max 1 2 ,n m   2n m 2n m  . 

If 2r  , then 

 * 4
( ) max 1 2 ,

4
n

m
Diam L n

  
    

 

4 1
2

4

m
n

 
  

 
 

   max 1 2 ,n m   2n m 2n m  . 

If 3r  , then 

 * 4 1
( ) max 1 2 ,

4
n

m
Diam L n

  
    

 

4 2
2

4

m
n

 
  

 
 

   max 1 2( 1),n m    2n m 2 1n m   . 

 We shall obtain the restricted detour index of nL  
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Theorem 4.4. For 2n  , we have 

 

2

*

3 2

1
(2 2) , for even

2
( )

1 2 1
(2 6 5) 4 , for odd .

2 4 4

n

n n n n

dd L
n n

n n n n


 


 

                   

 

Proof.  

Assuming 3n  and taking the derivative of *( ; )nD L x with respect to x , and 

then putting 1x  , we get from Theorem 4.2: 

 *( ) 3 2ndd L n  4( 1)n 
1

2

2 ( )
n

k

n k




 
1

(2 1 2 2 )
4 4

k k
k

   
     

   
 

7 6n   
1

2

2

2 (2 1) 2
n

k

n n k k




   
1

2

1
4 ( )( )

4 4

n

k

k k
n k





   
     

   
   

7 6 2n    ( 2) (2 1)n n n  
1

( 2) 2
2

n
n


  

1
[ ( 1) (2 1) 1]
6

n n n   4 ,A  

where 

(4.5) 
1

2

1
( )( )

4 4

n

k

k k
A n k





   
     

   
 .        

Therefore, 

(4.6) * 32
( )

3
ndd L n  2 2

4
3

n n A  .        

We shall find the value of A . Expanding the summation in (4.5), we get 

 ( 2)(1 0) ( 3)(1 0)A n n       ( 4)(1 1) ( 5)(1 1)n n      + 

      ( 6)(2 1) ( 7)(2 1) ...n n       

 (2 5)(1) (2 9)(2)n n    (2 13)(3) ...n   2 (1 2 3...)n    (5 18 39 ...)   . 

If 4 n is even, then 

(4.7) 

2 2

2 2

1 1

2 (4 1)

n n

i i

A n i i i

 

 

    =
1 2

(2 1) ( )( )
2 2 2

n n
n


 

1 2
4( )( )( )( 1)

6 2 2

n n
n


  

    = 3 21 1 1 1
( )

4 3 2 3
n n n  .         

Thus, from (4.6) and (4.7), we get the formula for *( )ndd L  for even 4n  . 

 If n  is odd, 5n  , then 

(4.8) 

3 3

2 2

1 1

2 (4 1)

n n

i i

A n i i i

 

 

    +
2 1

( )
4 4

n n    
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    =

2 2

2 2
2

1 1

(2 1) 4

n n

i i

n i i

 

 

   +
2 1

( )
4 4

n n    
   

   
 

    =
1 3 1 1 3 1

(2 1) ( )( ) 4( )( )( )( 2)
2 2 2 6 2 2

n n n n
n n

   
   +

2 1
( )

4 4

n n    
   

   
 

    =
3 21 7 5

( )
4 3 2 3 2

n n n
   +

2 1
( )

4 4

n n    
   

   
.      

Thus, from (4.6) and (4.8), we obtain the required formula for 5n  . 

 Moreover, one may easily see that the formula for *( )ndd L  given in the theorem 

holds also for n 2 and 3. Hence the proof is completed.  
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