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Abstract. The energy transport equation is fundamental for the meteorological analysis; in this work, we analyze

this equation in three dimensions using the methods of central finite differences; the analysis of convergence,

consistency, and stability of the scheme shows a strong dependence of space and temporal variables. In conclusion,

with the central finite differences was possible to predict the three-dimensional dynamics of the temperature.

Keywords: finite differences; atmospheric; fluid dynamics.

2010 AMS Subject Classification: 65M06, 86A10.

1. INTRODUCTION

The energy transport equation is fundamental in applications as meteorology, aerodynamics,

oceanography, hydrology, and engineering [1].

Taking as the object of study the tree-dimensional transport equation for meteorology, we made

the numerical interpretation of atmospheric dynamics. The energy transport equation has pecu-

liar characteristics that are difficult to find the solution for different methods, its a consequence
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of advective term v
∂φ

∂x
, because it explains the inertia of the model [7, 10].

Therefore, we use the finite difference method by the simplicity in the numerical implemen-

tation for small and large scale in the domain. The advective term of the equation will be

discretized using central finite differences scheme [4, 5].

The model to describe the three-dimensional energy atmospheric transport is:

∂θ

∂ t
=−−→V .∇θ +α∆θ ,(1)

where θ = θ(x,y,z, t) is the temperature variable , V = (v1,v2,v3) is the velocity field and αi

with i = 1,3 represent the thermal diffusion coefficient, those in that work will be constants[4].

The domain is a rectangular box Ω = [0,L1]× [0,L2]× [0,L3] and time t > 0; the initial condi-

tions is known θ(x,y,z,0)= f0, and the boundary condition θ(ξ , t) |∂Ω =G for ξ ∈Ω and t > 0.

The boundary condition ∂Ω are Dirichlet, in each face of the domain, the temperature G take

values represented by fi with i = 1,6.

The work is structured in different section as: section 2 we show the finite difference method for

the model, section 3 we made the analysis of convergence, consistence and stability, section 4

we present the result and, some numerical experiment, section 5 and 6 we present the discussion

and conclusion, and the references.

2. FINITE DIFFERENCE METHOD

The derivative of variables in the equation are replaced by finite differences for the dependent

and independent variables, that process is called discretization and getting an algebraic system

equation [8, 6].

The discretization of the model, consists of the discretization of the domain, variables, and the

equation.

2.1. Discretization of the Domain. The numerical solution of the partial differential equation

of the energy, is necessary to have abounded domain, for this research the domain is restricted a

rectangular box, expressed by Ω = [0,L1]× [0,L2]× [0,L3], with Li > 0, ∀i = 1,3, and Dirichlet

boundary conditions x = L1, y = L2, z = L3.

The domain in divided by number of finite number of rectangular sub-domains with dimension
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given by hx > 0, hy > 0, hz > 0, and ht > 0 for the time t > 0.

We chose the nodes in the border of each sub-domain, and their coordinates are:

xi = ihx ; i = 0,1, · · · ,m1,

x j = jhy ; j = 0,1, · · · ,m2,

xk = khz ; k = 0,1, · · · ,m3,

xt = tht ; t = 0,1, · · · ,mt ,

(2)

the number of nodes are represented by : m1 +1, m2 +1, m3 +1 y mt +1, respectively.

The sub-domains in some cases have different longitude, and the mesh is defined by:

Definition 2.1. Given hx,hy,hz,ht positive numbers, a mesh is a set of points of the form

(xi,y j,zk, tn) = (ihx, jhy,khz,nht), called nodes, with i,j,k,n non negative integer numbers.

The solution is given at the nodes ξi, j,k = (ihx, jhy,khz) ∈ R3 of the discrete domain.

2.2. Discretization of variables. The variables θ of the problem are discretized using the

definition 2.1, for each node (ihx, jhy,khz,nht) a value θ(ihx, jhy,khz,nht) is designed and rep-

resented by

(3) θ
n
i, j,k = θ(ihx, jhy,khz,nht).

Definition 2.2. The discrete function φ is defined over a mesh and each point (xi,y j,zk, tn) have

a real number φ n
i, j,k.

The smooth function φ over Ω×R+ is discretized on the mesh defined at 2.1. Taking

φ n
i, j,k := φ(xi,y j,zk, tn) in particular the solution θ of the problem (PVIC) given in (3) is

discretized by θ n
i, j,k = θ(xi,y j,zk, tn).

As the solution θ is unknown, so the discrete solution θ n
i, j,k is approximated by a discrete

function φ n
i, j,k such that θ n

i, j,k ≈ φ n
i, j,k in each node of the mesh.

The {φ n
i, j,k} and {φ n+1

i, j,k } denote a discrete function at level n and n+1 respectively, where :

(4) φ
n
i, j,k ≈ θ(ξi, j,k,nht) and φ

n+1
i, j,k ≈ θ(ξi, j,k,nht +ht),
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also, the discretized initial condition is

φ
0
i, j,k = f0(ihx, jhy,khz) with i, j,k ∈ Z+,

and the discretized border conditions on the mesh i, j,k ∈ Z+ are designed by

φ
n
0, j,k = f1( jhy,khz), φ

n
i, j,k = f2( jhy,khz),

φ
n
i,0,k = f3(ihx,khz), φ

n
i, j,k = f4(ihx,khz),

φ
n
i, j,0 = f5(ihx, jhy), φ

n
i, j,k = f6(ihx, jhy).

(5)

2.3. Discretization of the equation. The approximation of the terms advection and diffusion

of the equation (1) using Taylor’s series truncated after the first and second term, we get the

finite differences for the first ans second derivative at point (i, j,k) ∈ Z+, of the form

(
∂φ

∂x
)i, j,k ≈

φi+1, j,k−φi−1, j,k

2hx
; (

∂ 2φ

∂x2 )i, j,k ≈
φi+1, j,k−2φi, j,k +φi−1, j,k

h2
x

(
∂φ

∂y
)i, j,k ≈

φi, j+1,k−φi, j−1,k

2hy
; (

∂ 2φ

∂y2 )i, j,k ≈
φi, j+1,k−2φi, j,k +φi, j−1,k

h2
y

(
∂φ

∂ z
)i, j,k ≈

φi, j,k+1−φi, j,k−1

2hz
; (

∂ 2φ

∂ z2 )i, j,k ≈
φi, j,k+1−2φi, j,k +φi, j,k−1

h2
z

.

(6)

The discretized equation with central differences given in (6) for vi > 0, i = 1,3 is

φ
t+1
i, j,k−φ t

i, j,k

ht
=−v1

φ t
i+1, j,k−φ t

i−1, j,k

2hx
− v2

φ t
i, j−1,k−φ t

i, j−1,k

2hy

−v3
φ t

i, j,k+1−φ t
i, j,k−1

2hz
+α1

φ t
i+1, j,k−2φ t

i, j,k +φ t
i−1, j,k

(hx)2

+α2
φ t

i, j+1,k−2φ t
i, j,k +φ t

i, j−1,k

(hy)2 +α3
φ t

i, j,k+1−2φ t
i, j,k +φ t

i, j,k−1

(hz)2 .

(7)

To simplified the expression, we defined the discrete operators S`± for `= 1,2,3 as forward

and backward displacement at `= 1 for x, `= 2 for y, and `= 3 for z. For example, at x direction

the forward operator is S1+ and backward S1−, those applied to discrete function φ t
i, j,k, we have:

S1±φ n
i, j,k := φ n

i±1, j,k such that S1±φ = {φ n
i±1, j,k}.

Given P differential and continuous operator and central finite differential scheme (7), we get
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the discrete operator as:

(8) Phx,hy,hk,ht φ
n
i, j,k = 0

3. ANALYSIS OF CENTRAL FINITE DIFFERENCES OF THE EQUATION

3.1. Consistency.

Definition 3.1. Phx,hy,hk,ht φ
n
i, j,k is consistent with Pθ for a time n > 0 in `2-norm, if

‖Phx,hy,hk,ht φ
n
i, j,k‖`2 = ‖κτ(hx,hy,hk,ht)‖`2; and τ(hx,hy,hk,ht)→ 0 when κ → 0.

where τ(hx,hy,hk,ht) is a local truncated error at the time nκ ·

We proof the consistency of the discretized equation (6), for this, we denote A, B and P

differential and continuous operators as Strikwerda [11] , defined by: A =
∂

∂ t
+u1

∂

∂x
+u2

∂

∂y
+

u2
∂

∂ z
y B =−α1

∂ 2

∂x
−α2

∂ 2

∂y
−α2

∂ 2

∂ z
, applying those operators to a smooth function θ(ξ , t) for

ξ ∈ R3, we have

(9) Aθ =
∂θ

∂ t
+u1

∂θ

∂x
+u2

∂θ

∂y
+u3

∂θ

∂ z
,Bθ =−α1

∂ 2θ

∂x2 −α2
∂ 2θ

∂y2 −α3
∂ 2θ

∂ z2 ,

and the equation (6) is written as

(10) P := A+B, and Pθ = Aθ +Bθ = 0.

Then, with the progressive Taylor’s formula at the time, we have:

(11)

θ(ξi, j,k, tn +ht) = θ(ξi, j,k, tn)+
1
1!

htθt(ξi, j,k, tn)+
1
2!

h2
t θtt(ξi, j,k, tn)+

1
3!

h3
t θttt(ξi, j,k, tn)+ · · · ,

and replacing the notation (3) in the Taylor’s expansion (11), we have

(12) θ
n+1
i, j,k = θ

n
i, j,k +θtht +O(h2

t ).

The Taylor’s formula with spatial variable is:

θ(xi±hx,y j,zk, tn) = θ(ξi, j,k, tn)±
1
1!

hxθx(ξi, j,k, tn)
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(13) +
1
2!

h2
xθxx(ξi, j,k, tn)±

1
3!

h3
xθxxx(ξi, j,k, tn)+ · · · ,

using the reduced notation θ n
i±1, j,k = θ(xi±hx,y j,zk, tn) in the Taylor’s expansion (13), we have

(14) θ
n
i±1, j,k = θ

n
i, j,k±θxhx +O(h2

x).

Using (12), (14) y (9) in the equation (6), the discrete operator (8) is

Phx,hy,hkφ
n
i, j,k = θt +u1θx +u2θy +u3θz︸ ︷︷ ︸−α1θxx−α2θyy−α3θzz︸ ︷︷ ︸

+o(hx)+o(hy)+o(hz)+o(ht)+o(h2
x)+o(h2

y)+o(h2
z )

(15) Phx,hy,hk,ht φ
n
i, j,k = Aθ +Bθ +o(hx)+o(hy)+o(hz)+o(ht)+o(h2

x)+o(h2
y)+o(h2

z ),

of the equation (10) and (15), we have

Pθ −Phx,hy,hk,ht φ
n
i, j,k = o(hx)+o(hy)+o(hz)+o(ht)+o(h2

x)+o(h2
y)+o(h2

z ).(16)

This form, the scheme (6) is consistent with (10), on the right hand side of (16), we have that

the truncate local error goes to zero, when hx,hy,hk,ht 7→ 0 goes to zero, that is :

Pθ −Phx,hy,hk,ht φ
n
i, j,k 7→ 0.

Therefore, we have contrast the definition 3.1.

3.2. Stability. To proof the stability of the scheme (6), the Von Neumann criteria should be

satisfied, for that, we have the follow definitions

Definition 3.2. The central finite differences scheme (6) is stable with respect to a some norm

‖.‖ if and only if the solution exist and is unique and it is dependent of initial conditions, that

is, there are positives constants hx0 , hy0 , hz0 , ht0 and C > 0, t > 0, α > 0 with n≥ 0, such that

‖φ n+1
i, j,k ‖ ≤Ceαt‖φ 0

i, j,k‖,

for 0≤ t = (n+1)ht , 0 < hx ≤ hx0 , 0 < hy ≤ hy0 , 0 < hz ≤ hz0 y 0 < ht ≤ ht0 .



2170 M.J. HUAYAMA, O.R. MERCEDES, L.J.C. MORALES

Definition 3.3. Given φ(ξ ,n) a discrete function defined on Z, then the discrete Fourier trans-

form φ(ξ ,n) with n ∈ Z+, is denoted by φ̂(ξ ,n) and defined by:

φ̂(ξ ,n) =
1

(2π)N/2 ∑
m∈ZN

e−ı̂mh.ξ
φ

n
mhN ,

where hZN = {hm : m ∈ ZN} with mh.ξ a inner product defined for ξ ∈ [
−π

h
,
π

h
]N , and the

inverse formula is

φ
n
m =

1
(2π)N/2

∫
[
−π

h
,
π

h
]N

eı̂mh.ξ
φ̂(ξ ,n)dξ .

We proceed to find the amplification factor that is necessary for the Von Neumann criteria,

for that, we use the results of Strikwerda [11], and Rubio [5], there exist a biunivocal relation

between discrete space `2(Z) and the space L2[−π

h
,
π

h
] for ξ ∈ [−π

h
,
π

h
], it warranty that

(17) ‖φ n
i ‖2

`2 = h ∑
m∈Z
|φ n

m|2 =
∫
[
−π

h
,
π

h
]
|φ̂ n(ξ )|2dξ = ‖φ‖2

L2,

this relation is called Parserval’s relation [11],[12].

With the notation (4) and definition (3.3), taking h1 = hx, h2 = hy, h3 = hz, h`ZN = {h`m : m∈

ZN}; we have that mh` ·ξ is the inner product for ξ ∈ [−π

h
,
π

h
]N with `= 1,2,3. As φ = {φ n

i, j,k}

is the discrete function, the discrete Furier Transform is φ(ξ ,n) and expressed by

φ̂(ξ ,n) =
h1h2h3

(2π)3/2 ∑
i, j,k

φ
n
i, j,ke−ı̂ih1ξ1e−ı̂ jh2ξ2e−ı̂kh3ξ3,(18)

where ı̂ ∈ C; i, j,k ∈ Z y n ∈ Z+.

Considering β1 = h1ξ1, β2 = h2ξ2, β3 = h3ξ3, the discrete Fourier Transform of (18) is ex-

pressed as :

φ̂(β1,β2,β3,n) =
h1h2h3

(2π)3/2 ∑
i, j,k

φ
n
i, j,ke−ı̂iβ1e−ı̂ jβ2e−ı̂kβ3,(19)

where ı̂ ∈ C; i, j,k ∈ Z y n ∈ Z+.
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Applying the Discrete Fourier transform (19) to (6) we get

Ŝ`±φ(β1,β2,β3,n) = e±ı̂β` φ̂(β1,β2,β3,n),(20)

where β` = h`ξ for `= 1,2,3. Now, of the equation (19) and (20), we define

Ŝ`± := e±ı̂β` for `= 1,2,3.(21)

We write a equation (7) as:

φ
t+1
i, j,k = φ t

i, j,k−
htv1

2hx
(φ t

i+1, j,k−φ t
i−1, j,k)−

htv2

2hy
(φ t

i, j+1,k−φ t
i, j−1,k)

− htv3

2hz
(φ t

i, j,k+1−φ t
i, j,k−1)+

htα1

(hx)2 (φ
t
i+1, j,k−2φ t

i, j,k +φ t
i−1, j,k)

+
htα2

(hy)2 (φ
t
i, j+1,k−2φ

t
i, j,k +φ

t
i, j−1,k)+

htα3

(hz)2 (φ
t
i, j,k+1−2φ

t
i, j,k +φ

t
i, j,k−1)(22)

using the notation :

λ1 =
htv1

hx
, λ2 =

htv2

hy
, λ3 =

htv3

hz
,(23)

µ1 =
htα1

(hx)2 , µ2 =
htα2

(hy)2 ,µ3 =
htα3

(hz)2 ,(24)

where λ1,λ2,λ3 are the Courant’s numbers.

With the notation (23) and (24), the equation (22) is written as

φ
t+1
i, j,k = (1−2µ1−2µ2−2µ3)φ

t
i, j,k +(

−λ1

2
+µ1)S1+φ

t
i, j,k +(

λ1

2
+µ1)S1−φ

t
i, j,k

+(
−λ2

2
+µ2)S2+φ

t
i, j,k +(

λ2

2
+µ2)S2−φ

t
i, j,k +(

−λ3

2
+µ3)S3+φ

t
i, j,k +(

λ3

2
+µ3)S3−φ

t
i, j,k.

(25)

Finally, the equation (25) is expressed as

φ
t+1
i, j,k = Qφ

t
i, j,k(26)

where Q = Q(S1+,S1−,S2+,S2−,S3+,S3−) is a polynomial of the form
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Q = (1−2µ1−2µ2−2µ3)+(
−λ1

2
+µ1)S1++(

λ1

2
+µ1)S1−

+(
−λ2

2
+µ2)S2++(

λ1

2
+µ2)S2−+(

−λ3

2
+µ3)S3++(

λ3

2
+µ3)S3−.

(27)

Replacing (21), (23) , (24) in the polynomial (27) and applying the inversion Fourier formula

given in definition (3.3) [11], the explicit scheme (26) is expressed by

φ̂
n+1
i, j,k = ρφ̂

n
i, j,k where Q̂ = ρ(β1,β2,β3,hx,hy,hz,ht),(28)

where the spectral radio ρ(β1,β2,β3,hx,hy,hz,ht) = Q̂(e±îh1ξ1,e±îh2ξ2 ,e±îh3ξ3) is written of the

form

ρ = 1−4µ1sen2 β1

2
−4µ2sen2 β2

2
−4µ3sen2 β3

2
− ı̂(λ1senβ1 +λ2senβ2 +λ3senβ3).(29)

This equation is called amplification factor and shows the amplitude of the general solution

for central finite differences scheme.

Von Neumman criteria. Using Fourier analysis, we have the necessary and sufficient condi-

tions for the stability of the finite differences scheme, this is called Von Neumann analysis. For

this analysis we have the following theorems

Remark. The central finite differences (6) satisfy the Von Neumann criteria as in Gary [13] , if

exist a constant C > 0 independent of hx,hy,hz,ht ,β1,β2,β3,κ , such that

(30) |ρ(β1,β2,β3,hx,hy,hz,ht)| ≤ 1+Cκ.

