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Abstract. The motive of this article to introduce the notion called � (., .)-q-[-mixed accretive mappings in Banach

spaces. We generalized the idea of proximal-point mappings related with generalized <-accretive mappings to the

� (., .)-q-[-mixed accretive mappings and perusal its aspects single-valued property as well as Lipschitz continuity.

Since proximal point mapping plays an important role to solve variational inclusion problems. Therefore, we design

an iterative algorithm involving introduced proximal point mapping to solve variational inclusion problem. In last,

we discuss its convergence with considerable assumptions.
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1. Introduction

It is a satisfactory way that variational inequality theory is a very effectual and strong tool to

perusal a broad area of problems come to light inmechanics, differential equations, optimization,

optimal control and operation research problems, etc. The study of mixed type variational

inequality involving nonlinear operators is very essential. The projection method cannot be

utilized because of the nonlinear term to perusal the existence and uniqueness of solutions for
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the generalized mixed type variational inequalities. These crucial points impelled Hassouni and

Moudafi [5] to put forward the perturbed approach independent from the projection technique.

In this continuation, they investigated and studied the mixed type of variational inequalities,

called variational inclusions. The proximal-point mapping technique is a very efficient tool to

study variational inclusions and their generalization.

Initially, Huang and Fang [4] introduced generalized <-accretive mapping and give its

proximal-point mapping in Banach spaces. Since then many heuristics give the various classes

of generalized <-accretive mappings, see for examples [3, 13, 14, 15]. Sun et al. [16] presented

a new class of "-monotone mapping in Hilbert spaces. Several such schemes can be found in

[1, 12, 18], and references therein.

Recently Husain and Gupta [7] introduced � (., .)-mixed accretive mappings in Banach spaces,

a natural extension of <-accretive mapping and focussed on variational inclusions involving

discussed mappings.

The present work is impelled by the noble research works discussed above. We look into the

notion � (., .)-q-[-mixed accretive mappings and define its proximal-point mapping. Next, we

will study its characteristics single-valued property as well as Lipschitz continuity and to show its

application we attempt to find the solution of generalized set-valued variational inclusions in real

@-uniformly smooth Banach spaces. We construct an iterative algorithm involving introduced

proximal-point mapping and prove its convergence with appropriate assumptions. Our work is

the extension and refinement of the existing results, e.g. see [1, 7, 8, 9, 10, 11, 18].

2. Preliminaries

Let . be a real Banach space. Its norm and topological dual space is given by ‖.‖ and . ∗,

respectively. The inner product 〈., .〉 signify the dual pair among . and . ∗.

Definition 2.1. [17] Let z@ : . ( . ∗ be a multi-valued mapping and @ > 1. Then, z@ is

generalized duality mapping, if

z@ (H) = {H∗ ∈ . ∗ : 〈H, H∗〉 = ‖H‖@, ‖H∗‖ = ‖H‖@−1}, ∀ H ∈ . .
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If z2 is the usual normalized duality mapping on . , then

z@ (H) = ‖H‖@−1 z2(H) ∀ H(≠ 0) ∈ . .

If . ≡ -, a real Hilbert space, then z2 reduced to identity mapping on -.

Definition 2.2. [17] A Banach space . is called smooth if for every H ