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Abstract. In the last few decades, the stabilization in stationary states has emerged as a new auspicious campaigner

in chaos theory and found a celebrated place through various control techniques such as predictive control, delayed

feedback control, constant proportional feedback control and oscillating feedback control system. Generally, it is

accepted that the superiority of control systems is not only to quash the irregular distribution of stationary states,

but also to illustrate its basin of attractions as large as possible depending on the numerical as well as analytical

observance. In this article, the universal stabilization in unstable stationary states is studied through superior fixed

point feedback control system for a family of one-dimensional maps. Further, it is interesting to know that the

novel system provides freedom in the control parameter γ due to which the stabilization increases more rapidly

for the lager range of parameter γ in [0,1]. The analytical as well as numerical simulations are demonstrated to

examine the behavior of parameter γ for which the unstable stationary state admits universal stability.
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1. INTRODUCTION

The term stabilization plays a central role in the dynamics of nonlinear dynamical systems

and especially in unstable systems and automation. It is believed that this concept was emerged
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from the study of the equilibrium state of mechanical systems in 1644, when E. Torricelli an

Italian physicist and mathematician examined the stationary point of a rigid body under the

gravitational forces. In 1892, it was Lyapunov [14] who gave the fundamental ideas and tech-

niques leading to basic research and applications of stability of nonlinear systems. But in the

nineteenth century, the concept of stabilization in nonlinear dynamical systems is adopted due

to Ott et al. [17] and Pyragas [21], that is poured by predictive feedback control and delayed

feedback control systems, respectively. The modern stability theory is completely influenced

by the tremendous work of Ushio and Yamando [29], which deals with the predictive based

control in discrete chaotic system. Afterward, various control techniques were introduced to

stabilize the chaos such as delayed feedback control technique to stabilize unstable periodic

orbits [6, 16, 23], oscillating feedback process to stabilize the chaos [20], stabilization using

predictive control techniques [19], etc.

From last two decades, the theory of control and stability is used in wide range applications

of science and engineering such as ecology, biology, cryptography and traffic control models.

Generally, three types of stabilizations are mentioned in nonlinear dynamical systems: (a) the

stability in a system with respect to its equilibria, (b) the stability of its orbit of a system output

trajectory, and (c) the structural stability of a system itself. In 1991, Ditto et al. [10] studied

the stability in chaos by controlling unstable periodic points of order one and two using first

kind stability. Also, Azevedo et al. [4] examined that the chaos control plays an important role

in microwave-pumped spin-wave-instability experiments and studied that the irregular behav-

ior reduces into periodicity for some cautiously selected amplitude and modulation frequency.

In the next year, a control system was used to stabilize cardiac arrhythmias in rabbit ventrile

by Garfinkel et al. [11]. Further, in 1997, Sinha [27] examined the stabilization in unstable

behavior of biological reactions using various control schemes (see also [18, 24]). Also, it is

interesting to know that the irregular distribution in traffic flow on the road is considered as one

of the most powerful examples of nonlinear dynamical system. It was first observed by Jarett

and Zhang [30] and then in 1997 using carfollow model the stabilization was carried out in traf-

fic system on road. In 2012, using queue model an efficient traffic flow model was established

by Grether et al. [12] depending on two parameters: traffic signal and travelers. Further, for the
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detailed applications on the stability of irregular systems one may refer to Boccaletti et al. [5],

Devaney [9], Shang et al. [25], Chugh et al. [7], Sharkovsky et al. [26] and Holmgren [13].

Further, in 2011, the fuzzy algorithm to control chaotic behavior in nonlinear dynamical

systems using a minimum entropy approach was studied by Sadeghian et al. [22]. Recently, in

2019 Ashish et al. [3] established the stability in standard logistic map through superior fixed

point feedback iterative technique showing application in the traffic flow model (see also [1, 2]).

The article has been divided into five major sections. Section 1 contains the literature review

on the stability of stationary states with applications in science and engineering. While Section

2 has the basic entities of chaos theory which are used in further sections. In Sections 3 and

4 the main results are studied followed by theorems, corollaries, remarks and examples. The

universal stability of unstable fixed states is illustrated in Section 3 and the stability of unstable

periodic states is established in Section 4. Finally the article is concluded in Section 5.

2. PRELIMINARIES

In this section, we recall some essential entities on stabilization and control in chaos theory

which are used in further sections to establish the universal stabilization of stationary states

in one-dimensional discrete maps. First, we present the basic results on Schwarzian deriva-

tive given by Singer [28] and then provide the essential entities on stabilization and control.

Throughout this article Sh(x) denotes the Schwarzian derivative for an one-dimensional map

h(x) and SM(γ,x) shows the Schwarzian derivative in superior fixed point feedback control

system M(γ,x), where γ ∈ (0,1).

Definition 2.1. Let h(x) be an one-dimensional real valued map. Then, the Schwarzian

derivative for h(x) at a point x is defined by:

Sh(x) =
h′′′(x)
h′(x)

− 3
2

(
h′′(x)
h′(x)

)2

,

where h′(x), h′′(x), and h′′′(x) are assumed as the first, second and third continuous derivatives

for the map h(x) [28].



A NOVEL FEEDBACK CONTROL SYSTEM TO STUDY THE STABILITY IN STATIONARY STATES 2097

Definition 2.2. Let h(x) be an one-dimensional map defined on [0,r], where r is a positive

real number. Then, the map h(x) is said to be C3 one- dimensional map if it satisfy the following

axioms:

(1) h(x) has a unique critical point c less then the stationary state P such that h′(x)> 0, for

all x ∈ (0,c) and h′(x)< 0, for all x ∈ (c,r).

(2) h(x) has two stationary states 0 and P such that h′(0)> 1 and P > 0.

(3) h(x) has a negative Schwarzian derivative for each x ∈ [0,r]− c, that is, Sh(x) < 0, for

x 6= c.

Definition 2.3. Let h(x) be an one-dimensional map, then a point x is said to be periodic

stationary state of period p if it satisfies hp(x) = x, where p is a positive integer which stands

for the pth iterate for the map h(x) [8].

Definition 2.4. Let {x0,x1, . . . ,xp−1} be an iterated sequence of period p for the map h(x),

then the first order derivative for the pth iterate of the map h(x) is given by:

(hp)′(x0) = h′(xp−1) . . .h′(x1).h′(x0)

and is known as the chain rule along a cycle for periodic stationary states [9].

Definition 2.5. Let x ∈ X be a fixed point for an one-dimensional differentiable system h(x),

then the point x is said to be attracting when |h′(x)|< 1, repelling when |h′(x)|> 1 and is said

to be inactive when |h′(x)|= 1 [9].

Definition 2.6. Let h(x) be an one-dimensional map defined on a non-empty set X , then the

sequence {xn} for an initiator x0 ∈ X defined by:

xn = xn−1 + γn−1(h(xn−1)− xn−1),

where γn−1 ∈ [0,1] and n∈N, is said to be superior feedback control system or Mann iterative

procedure for the map h(x) [15].

Corollary 2.7. Let h(x) be an one-dimensional map defined on a closed interval [0,1] then,

Sh(x)< 0 for all x implies Shp(x)< 0, for each positive integer p [28].
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3. STABILITY IN STATIONARY STATES USING SUPERIOR FEEDBACK CONTROL

In this section, we deal with the stability of unstable stationary states for a family of C3-one

dimensional maps. Therefore, let h(x) be an original C3-one dimensional map, then using the

Definition 2.6, the relation

x+ γ(h(x)− x) = M(γ,x) (say)(1)

where γ ∈ (0,1) is a control parameter and x∈ [0,r], where r is a positive real number, is known

as the superior feedback control system since it takes predictive iterates as input on discrete time

intervals. To examine the main result on stabilization of stationary states of the system M(γ,x)

we start the section with the following preliminary results:

Theorem 3.1. Let us assume h′(x)< 0 and M′(γ,x)< 0 for all x∈ I ⊂ [0,r], where h(x) is an

one-dimensional map and M(γ,x) is the superior feedback control system defined on I. If h(x)

has a negative Schwarzian derivative, that is, Sh(x) < 0 for each x ∈ I then, show that M(γ,x)

also has a negative Schwarzian derivative, that is, SM(γ,x)< 0 for each x ∈ I and γ ∈ (0,1).

Proof. Let us consider Sh(x) < 0, then from Definition 2.1, for Schwarzian derivative, we

can say

h
′′′
(x)

h′(x)
− 3

2

(
h
′′
(x)

h′(x)

)2

< 0,

that is, 2h
′′′
(x)< 3

(h
′′
(x))2

h′(x)
.(2)

Then, using superior feedback control system M(γ,x) = x+ γ(h(x)− x), we obtain

M
′
(γ,x) = 1+ γ(h

′
(x)−1),(3)

M
′′
(γ,x) = γh

′′
(x),(4)

and M
′′′
(γ,x) = γh

′′′
(x).(5)

Multiplying Equation (5) by 2 and then using inequality (2), we get

2M
′′′
(γ,x)< 3γ

(h
′′
(x))2

h′(x)
.(6)
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Now, using the Equations (3) and (4) in the inequality (6), we obtain

2M
′′′
(γ,x)< 3γ

( (M′′(γ,x)
γ

)2

M′(γ,x)−(1−γ)
γ

.(7)

Then, solving inequality (7), we have

M
′′′
(γ,x)

M′
(γ,x)

− 3
2

(
M
′′
(γ,x)

M′
(γ,x)

)2

< 0,

that is, SM(γ,x)< 0, (by Definition 2.1)

for all x∈ I and γ ∈ (0,1). Hence, the Schwarzian derivative for the superior feedback control

system M(γ,x) is also negative. This completes the proof. �

Remark 3.2. Since the Schwarzian derivative for the superior feedback control system

M(γ,x) is also negative on I, then from the Definition 2.2 there exists a point c ∈ [0,r] such

that M′(γ,c) = 0, that means, the superior feedback control system has a unique critical point.

Now, we formulate the following preliminary result for the existence of period-doubling

bifurcation for a particular value of the parameter γ in the superior system M(γ,x):

Theorem 3.3. Let h(x) be a C3-one dimensional map and h′(P)<−1, where P is a stationary

state. Then, the superior feedback control system M(γ,x), where γ ∈ (0,1) undergoes a period-

doubling bifurcation at γ0 =
2

1−h′(P) , where M′(γ0,P) =−1.

Proof. Since M(γ0,x) = x+ γ0(h(x)− x), then for the stationary state P, we obtain

M′(γ0,P) = 1+ γ0(h′(P)−1).

Now, taking M′(γ0,P) =−1, we get

1+ γ0(h′(P)−1) =−1,

that is, γ0 =
2

1−h′(P)
.

Thus, the superior feedback control system admits a period-doubling bifurcation at γ0 =

2
1−h′(P) . This completes the proof. �
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Remark 3.4. From Theorem 3.3, it is analyzed that the superior feedback control system

M(γ,x) admits universal stabilization for the unstable stationary state P of C3-one dimensional

maps for γ ∈ (0, 2
1−h′(P)).

Next, we examine the main result of this section to examine the stabilization of stationary

state P in superior feedback control system M(γ,x):

Theorem 3.5. Let h(x) be a C3-one dimensional map and M(γ,x) be the superior feedback

control. If M′(γ,P) ≥ −1 then the stationary point P is universal stable in M(γ,x) for each

x ∈ (0,r).

Proof. Let us consider M(γ,x) = x+ γ(h(x)− x) be the superior feedback control system,

such that

M′(γ,x) = γh′(x)+(1− γ).(8)

Then, from Equation (8) it is clear that h′(0) > 1 implies M′(γ,0) > 1, that means, from

Definition 2.5 the stationary state 0 is an unstable stationary state in superior feedback control

M(γ,x). Also, it is observed that M′(γ,x) = 0 if and only if h
′
(x) = (γ−1)

γ
, for each γ ∈ (0,1).

Further, to examine the stability in stationary state P the following cases are studied:

Case-1: When M(γ,x) has no critical point. Then, obviously the function will be strictly

increasing and therefore the stationary state P is always globally attracting since M(γ,x) > x

for each x belongs (0,P) and M(γ,x)< x for each x belongs to (P,r). The conditions holds for

each h
′
(x)> (γ−1)

γ
and x ∈ (0,r).

Case-2: When M(γ,x) has a critical point. Then, the relation SM(γ,x)< 0 for all x∈ [0,r]−c

implies h(x) may have at most one inflexion point in (c,r). Then, the following subcases arise:

When h(x) has no inflexion point in (c,r). Then, the map h′(x) strictly decreases in the

interval (c,r) and there exists at most one point e > c such that M′(γ,e) = 0. Therefore, the

point e is assumed as a local maxima for M(γ,x) because M′(γ,x)> 0 in (0,e) and M′(γ,x)< 0

in (e,r). So, if the point e > P then M′(γ,P) > 0 shows stationary state P is universal stable.

Now, let us consider c < e < P. But we know M(γ,x)≤M(γ,e) for each x∈ (0,e] and also from

Theorem 3.1, SM(γ,x)< 0 on (e,r). Then, from the Corollary, “Let h(x) be the continuous map
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defined on (0,r) into [0,r]. Let p,q,u,v and w be the points satisfying p≤ u < w < v≤ q such

that the map h(x) in (u,v) has at most one turning point and also h(x) ≤ h(u) for x ≤ u and

h(x)≥ h(v) for x≥ v. If the map h(x) decreases at point w with Sh(x)< 0 for x ∈ (u,v) except

at most one critical point and also h′(w)≥−1. Then, the point w is universal stable for the map

h(x),” taking u = e, v = r and w = P, the stationary state P is universal stable for the superior

control system M(γ,x).

When h(x) has an inflexion point, say, y in (c,r) then, the map h
′
(x) attains a global minima at

h
′
(y). Therefore, if h′(y)≥ (γ−1)

γ
, then the superior system M(γ,x) increases strictly and trivially

P is universal stable. Now, let us consider h′(y) < (γ−1)
γ

, then there may exists at least one, or

at most two critical points c1 and c2 such that c1 < y < c2 for the superior system M(γ,x). For

one critical point the result already have been studied. Also, for two critical points the system

M(γ,x) increases in the interval (0,c1)∪ (c2,r) and decreasing in the interval (c1,c2). Then,

again from Theorem 3.1, taking u = c1, v = c2 and w = P, the stationary state P is universal

stable. This completes the proof. �

Example 3.6. Let h(x) = λx(1−x) be an original C3-one dimensional map, where λ ∈ [0,4]

and x∈ [0,1]. Then, determine the stability for the trivial stationary states of h(x) using superior

feedback control system M(γ,x) for some prescribed range of control parameter γ .

Solution. The map h(x) = λx(1−x) is a well-defined model of population growth with trivial

stationary states 0 and 1− 1
λ

, where λ ∈ (0,4]. Also, the stationary state 1− 1
λ

admits local

stability for 1 < λ ≤ 3 and unstability for λ > 3, that is, when λ > 3 the system first undergoes

a period-doubling bifurcation and then for λ > 3.56 approaches to an irregular distribution as

shown in Figure 3. Therefore, the universal stabilization in stationary state 1− 1
λ

makes sense

when λ > 3. From Theorem 3.3 and Remark 3.4, it is illustrated that the stationary state P

for the map h(x) in superior system undergoes an unstable behavior at γ = 2
λ−1 , that is, the

stationary state undergos a universal stabilization for all γ ∈ (0, 2
λ−1).

In particular, when λ = 4 the stationary state P = 0.75 for the system h(x) undergoes a

complete universal stabilization in γ ∈ (0,0.67). Figure 1 shows the unstable distribution of

an original system for λ > 3. While Figure 2 gives the plotting for stable orbit of stationary
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state controlled by superior feedback control M(γ,x) for λ = 4,3.5 and 3 corresponding to

the control parameter γ = 0.4,0.5 and 0.6 respectively. Therefore, from both the Figures it is

analyzed that the stationary state 1− 1
λ

is universal stabilized for each λ > 3 in a prescribed

range of parameter γ . Further, Figures 3 and 4 shows the period-doubling plotting for the

universal stability of stationary state. In Figure 3 we see that for λ > 3 the stationary state

admits an unstability diverting into periodic as well as irregular distribution. While Figure 4

shows that the unstabilized distribution is stabilized in the stationary state 1− 1
λ

using superior

feedback control when λ = 4 and γ = 0.6.
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FIGURE 2. Stability for stationary state

1− 1
λ

at λ = 4,3.5 and 3
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FIGURE 3. Complete bifurcation plot of

λx(1− x) for λ ∈ [0,4]
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FIGURE 4. Bifurcation plot with
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Example 3.7. Let xeλ (1−x) be the ricker map defined on [0,1]. Then, examine the universal

stability for trivial stationary state P using superior system M(γ,x) for some γ ∈ (0,1).
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Solution. The relation h(x) = xeλ (1−x) is a popular one-dimensional map with P = 1 as its

trivial stationary state which is locally stable when λ ≤ 2, unstable when λ > 2 and chaotic

when λ > 2.69.

Therefore, the universal stabilization for an unstable stationary state 1 is illustrated for λ > 2.

Thus, from Theorem 3.3 and Remark 3.4, it is clear that the stationary state 1 for the ricker

map xeλ (1−x) in superior feedback control undergoes an unstable behavior at γ = 2
λ

, that is, the

stationary state undergos a universal stabilization when γ ∈ (0, 2
λ
). In particular, at λ = 3 the

stationary state 1 undergoes a universal stabilization when γ ∈ (0,0.6).
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FIGURE 6. Universal stability of

periodic stationary state 1 at λ = 3
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Figure 5 gives an unstable distribution of stationary state 1 of an original map xeλ (1−x) for

λ > 2 and this unstable distribution is stabilized using superior feedback control M(γ,x) for

γ ∈ (0,0.6) as shown in Figure 6. Further, the Figures 7 and 8 show the stabilization using
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period-doubling bifurcation plot. Figure 7 gives an original distribution of iterative orbits of the

system showing local stability for λ ∈ [1,2] and unstability for λ > 2. While Figure 8 represents

the local as well as universal stabilization of stationary states when λ ∈ [2,3].

4. STABILITY IN PERIODIC STATES USING SUPERIOR FEEDBACK CONTROL

In this section, we illustrate the stabilization of unstable periodic stationary states for a family

of C3-one dimensional maps using superior feedback control (9). Sometimes the stability in

periodic stationary states plays a crucial role in various applications of science and engineering

such as traffic flow models, ecology and cryptography. Therefore, using the following feedback

control system the periodicity is stabilized for some particular range of the control parameter

γ ∈ (0,1). Thus, the relation

x+ γ(hp(x)− x) = Mp(γ,x), (say)(9)

where hp(x) denotes the pth iterate of h(x), x∈ [0,r] and γ ∈ (0,1) is known as superior feedback

control system for periodic stationary states. Therefore, to examine the universal stabilization

for periodic stationary states we present the following without proof results because all the

results may be derived directly from previous results for stationary states.

Theorem 4.1. Let us consider (hp)′(x) < 0 and (Mp)′(γ,x) < 0 for all x ∈ I ⊂ [0,r], where

h(x) is a C3-one dimensional map defined on I and Mp(γ,x) is the superior feedback control.

If the Schwarzian derivative for hp(x) is negative then the Schwarzian derivative for Mp(γ,x) is

also negative for all x ∈ I and γ ∈ (0,1).

Proof. Similar to the proof of Theorem 3.1 in Section 3. �

Corollary 4.2. If h(x) is an original C3-one dimensional map and (hp)′(Q) < −1, where

Q is a periodic stationary state of period-p. Then, the superior system Mp(γ,x) undergoes a

period-doubling bifurcation at γ = 2
1−(hp)′(Q) , for (Mp)′(γ,Q) =−1.

Proof. Let Mp(γ,x) = x+ γ(hp(x)− x) be a superior feedback control, then we determine

(Mp)′(γ,Q) = γ(hp)′(Q)+1− γ.(10)
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Now, taking (Mp)′(γ,Q) =−1 in Equation (10), we get

γ(hp)′(Q)+1− γ =−1,

and, γ((hp)′(Q)−1) =−2,

that is, γ =
2

1− (hp)′(Q)
.

This complete the proof. �

Remark 4.3. It is examined from Corollary 4.2, that the superior feedback control Mp(γ,x)

admits the universal stabilization for unstable periodic stationary states of C3-one dimensional

map h(x) for all γ ∈ (0, 2
1−(hp)′(Q)).

Next, we formulate the following main theorem of this section to establish the universal

stabilization of periodic stationary states:

Theorem 4.4. Let h(x) be an original C3-one dimensional map and Mp(γ,x) be the superior

feedback control for periodic stationary state Q. If (Mp)′(γ,x)≥−1, then, the periodic state Q

of order p is universal stable for each x ∈ (0,r).

Proof. Proof of this theorem is quite similar to the proof of Theorem 3.5. �

Example 4.5. Let λx(1−x) be the C3-one dimensional map, where λ ∈ [0,4] and x ∈ [0,1].

Then, determine the universal stability of periodic stationary states of period 2 using the superior

system Mp(γ,x) in some prescribed range of parameter γ .

Solution. It is well-known in the dynamics of the one-dimensional map λx(1− x) that it has

the following two periodic stationary states of period-2:

Q1 =
(λ +1)+

√
λ 2−2λ −3

2λ
and Q2 =

(λ +1)−
√

λ 2−2λ −3
2λ

.

Further, it is assumed that Q1 and Q2 admits local stability for 3 ≤ λ < 3.45 and for greater

then 3.45 it settle down into periodic points of higher order and finely approaches to chaos.

That means, when λ approaches through 3.45 the periodic states Q1 and Q2 approaches to

unstable distribution as shown in Figure 9. Therefore, using Remarks 4.3 at λ = 4 we get
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the periodic stationary state Q1 = 5+
√

5
8 and Q2 = 5−

√
5

8 which are universal stabilized using

superior feedback control (9) for γ ∈ (0,0.4) as shown in Figure 10.
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FIGURE 9. Bifurcation plot with

stability in Q1 and Q2 states at λ = 4
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FIGURE 10. Zoomed bifurcation plot

with stability in Q1 and Q2 states

5. CONCLUSION

In this article, using superior feedback control system to C3-one dimensional maps the uni-

versal stability of unstable stationary states is studied. The whole article focus on the relation

x+ γ(h(x)− x) given by Mann [15] in 1953 and stated as superior feedback control. As com-

pared to other predictive procedures the novel control system determines the universal stability

for a family of C3-maps depending on an extra credential of control parameters γ . Therefore,

the following results are illustrated:

(1) The Schwarzian derivative: a road map to examine the dynamical properties of one

dimensional maps is used to study the universal stability of unstable stationary states.

In Section 3, Theorem 3.1 illustrates that the Schwarzian derivative is also negative in

superior feedback control as compared to an original C3-one dimensional map.

(2) Theorem 3.3, determines the necessary condition to stabilize an unstable stationary state

using superior feedback control, that is, |M′(γ,P)| < 1 for some γ ∈ (0,1). In sequel,

from Theorem 3.3 and Remark 3.4, it is analyzed that the superior feedback control

(1) admits a universal stability for an unstable stationary state P of C3-maps for γ ∈

(0, 2
1−h′(P)).
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(3) For simplicity the results are followed by the Examples 3.6 and 3.7 for logistic and

Ricker maps and the stability is achieved in the prescribed range of parameter γ such

as (0, 2
λ−1) and (0, 2

λ
), respectively. But it is observed that as the value of parameter λ

decreases the length of the interval of control parameter increases rapidly as shown in

Example 3.6 for logistic map.

(4) Further, in Section 4 the universal stability for unstable periodic stationary states using

superior control x + γ(hp(x)− x) is determined followed by Theorems 4.4. Further,

the Corollary 4.2, determines the value of control parameter γ for which the unstable

periodic state of period-p is stabilized. Thus, from Remark 4.3 the chaotic system is

universal stabilized when γ ∈ (0, 2
1−(hp)′(Q)) followed by Example 4.5.

Further, it is strongly recommended that the superior feedback control system x+γ(h(x)−x)

may be taken over in various applications of nonlinear dynamical systems to improve the quality

of a system.
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