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1. Introduction 

 Chemical reactions are modeled by non-linear partial differential equations 

(PDEs) exhibiting travelling wave solutions. These oscillations occur due to feedback 

in the system either chemical feedback (such as autocatalysis) or temperature 

feedback due to a non-isothermal reaction.  

 Reaction-diffusion (RD) systems arise frequently in the study of chemical and 
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biological phenomena and are naturally modeled by parabolic partial differential 

equations (PDEs). The dynamics of RD systems has been the subject of intense 

research activity over the past decades. The reason is that RD system exhibit very rich 

dynamic behavior including periodic and quasi-periodic solutions and chaos(see, for 

example [8]).   

Mathematical Model: 

 A general class of nonlinear-diffusion system is in the form  

 1 1 1 1( , ) ( )
u

d u a u b v f u v g x
t


     

  

 2 2 2 2( , ) ( ),
v

d v a u b v f u v g x
t


     


 

with homogenous Dirchlet or Neumann boundary condition on a bounded domain Ω, 

with locally Lipschitz continuous boundary. It is well known that reaction and 

diffusion of chemical or biochemical species can produce a variety of spatial patterns. 

This class of reaction diffusion systems includes some significant pattern formation 

equations arising from the modeling of kinetics of chemical or biochemical reactions 

and from the biological pattern formation theory. 

In this group, the following four systems are typically important and serve as 

mathematical models in physical chemistry and in biology:   

Brusselator model: 

 
2

1 1 2 2 1 2( 1), 0, , 0, , , 0,a b b a b b f u v g a g           

where a and b are positive constants. 

Gray-Scott model: 

  
2

1 1 2 2 1 2( ), 0, 0, , , 0, ,a f K b a b F f u v g g F           

where F and K are positive constants. 

Glycolysis model: 

 
2

1 1 2 2 1 21, , 0, , , , ,a b K a b K f u v g g            

where ,K   and   are positive constants. 
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Schnackenberg model: 

 
2

1 1 2 2 1 2, 0, , , ,a K b a b f u v g a g b           

where ,K a and b are positive constants.  

 Then one obtains the following system of two nonlinearly coupled reaction-diffusion 

equations (the Glycolysis model),  

(1) 

2
1

2
2

, ( , ) (0, ) ,

, ( , ) (0, ) ,

u
d u u Kv u v t x

t

v
d v Kv u v t x

t






         


        



    

(2)  
0 0

( , ) ( , ) 0, 0,

(0, ) ( ), (0, ) ( ),

u t x v t x t x

u x u x v x v x x

   


  
      

where , K  and   are positive constants [9].  

2. Derivation of explicit method for Glycolysis model 

      Assume that the rectangle {( , ) : 0 , 0 }R x t x a t b     is subdivided into 

n-1 by m-1 rectangle with sides  hx   and t k   , as shown in Fig. (1). Start at 

the bottom row, where  1 0t t  , and the solution is  )(),( 1 pp xftxu  . 

 

Fig. (1) The grid 

A method for computing the approximations to ( , )u x t at grid points in successive 

rows mqnptxu qp ,...,3,2for},,...,2,1:),({  . The difference formulas used 

for approximation ( , ), ( , ) and ( , )t x xxu x t u x t u x t  are  

(3) 
( , ) ( , )

( , ) ( ),t
u x t k u x t

u x t O k
k

 
    

(4)  
( , ) ( , )

( , ) ( ),x
u x h t u x t

u x t O h
h
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(5) 2

2

( , ) 2 ( , ) ( , )
( , ) ( ).xx

u x h t u x t u x h t
u x t O h

h

   
                           

  The grid spacing is uniform in every row: 1p px x h    and 

( 1  p px x h ), and it is uniform in every column: 1  q qt t k  and ( 1  q qt t k ). 

Next, we drop the terms ( ), ( )O k O h and 2( )O h  [4], and use the approximation qpu ,  

for ),(
qp

txu in equations (3) and (5),  and substituted into equation (1) to obtain  

 

 

, 1 , 1, , 1, 2
1 , , , ,2

, 1 , 1, , 1, 2
2 , , ,2

2
,

2
,

p q p q p q p q p q
p q p q p q p q

p q p q p q p q p q
p q p q p q

u u u u u
d u Kv u v

k h

v v v v v
d Kv u v

k h





  

  

  
    

  
   

    

 

1
, 1 2

(p q

d k
u

h
  2

1, , 1, , , , , ,2 ) ,p q p q p q p q p q p q p q p qu u u Ku Kkv ku v u k         

  22
, 1 1, , 1, , , , ,2

( 2 ) ,p q p q p q p q p q p q p q p q

d k
v v v v Kkv ku v k v

h
          

Let 1
12

d k
r

h
    and   2

22

d k
r

h
  , then 

(6) 

2
, 1 1 1, 1, 1 , , , ,

2
, 1 2 1, 1, 2 , , ,

( ) (1 2 ) ,

( ) (1 2 ) ,

p q p q p q p q p q p q p q

p q p q p q p q p q p q

u r u u r k u Kkv ku v k

v r v v r Kk v ku v k





  

  

        


      

   

the result is the explicit forward difference equation to the Glycolysis model .  

3. Derivation of implicit Crank-Nicholson method for Glycolysis 

model 

 This method was invented by John Crank and Phyllis Nicholson, in (1947),  

and is based on numerical approximations for solutions, they replace xxu   by the 

mean of its finite difference representation of the ( )thq  and ( 1)thq   time rows [7]   

 

, 1 1 1, , 1, 1, 1 , 1 1, 1 ,

2
, , ,

( 2 2 )

,

p q p q p q p q p q p q p q p q

p q p q p q

u r u u u u u u ku

Kkv ku v k

              

 
                                                                                                      

 

, 1 2 1, , 1, 1, 1 , 1 1, 1 ,

2
, ,

( 2 2 )

.

p q p q p q p q p q p q p q p q

p q p q

v r v v v v v v Kkv

k ku v

              


 

Rearranging the last two equations give 
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1 , 1 1 1, 1 1, 1 1 1, 1, 1 , ,

2
, ,

2
2 , 1 2 1, 1 1, 1 2 1, 1, 2 , , ,

(1 2 ) ( ) ( ) (1 2 )

(7) ,

(1 2 ) ( ) ( ) (1 2 ) .

p q p q p q p q p q p q p q

p q p q

p q p q p q p q p q p q p q p q

r u r u u r u u r k u Kkv

ku v k

r v r v v r v v Kk r v ku v k





      

      

         


 


         

    The system of  equations (7) represents the implicit difference approximation for 

Glycolysis model, where the left hand side of the system contains three unknown 

values, while the right hand side contains three known values for p=2,3,…,n-1 .  

 Hence the first equations in (7) form a tridiagonal linear system in the form 

(8)         .AX B   

The boundary conditions are used in the first and last equation (i.e. 1, , 0q n qu u   and 

1, 1 , 1 0q n qu u    respectively). The equation (7) is especially pleasing to view in their 

tri-diagonal matrix form 

(9) 1 1 1,A X B

 

where 

1 1

1 1 1

1 1 1

1 1 1

1

1

1 1 1

1 1

(1 2 ) 0 0 0 . . . 0

(1 2 ) 0 0 0 0 0 0

0 (1 2 ) 0 0 0 0 0

0 0 (1 2 )

. 0 0 . .

,. . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 0 0 0 (1 2 )

0 0 0 0 0 0 0 (1 2 )

r r

r r r

r r r

r r r

r

A

r r r

r r

  
 

  
 
   
 

   
 
 

  
 
 
 
 
 
   
 

  

  

2, 1

3, 1

4, 1

5, 1

1

3, 1

2, 1

1, 1

.

.

.

q

q

q

q

n q

n q

n q

u

u

u

u

X

u

u

u









 

 

 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

 

2
1 3, 1 2, 2, 2, 2,

2
1 4, 2, 1 3, 3, 3, 3,

2
1 5, 3, 1 4, 4, 4, 4,

1

2
1 , 2, 1 1, 1, 1, 1,

(1 2 )

( ) ( 2 )

( ) ( 2 )

.

.

.

.

( ) ( 2 )

q q q q q

q q q q q q

q q q q q q

n q n q n q n q n q n q

r u k r u Kkv ku v k

r u u k r u Kkv ku v k

r u u k r u Kkv ku v k

B

r u u k r u Kkv ku v k







    

      

      

     



     

.





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

 

Also we can similarly solve the second equation of (7).   

(10)  2 2 2 ,A X B
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where 

2 2

2 2 2

2 2 1

2 2 2

2

2

2 2 2

2 2

(1 2 ) 0 0 0 . . . 0

(1 2 ) 0 0 0 0 0 0

0 (1 2 ) 0 0 0 0 0

0 0 (1 2 )

. 0 0 . .

,. . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 0 0 0 (1 2 )

0 0 0 0 0 0 0 (1 2 )

r r

r r r

r r r

r r r

r

A

r r r

r r

  
 

  
 
   
 

   
 
 

  
 
 
 
 
 
   
 

  

2, 1

3, 1

4, 1

5, 1

2

3, 1

2, 1

1, 1

.

.

.

q

q

q

q

n q

n q

n q

v

v

v

v

X

v

v

v









 

 

 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

 

2
2 3, 2 2, 2, 2,

2
2 2, 4, 2 3, 3, 3,

2
2 5, 3, 2 4, 4, 4,

2

2
2 2, 4, 2 3, 3, 3, 3,

2 1, 3, 2

( 2 )

( ) ( 2 )

( ) ( 2 )

.

.

.

.

( ) (1 2 )

( ) (1 2 )

q q q q

q q q q q

q q q q q

n q n q n q n q n q n q

n q n q

r v Kk r v ku v k

r v v Kk r v ku v k

r v v Kk r v ku v k

B

r v v r v ku v kbv

r v v r







     

 

   

    

    



    

   2
2, 2, 2, 2,

2
2 2, 2 1, 1, 1,

.

( 2 )

n q n q n q n q

n q n q n q n q

v ku v kbv

r v Kk r v ku v k

   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

     

                  

 When the Crank-Nicholson method is implemented with a computer, the linear 

system AX=B  can be solved by either direct methods or by iterations method.  

In this study we use the direct methods (Gaussian Elimination Method) to solve the 

linear system in equation (7).  The numerical stability of the numerical methods is 

studying the errors introduced by the truncation of the series which are used to 

represent the derivatives in the process of replacing the differential equations by finite 

difference equation and the growth of these errors and finding the conditions for 

which the errors will be decay from one time step to the next [6].  

4. Numerical stability of explicit method 

The numerical stability of the numerical methods is studying the errors 

introduced by the truncation of the series which are used to represent the derivatives 

in the process of replacing the differential equations by finite difference equation and 

the growth of these errors and finding the conditions for which the errors will be 

decay from one time step to the next [5].  

The Von Neumann analysis is the most commonly used method of determining 
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stability criteria as it is generally the easiest to apply, the most straight-forward and 

most dependable. This method developed by Von Neumann during World War II, was 

first discussed in detail by O’Brien, Hyman and Kaplan in a paper published in 1951 

[5]. 

      The general form of this method is to substitute the solution in finite difference 

method at the time t by xiet  )( , when  >0 and 1i  [5]. To apply the Von 

Neumann method, it will take the following form 

 

, 1 1 1, 1, 1 ,

, 1 2 1, 1, 2 ,

( ) (1 2 )

( ) (1 2 ) ,

p q p q p q p q

p q p q p q p q

u r u u r k u

v r v v r Kk v

  

  

    

    
  

where  1
1 2

d k
r

h
 , 2

2 2

d k
r

h
  , x h 

 

and y k  for the first equation of the system, 

neglecting for some values of ,K  the terms ,p qKkv and 

 

linearizing the system, 

the non linear terms can be neglected [3].    So  

 
( ) ( )

1 1( ) ( ( ) ( ) ) (1 2 ) ( ) .i x i x x i x x i xt t e r t e t e r k t e              

Dividing both sides by
xie 
, to obtain 

  1 1( ) [ ] ( ) (1 2 ) ( ).i x i xt t r e e t r k t            

For some values of , we can assume that 2sin ( / 2)x  is unity [3], and  

 
1

( )
(1 4 ) .

( )

t t
r k

t







      

It is stable if  
( )

1,
( )

t t

t






   so 

1(1 4 ) 1,r k    which implies 11 (1 4 ) 1.r k      

Case 1: 11 (1 4 )r k    1 1
2

4 2
4

k
r k r


      , or 

Case 2: 11 4 1r k   1
4

k
r


  .  

The equation is stable under the conditions  1
2

4

k
r


  and we will neglect  1

4

k
r


  

because 1r  is positive.  

And for the second equation  

 , 1 2 1, 1, 2 ,( ) (1 2 ) .p q p q p q p qv r v v r Kk v        
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To study the stability of the second equation we let , ( ) i x
p qv t e   so the equation will 

be in the form 

 
( ) ( )

2 2( ) [ ( ) ( ) ] (1 2 ) ( ) .i x i x x i x x i xt t e r t e t e r Kk t e              

Dividing both sides of the equation by ( ) i xt e   to obtain 

 

2
2 2 2 2

2

( )
(2cos( )) (1 2 ) 2 (1 2sin ( / 2)) (1 2 )

( )

1 4 .

t t
r x r Kk r x r Kk

t

r Kk


 





 
          

   

 

It is stable if 1,   or 
( )

1
( )

t t

t





 
 21-4r -Kk 1  . 

 21 4 1r Kk   21 (1 4 ) 1r Kk     ,  

 21 (1 4 )r Kk    2 2
2

4 2 ,
4

Kk
r Kk r


      

or  2(1 4 ) 1r Kk  2 24 .
4

Kk
r Kk r


       

Finally the system is conditionally stable under the conditions  

 1
2

4 4

k k
r

 
 

 
and 2

2
.

4 4

Kk Kk
r

 
   

5. Numerical stability of implicit (Crank-Nicolson) method 

      We use Crank-Nicolson finite difference in equation (1) to obtain 

 

, 1 , 1
1, , 1, 1, 1 , 1 1, 1 , ,2

[ 2 2 ] . .
2

p q p q
p q p q p q p q p q p q p q p q

u u d
u u u u u u u Kv

k h



      


          

Substituting ,p qu  by ( ) i xt e   in the above equation, yields 

 

( ) ( ) ( )1

2

( ) ( )
[ ( ) 2 ( ) ( ) ( )

2

i x i x
i x x i x i x x i x xdt t e t e

t e t e t e t t e
k h

 
    

      
    

 

            

( )2 ( ) ( ) ] ( ) .i x i x x i xt t e t t e t e          

Neglecting for some values of ,k   and linearizing the nonlinear term can be 

neglected.  

Dividing both sides of the equation by i xe  to obtain  

 

1 1

2 2

( ) ( )
[ ( ) ( )] [ 2 ] [ 2 ] ( ).

2 2

i x i x i x i xd k t d k t t
t t t e e e e k t

h h

    
       

         

 

Assuming 1
1 2

,
d k

r
h

  from the above equation, we get  
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1 1( ) ( )
[ ( ) ( )] [2cos( ) 2] [2cos( ) 2]

2 2

r t r t t
t t t x x

 
   


         

 
2 2

1 1[ ( ) ( )] ( )[2sin ( / 2)] ( )[2sin ( / 2)] ( ),t t t r t x r t t x k t                 

and  

 2 2
1 1[1 2 sin ( / 2)] ( ) [1 2 sin ( / 2) ] ( ),r x t t r x k t           

 which implies that
2

1

2
1

1 (2 sin ( / 2) )( )
.

( ) 1 2 sin ( / 2

r x kt t

t r x




 

  
 

 
 

For stability we need
( )

1
( )

t t

t






 , i.e.   

  
2

1

2
1

1 (2 sin ( / 2) )
1

1 2 sin ( / 2

r x k

r x





  


 
, for all 1, , .r k b  

Hence the Crank-Nicolson method is unconditionally stable for the first equation of 

Glycolysis model, and for the second equation  

 

2

2 ,2
,p q

v v
d Kkv

t x

 
 

 
 

 

, 1 , 2
1, , 1, 1, 1 , 1 1, 1 ,2

[ 2 2 ] .
2

p q p q
p q p q p q p q p q p q p q

v v d
v v v v v v Kkv

k h


      


        

Substitute , ( ) i x
p qv t e   in the above equation to obtain 

  

( ) ( ) ( )2 2

2 2

( ) ( )( ) ( )
[ ] [ 2 ] [

2 2

i x i x x i x i x x i x xd t d t tt t t
e e e e e

k h h

          
   

 

        

( )2 ] ( ) .i x i x x i xe e Kk t e      

Multiplying both sides of the above equation by i xke  to obtain 

 ( ) ( )t t t    2 2

2 2

( ) ( )
[ 2 ] [ 2 ] ( ).

2 2

i x i x i x i xd k t d k t t
e e e e Kk t

h h

    
     

       

In the above equation, let 2
22

d k
r

h
 , yields

 

 ( ) ( )t t t    2
2

( ) ( )
[2cos( ) 2] [2cos( ) 2] ( )

2 2

r t t t
x r x Kk t

 
  


       

   
2 2

2 2( )[1 (1 2sin ( / 2)] ( )[1 (1 2sin ( / 2)] ( )r t t x r t x Kk t                

   
2 2

2 22 ( )sin ( / 2) 2 ( )sin ( / 2) ( ).r t t x r t x Kk t            

Hence, 
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 ( )t t  + 2
22 ( )sin ( / 2)r t t x    ( )t 2

22 ( )sin ( / 2) ( ),r t x Kk t      

and after simplification, we get 

 

2
2

2
2

[1-Kk-2r sin ( x/2) ] ( )
.

( ) [ 1 2r sin  ( x/2)]

t t

t




 


 

 
 

Thus 
( )

| | |  | 1,
( )

t t

t






 
    so 

2
2

22
2

[1-Kk-2r sin ( x/2) ] 
1, , , .

[ 1 2r sin  ( x/2)]
r k K






 

 
  

Since for both equations of the system we have 1  , the Crank-Nicolson method is 

unconditionally stable.  

6. Numerical example 

    We solved the following example numerically to illustrate efficiency of the 

presented methods  

Example:  

 2
1 ,

u
d u u Kv u v p

t


     


      0,t   ,x                           

          2
1 ,

v
d v v u v d e l

t


    


              0,t    ,x                            

with the initial conditions  

 U(x, 0) = Us + 0.01 sin(x/ L)     for     0 ≤x ≤ L 

 V (x, 0) = Vs – 0.12 sin(x/ L)     for   0 ≤x ≤ L 

 U(0, t) = Us ,  U(L, t) = Us     and     V (0, t) = Vs,    V (L, t) = Vs. 

We will take  

     d1=d2=0.01,   K=0.5   , del=p=0.5  , Us=0,  Vs=1. 
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Fig. 2a The Implicit method of the concentration V 

 

 

Fig.2b The Explicit method of concentration V 
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