Where κ > 0 is the step of the time and ρ(β1,β2,β3,hx,hy,hz,ht) denote a spectral radio of

amplification factor (29).

If ρ(β1,β2,β3,hx,hy,hz,ht) is independent of hx,hy,hz,ht , the stability condition (30) is replaced

by a stability condition of the form

(31) |ρ(β1,β2,β3)| ≤ 1.
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In the next theorem, we use the Von Neumann criteria above to proof the stability of the

central finite differences (6).

Theorem 3.1. The central finite differences (6) is stable with the norm `2, if and only if, it satisfy

the criteria (3.2) of Von Neumann.

The theorem (3.1) shows that only is necessary the amplification factor

ρ(β1,β2,β3,hx,hy,hz,ht) to determine the stability of central finite differences scheme

(6).

Proof

⇐) If the Von Neumann criteria (3.2) is satisfied, the central finite differences scheme (6) is

stable with the norm `2.

Applying Fourier transform to the explicit scheme (6), we get

φ̂
n+1
i, j,k = ρφ̂

n
i, j,k,(32)

simplifying this expression, we write as

φ̂
n
i, j,k = ρφ̂

n−1
i, j,k = ρ

2
φ̂

n−2
i, j,k = ...= ρ

n
φ̂

0
i, j,k.(33)

Using the Parseval’s relation (17) of greater dimension, we have

‖φ n
i, j,k‖

2
`2 = h1h2h3 ∑

i, j,k
(φ n

i, j,k)
2 =

∫ π

h1

−
π

h1

∫ π

h2

−
π

h2

∫ π

h3

−
π

h3

|φ̂ n(β1,β2,β3)|2dβ1dβ2dβ3,(34)

in effect

‖φ n
i, j,k‖

2
`2 =

∫ π

h1

−
π

h1

∫ π

h2

−
π

h2

∫ π

h3

−
π

h3

|φ̂ n(β1,β2,β3)|2dβ1dβ2dβ3(35)
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replacing (33) in the Parselval’s (35), we get

‖φ n
i, j,k‖

2
`2 =

∫ π

h1

−
π

h1

∫ π

h2

−
π

h2

∫ π

h3

−
π

h3

|ρ(β1,β2,β3,hx,hy,hz,ht)|2n|φ̂ 0(β1,β2,β3)|2dβ1dβ2dβ3.

(36)

Applying the criteria (3.2), such that |ρ(β1,β2,β3,hx,hy,hz,ht)| ≤ 1+Cκ con C > 0 y κ > 0,

the equation (36) is wrote as

‖φ n
i, j,k‖

2
`2 ≤ (1+Cκ)2n

∫ π

h1

−
π

h1

∫ π

h2

−
π

h2

∫ π

h3

−
π

h3

|φ̂ 0(β1,β2,β3)|2dβ1dβ2dβ3,

whit the result 34, we have

‖φ n
i, j,k‖

2
`2 ≤ (1+Cκ)2n

∑
i, j,k

(φ 0
i, j,k)

2h1h2h3,

therefore, we have that

‖φ n
i, j,k‖

2
`2 ≤ (1+Cκ)2n‖φ 0

i, j,k‖
2
`2 .(37)

Given T > 0 sufficient greater such that nκ ≤ T , then n≤ T
κ

, and 1+Cκ ≤ eCκ with C > 0 and

κ > 0, we have (1+Cκ)2n ≤ (1+Cκ)
2
T
κ ≤ e2CT , and replacing in the inequality (37), we have

‖φ n
i, j,k‖`2 ≤ eCT‖φ 0

i, j,k‖`2 .(38)

Of the (37) and (38) the central finite differences (6) is stable .

This result contrast the definition 3.2 in the discrete form.

⇒) If the criteria (3.2) of Von Neumann is not satisfy, then the central finite different (6) is

unstable. To proof that, only we need to proof the unidimensional case.

For the continuity of ρ(β ), for some C > 0 there is a βC ∈ [β1,β2] such that

|ρ(βC,hx,ht)|> 1+Cκ , see figure 1.
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FIGURE 1. Given βC ∈ IC = [β1,β2] with |ρ(βc)| > 1+Ck for some value of

hξ = βc.

Taking the initial condition φ 0
i and building a function such that

(39) φ̂
0(ξ ) =


0 if ξ 6∈ [

β1

hx
,
β2

hx
]

√
h

β2−β1
if ξ ∈ [

β1

hx
,
β2

hx
].

Observe, that ‖φ̂ 0‖= 1.

Applying the Fourier transform to the scheme (6) for the unidimensional case, and knowing

that C > 0 and βc ∈ [−π,π], we have that φ̂ 0(βc) 6= 0, then for |ρ(βc)|> 1+Cκ have

φ̂
n = ρ(βc)φ̂

n−1(40)

= ρ
2(βc)φ̂

n−2 = · · ·= ρ
n(βc)φ̂

0 > (1+Cκ)n
φ̂

0.

Using the Parseval’s relation (17), have

‖φ n
i ‖2

`2 = hx ∑
i
(φ n

i )
2 =

∫ π

hx

−
π

hx

|φ̂ n(βc)|2dβc,
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in effect

‖φ n
i ‖2

`2 =

∫ π

hx

−
π

hx

|φ̂ n(βc)|2 dβc,(41)

replacing (40) in the Parselval’s (41), have that

‖φ n
i ‖2

`2 =

∫ π

hx

−
π

hx

|ρ(βc)|2n|φ̂ 0(βc)|2dβc,

or equivalent

‖φ n
i ‖2

`2 =

∫ β2

hx

β1

hx

|ρ(hxξ ,hx,ht)|2n|φ̂ 0(ξ )|2dξ .(42)

By hypothesis, we have that |ρ(βc,hx,ht)| > 1+Cκ with C > 0 and κ > 0, and replacing in

(42) have

‖φ n
i ‖2

`2 > (1+Cκ)2n

∫ β2

hx

β1

hx

|φ̂ 0(ξ )|2dξ ,(43)

from the inequality (43) and the function (39), we have that

‖φ n
i ‖2

`2 > (1+Cκ)2n,(44)

choosing C > 0 such that exist T > 0 and κ > 0 with κn∼ T such that satisfy 2+2CT ≥ e2CT ∼

(1+κC)
2
T
κ , the inequality (44) is written as

‖φ n
i ‖2

`2 ≥
1
2
(1+Cκ)

2
T
κ ∼ 1

2
e2CT ·1,

we can conclude that

‖φ n
i ‖2

`2 ≥
1
2

e2CT‖φ 0
i ‖2

`2,(45)
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this shows that central finite differences scheme (6) is unlimited ∀C > 0, as a consequence is

unstable.

From inequality (38) and (45) the theorem (3.1) is proved �.

Remark. Note that of the result (38) that is a discrete representation of the definition 3.2, we

conclude that: The scheme (6) is called stable is exist a constant κ > 0, C > 0, T > 0 and a

norm `2 such that

‖φ n
i, j,k‖`2 = ‖Qn

φ
0
i, j,k‖`2 ≤ eCT‖φ 0

i, j,k‖`2,

where nκ ≤ T ; κ and C independent of h1,h2,h3,ht ,β1,β2,β3, with n > 0 and β` = h`ξ with

ξ ∈ [−π

h
,
π

h
]N for `= 1,2,3.

Note that, from criteria (3.2), if ρ(β1,β2,β3,hx,hy,hz,ht) = ρ(β1,β2,β3) then, the Von Neu-

mann criteria is replaced by |ρ(β1,β2,β3)| ≤ 1.

In effect, applying this result in (29) have that

|1−4µ1sen2 β1

2
−4µ2sen2 β2

2
−4µ3sen2 β3

2
|+ |λ1senβ1 +λ2senβ2 +λ3senβ3| ≤ 1,(46)

Observe that, considering hx = hy = hz = ht and the equation (46), have that :

|1−4(
α1

hx
+

α2

hy
+

α3

hz
)|max + |u1 +u2 +u3|max ≤ 1.(47)

3.3. Convergence.

Definition 3.4. The central finite differences scheme of the equation (1) is convergent with

some norm ‖ · ‖ if the partial differential solution θ(ξ , t), and the solution of the finite differ-

ences scheme φ n
i, j,k, such that φ 0

i, j,k converge to θ0(ξ ) when ihx, jhy,khz,nht converge to x,y,z, t

respectively, then φ n
i, j,k converge to θ(ξ , t) when (ihx, jhy,khz,nht) converge to (x,y,z, t) when

hx,hy,hz,ht converge to 0; with ξ ∈ R3 y t > 0.

Proposition 3.2. The solution of central finite differences scheme (6) is convergent with the

norm `2, with the solution of partial differential equation (1), represented by θ(ξ , t), for ξ ∈R3

if ‖θ(ξ,t)−φ n
i, j,k‖`2 → 0 when hx,hy,hz,ht → 0.
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Proof

Given hx = hy = hz = ht = h the central finite differences (6) is written as

θ
n+1
i, j,k = Qθ

n
i, j,k +4o(h)+3o(h2).(48)

Given θ(ξ , t) a solution of equation (10), as the central differences is consistent with order of

precision (1,2), of the result (16), and considering hx = hy = hz = ht = h we have that

Pθ −Phx,hy,hk,ht φ
n
i, j,k = 4o(h)+3o(h2),(49)

that is

θ
n
i, j,k = Qθ

n−1
i, j,k +4o(h)+3o(h2).(50)

(51) and ϕ
n
i, j,k = θ

n
i, j,k−φ

n
i, j,k the error at n-th time step,

(52) such that ϕ
0
i, j,k = max

i, j,k
|θ 0

i, j,k−φ
0
i, j,k|= 0.

The equation (50) and the equation (51) is expressed by

ϕ
n
i, j,k = Qϕ

n−1
i, j,k +4o(h)+3o(h2)

= Q2
ϕ

n−2
i, j,k +Q[4o(h)+3o(h2)]+4o(h)+3o(h2)

= . . .

= Qn
ϕ

0
i, j,k +

n−1

∑
j=0

Q j[4o(h)+3o(h2)],

using the equation (52), we have that

ϕ
n
i, j,k =

n−1

∑
j=0

Q j[4o(h)+3o(h2)]

‖ϕn
i, j,k‖`2 ≤

n−1

∑
j=0
‖Q j‖`2[4o(h)+3o(h2)],

and with the conclusion 3.2 of stability that inequality is written by

(53) ‖ϕn
i, j,k‖`2 ≤

n−1

∑
j=0

eCTj [4o(h)+3o(h2)].
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Replacing the equation (51) in the inequality (53) have

(54) ‖θ n
i, j,k−φ

n
i, j,k‖`2 ≤

n−1

∑
j=0

eCTj [4o(h)+3o(h2)],

when Tj ∼ t j = jh, we have that

(55) ‖θ n
i, j,k−φ

n
i, j,k‖`2 = o(h)+o(h2)

by the result of (55) the central finite differences is convergent with order (1,2).

We conclude that the criteria of consistence, convergence and stability are established.

4. RESULT

4.1. Application 1. For j = k = 0 y αl = vn = 0 with l = 2,3 y n = 1,2,3, the equation (7)

is written by

(56) φ
t+1
i = φ

t
i +

htα1

(hx)2 (φ
t
i+1−2φ

t
i +φ

t
i−1)

As ρ(ξ1,ξ2,ξ3,hx,hy,hz, t) = ρ(ξ1,ξ2,ξ3), the CVN given in the definition (3.2) is replaced by:

(57) |ρ(ξ1,ξ2,ξ3)| ≤ 1.

For the case 1D, of the equation (29) and the inequality (57) , we have that:

−1≤ ρ(ξ1) = 1−4µ1Sin2 ξ1

2
; µ1Sin2 ξ1

2
≤ 1

2
, taking the grater value of 0≤ µ1 ≤

1
2

, therefore:

0≤ htα1

h2
x
≤ 1

2

Using the equation (56) of 1D with hx = ht = 0.1, we compared with results of Fletcher [15]

for the initial condition φ(x,0) = 0 and the boundary condition φ(0, t) = φ(1, t) = 100 at 3000

seconds, with θ the exact solution [15] of the equation (56) showed in the table 2.

The table 1 and 2 represent the changes of temperature at 500s, 1000s, 1500s, 2000s, 2500s

until 3000s. The condition φ(0,0) = φ(1,0) = 50 permit to get the best approximation of exact

solution [15], see figure 3, table 1 and table 2.
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x scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Central

100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 500s

100.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.00 100.00 1000s

100.00 50.00 25.00 0.00 0.00 0.00 0.00 0.00 25.00 50.00 100.00 1500s

100.00 62.50 25.00 12.50 0.00 0.00 0.00 12.50 25.00 62.50 100.00 2000s

100.00 62.50 37.50 12.50 6.25 0.00 6.25 12.50 37.50 62.50 100.00 2500s

100.00 68.75 37.50 21.87 6.25 6.25 6.25 21.87 37.50 68.75 100.00 3000s

100.00 68.75 41.41 21.88 14.06 6.25 14.06 21.88 41.41 68.75 100.00 3500s

100 .00 68.33 41.53 22.49 11.68 8.25 11.68 22.49 41.53 68.33 100.00 θ

TABLE 1. Changes of temperature

x scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Central

50.00 25.00 .00 .00 .00 .00 .00 .00 .00 25.00 50.00 500s

100.00 50.00 12.50 .00 .00 .00 .00 .00 12.50 50.00 100.00 1000s

100.00 56.25 25.00 6.25 .00 .00 .00 6.25 25.00 56.25 100.00 1500s

100.00 62.50 31.25 12.50 3.13 .00 3.13 12.50 31.25 62.50 100.00 2000s

100.00 65.63 37.50 17.19 6.25 3.13 6.25 17.19 37.50 65.63 100.00 2500s

100.00 68.75 41.41 21.88 10.16 6.49 10.16 21.88 41.41 68.75 100.00 3000s

100.00 68.75 41.41 21.88 10.16 6.49 10.16 21.88 41.41 68.75 100.00 Fletcher[15]

100 .00 68.33 41.53 22.49 11.68 8.25 11.68 22.49 41.53 68.33 100.00 θ

TABLE 2. Changes of temperature

Grid Error

mx×mt µ1 tmax x φ θ ‖e‖2 ρ

10×10 0.5 3000s 0.9 68.75 68.33 0.9418 Fletcher [15]

10×10 0.5 3000s 0.9 68.75 68.33 0.94195 0.9995 Present work
TABLE 3. Temperature at time of 3000 seconds
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FIGURE 2. Change of temperature for the central scheme

FIGURE 3. Change of temperature adding boundary condition φ(0,0) =

φ(1,0) = 50.

4.2. Application 2. For k = 0 and αl = vn = 0, l = 3; n = 1,3 the equation (22) is written as:

(58) φ
t+1
i, j = φ

t
i, j +

htα1

(hx)2 (φ
t
i+1, j−2φ

t
i, j +φ

t
i−1, j)+

htα2

(hy)2 (φ
t
i, j+1−2φ

t
i, j +φ

t
i, j−1).
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For the case 2D, the equation (29) and the inequality (57) have that : −1 ≤ ρ(ξ1,ξ2) = 1−

4µ1Sin2 ξ1

2
−4µ2Sin2 ξ2

2
, taking the greater values 0≤ µ1 +µ2 ≤

1
2

, therefore:

0≤ htα1

h2
x

+
htα2

h2
y
≤ 1

2
.

Considering the equation (58) with hx = hy = ht = 0.1 and µ1 = µ2 = 0.25, α1 = α2 = 0.025

we compare with the results of Gary [13] with respect to exact solution by variable separable

method and is written as θ(x,y, t) = e−2α1π2tSin(πx)Sin(πy), with initial condition φ(x,y,0) =

Sin(πx)Sin(πy) and boundary condition φ(0,y, t) = φ(1,y, t) = 0 and φ(x,0, t) = φ(x,1, t) = 0.

However, for α1 = α2 = 0.160 and µ1 = µ2 = 0.16, we observe that the greater approximation

of exact solution θ , see table 4.

The table 3 shows the correspond `2 - error and the amplification factor ρ at the time t = 1 s.
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x=y=t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gary [13]

0.0000 0.0128 0.0244 0.0336 0.0395 0.0415 0.0395 0.0336 0.0244 0.0128 0.0000

0.0000 0.0244 0.0464 0.0639 0.0751 0.0790 0.0751 0.0639 0.0464 0.0244 0.0000

0.0000 0.0336 0.0639 0.0880 0.1034 0.1087 0.1034 0.0880 0.0639 0.0336 0.0000

0.0000 0.0395 0.0751 0.1034 0.1216 0.1278 0.1216 0.1034 0.0751 0.0395 0.0000

0.0000 0.0415 0.0790 0.1087 0.1278 0.1344 0.1278 0.1087 0.0790 0.0415 0.0000

0.0000 0.0395 0.0751 0.1034 0.1216 0.1278 0.1216 0.1034 0.0751 0.0395 0.0000

0.0000 0.0336 0.0639 0.0880 0.1034 0.1087 0.1034 0.0880 0.0639 0.0336 0.0000

0.0000 0.0244 0.0464 0.0639 0.0751 0.0790 0.0751 0.0639 0.0464 0.0244 0.0000

0.0000 0.0128 0.0244 0.0336 0.0395 0.0415 0.0395 0.0336 0.0244 0.0128 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Present

0.0000 0.0128 0.0244 0.0336 0.0395 0.0415 0.0395 0.0336 0.0244 0.0128 0.0000 work

0.0000 0.0244 0.0464 0.0639 0.0751 0.0790 0.0751 0.0639 0.0464 0.0244 0.0000 α1 = 0.025

0.0000 0.0336 0.0639 0.0880 0.1034 0.1087 0.1034 0.0880 0.0639 0.0336 0.0000 α2 = 0.01

0.0000 0.0395 0.0751 0.1034 0.1216 0.1278 0.1216 0.1034 0.0751 0.0395 0.0000

0.0000 0.0415 0.0790 0.1087 0.1278 0.1344 0.1278 0.1087 0.0790 0.0415 0.0000

0.0000 0.0395 0.0751 0.1034 0.1216 0.1278 0.1216 0.1034 0.0751 0.0395 0.0000

0.0000 0.0336 0.0639 0.0880 0.1034 0.1087 0.1034 0.0880 0.0639 0.0336 0.0000

0.0000 0.0244 0.0464 0.0639 0.0751 0.0790 0.0751 0.0639 0.0464 0.0244 0.0000

0.0000 0.0128 0.0244 0.0336 0.0395 0.0415 0.0395 0.0336 0.0244 0.0128 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Present

0.0000 0.0132 0.0252 0.0346 0.0407 0.0428 0.0407 0.0346 0.0252 0.0132 0.0000 work

0.0000 0.0252 0.0479 0.0659 0.0775 0.0814 0.0775 0.0659 0.0479 0.0252 0.0000 α1 = 0.160

0.0000 0.0346 0.0659 0.0907 0.1066 0.1121 0.1066 0.0907 0.0659 0.0346 0.0000 α2 = 0.160

0.0000 0.0407 0.0775 0.1066 0.1253 0.1318 0.1253 0.1066 0.0775 0.0407 0.0000

0.0000 0.0428 0.0814 0.1121 0.1318 0.1386 0.1318 0.1121 0.0814 0.0428 0.0000

0.0000 0.0407 0.0775 0.1066 0.1253 0.1318 0.1253 0.1066 0.0775 0.0407 0.0000

0.0000 0.0346 0.0659 0.0907 0.1066 0.1121 0.1066 0.0907 0.0659 0.0346 0.0000

0.0000 0.0252 0.0479 0.0659 0.0775 0.0814 0.0775 0.0659 0.0479 0.0252 0.0000

0.0000 0.0132 0.0252 0.0346 0.0407 0.0428 0.0407 0.0346 0.0252 0.0132 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 solution

0.0000 0.0133 0.0252 0.0347 0.0408 0.0429 0.0408 0.0347 0.0252 0.0133 -0.0000 exact

0.0000 0.0252 0.0480 0.0661 0.0777 0.0816 0.0777 0.0661 0.0480 0.0252 -0.0000

0.0000 0.0347 0.0661 0.0909 0.1069 0.1124 0.1069 0.0909 0.0661 0.0347 -0.0000

0.0000 0.0408 0.0777 0.1069 0.1256 0.1321 0.1256 0.1069 0.0777 0.0408 -0.0000

0.0000 0.0429 0.0816 0.1124 0.1321 0.1389 0.1321 0.1124 0.0816 0.0429 -0.0000

0.0000 0.0408 0.0777 0.1069 0.1256 0.1321 0.1256 0.1069 0.0777 0.0408 -0.0000

0.0000 0.0347 0.0661 0.0909 0.1069 0.1124 0.1069 0.0909 0.0661 0.0347 -0.0000

0.0000 0.0252 0.0480 0.0661 0.0777 0.0816 0.0777 0.0661 0.0480 0.0252 -0.0000

0.0000 0.0133 0.0252 0.0347 0.0408 0.0429 0.0408 0.0347 0.0252 0.0133 -0.0000

-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000

TABLE 4. Change of temperature
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4.3. Application 3. The equation (7), for j = k = 0 and αl = vn = 0 with l = 2,3 y n = 2,3;

is written as:

(59) φ
t+1
i = φ

t
i −0.5v1

ht

hx
(φ t

i+1−φ
t
i−1)+

htα1

(hx)2 (φ
t
i+1−2φ

t
i +φ

t
i−1).

For the case 1D of the equation (29) and the inequality (57), we have:

ρ(β1) = 1−4µ1Sin2 β1

2
− ı̂λ1Sin(β1), and taking (46), we have

|1−4µ1sen2 β1

2
|+ |λ1senβ1| ≤ 1.(60)

The transport equation (59) for the case 1D with hx = 0.2, ht = 0.1, allow us compare the

central scheme getting for Fletcher [15] with boundary condition φ(−2, t) = 1 and φ(−2, t) = 0

for all t ∈ [0,1] and initial condition

φ(x,0) =

 1 if −2≤ x≤ 0,

0 if 0 < x≤ 2,
(61)

under these conditions, an exact solution with methods of separation of variables, is

θ(x, t) = 0.5− 2
π

N

∑
k=1

sin
[
(2k−1)π

L1
(x−ut)

]
e−α[

(2k−1)π
L1

]2t

2k−1
,(62)

where θ is the exact solution [15] of the equations (59) showed in the 5 and 6 and represent the

change of temperature at 0s, 0.5s to 1s.

Considering ht = 0.05, hx = 0.2 and the conditions v1 = 0.5, λ1 = 0.125, α1 = 0.1, µ1 = 0.125

with n=m=20 and Raynold’s number (Re = v1
hx
α1
) Re = 1, with these conditions, we have gotten

a best approximation of the exact solution [15], this implied a decreasing `2-error wrote as ‖e‖`2 ,

such that

‖e‖`2 =

√
∑

mx,mt
i,t=0 φ(i, t)−θ(i, t)

mx−1
,(63)

considering at 1s, see figure 4, and the table 7.
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x schema

-2.0 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0.0 Central

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0s

1.0 1.0 1.0 1.0 1.0 0.99972 0.99858 0.99421 0.98070 0.94678 0.87713 1s

1.0 1.0 1.0 1.0 1.0 1.0 0.999 0.994 0.981 0.947 0.877 1s-Fletcher[15]

1.0 1.0 1.0 1.0 1.0 1.0 0.998 0.993 0.978 0.941 0.868 θ

TABLE 5. Changes of temperature

x scheme

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Central

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0s

0.75979 0.59759 0.41415 0.24546 0.12064 0.04747 0.01429 0.00308 0.00042 0.00 1s

0.760 0.598 0.414 0.245 0.121 0.047 0.014 0.003 0.000 0.00 1s-Fletcher[15]

0.749 0.558 0.412 0.251 0.132 0.059 0.022 0.007 0.002 0.00 θ

TABLE 6. Changes of temperature

mx×mt µ1 tmax x φ θ ‖e‖2 ρ(β )

10×10 0.25 1s -0.2 0.94678205 1.0 0.00603304 0.62986082

20×20 0.125 1s -0.2 0.94622105 1.0 0.00285694 0.81493044
TABLE 7. Temperature at 1s

4.4. Application 4. Given the exact solution (7) for v1 = v2 = v3 = 0 and α1 = α2 = α3 = α .

θ(x,y,z, t) = e−3απ2tSin(πx)Sin(πy)Sin(πz)(64)

where the equation (65) is the initial condition and the equation (66) is the boundary condition.

φ(x,y,z,0) = Sin(πx)Sin(πy)Sin(πz).(65)

φ(0,y,z, t) = φ(1,y,z, t) = φ(x,0,z, t) = 0,

φ(x,1,z, t) = φ(x,y,0, t) = φ(x,y,1, t) = 0.(66)
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FIGURE 4. Changes of temperature for ht = 0.05

4.4.1. Comparison of central finite differences. For v j = 0, j = 1,3;αi = 0.333333 = α , i =

1,2,3, in the equation (7) with hx = hy = hz = ht = h = 0.1 and µ1 = µ2 = µ3 = µ , is possible

to compare the central finite differences with the results of Ortigoza [9], with initial condition

(65) and Dirichlet boundary condition (66) .

To visualize was necessary to do three section with plane in x = 0.2, x = 0.5 and x = 0.8;

in the domain the temperature decreases with increasing time. The results by Ortigoza present

instability after time t = 0.15, because the value αi = 0.333333 , i = 1,2,3 is outside of the

domain of stability of the inequality (67), see figure(5) case (d).
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(a) (b)

(c) (d)

FIGURE 5. The temperature (a),(b),(c) stable y (d) unstable.

For the case 3D, the equation (29) and inequality (57), we have that:

−1≤ ρ(ξ1,ξ2,ξ3) = 1−4µ1Sin2 ξ1

2
−4µ2Sin2 ξ2

2
−4µ3Sin2 ξ3

2
, them getting the grater value of

0≤ µ1 +µ2 +µ3 ≤
1
2

therefore:

(67) 0≤ htα1

h2
x

+
htα2

h2
y

+
htα3

h2
z
≤ 1

2
.

From the equation (67) and hx = hy = hz = ht = h, v j = 0, j = 1,3 with µ1 = µ2 = µ3 = µ and

α1 =α2 =α3 =α , we have that αi≤
1
6

; i= 1,3, it permit compared the central finite difference

scheme of the equation (64), initial condition (65) and Dirichlet boundary condition (66) used

by Ortigoza [9], the results are stable , see figure (5) case (a), (b) and (c).
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The figure (6) for h = 0.05, α = 0.00014 and µ = 0.165 in the equation (22) shows the temper-

ature in the domain at time t20 = 1s and for visualizing we have three section in x = 0.2, 0.5 y

0.8, Thar results shows us, that the temperature decrease and keep the stability.

(a)

FIGURE 6. Temperature (a) stable in time t20 = 1.

5. DISCUSSION

This research present the analysis of convergence, consistence and stability of central finite

differences of atmospheric transport equation; with the computational implementation of the

equation (1) was possible to make the simulation in 1D, 2D and 3D of the atmospheric transport

equation and compare the result with others works presented in the applications 4.1, 4.2 and

4.3. The method presented in the present work is more stable than the works cited in the tables

(1 and 2).

The equation (7) is stable if the constants of velocity are bounded by the equation of stability

(46) in particular by (47).

The amplification factor ρ(ξ1,ξ2,ξ3) obtained from equation (29) satisfy the Von Neumann
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condition, if exist a constant C > 0 and t > 0, such that |ρ(ξ1,ξ2,ξ3)| ≤ 1+Ct.

Changing the coefficient of thermal diffusion αi with i = 1,3 and applying to the inequality

(67) and adding the source Sθ (see [4]) in the equation (1), is possible improve the simulation

of physical problems.

We recommend work the mathematical modeling as a system, considering the conservation

mass laws, heat, water and aerosol.

6. CONCLUSION

The results show that the criteria of convergence, consistence and stability of the central finite

differences scheme, it has a strong dependence between the spatial and temporal variables, that

is the Von Neumann condition is satisfied.

The amplification factor from equation (29) is very important to get the Von Neumann condition.

On the other hand, we conclude that the equation (46) determine the stability of the equation

(7) without it, the convergence from approximate solution to exact solution is impossible.
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2190 M.J. HUAYAMA, O.R. MERCEDES, L.J.C. MORALES

[6] R.K. Mohanty, Stability interval for explicit difference schemes for multi dimensional second order hyper-

bolic equations with significant first order space derivative terms, J. Appl. Math. Comput. 190 (2007), 1683-

1690.

[7] Mehdi Dehghan, Quasi implicit and two level explicit finite difference procedures for solving the onedimen-

sional advection equation, J. Appl. Math. Comput. 167 (2005), 46-67.

[8] M.D. de Campos, E. Claro Romão, L.F.M. de Moura, A finite-difference method of high-order accuracy for

the solution of transient nonlinear diffusive–convective problem in three dimensions, Case Stud. Therm. Eng.

3 (2014), 43–50.

[9] G.M.O. Capetillo, Animaciones en Matlab y maple de ecuaciones diferenciales parciales de la fisica-

matematica, Rev. Mex. Fis. 53 (1) (2017), 56-66.

[10] P. Wesseling, Principles of Computational Fluid Dynamics, 1st edition, Delft University of Technology,

Springer, 2009.

[11] .C. Strikwerda, Finite difference schemes and partial differential equations, 2nd ed, Society for Industrial and

Applied Mathematics, Philadelphia, 2004.

[12] E.C. Titchmarch, Introduction to the Theory of Fourier Integrals, 1st edition, Clarendon Press, Oxford, 1962.

[13] G.A. Sod, Numerical methods in fluid dynamics: initial and initial boundary-value problems, Cambridge

University Press, Cambridge, 1985.

[14] P. Markowski, Y. Richardson, Mesoscale meteorology in midlatitudes, Wiley-Blackwell, Chichester, 2010.

[15] C.A.J. Fletcher, K. Srinivas, Computational techniques for fluid dynamics, 2nd ed, Springer-Verlag, Berlin;

New York, 1991.


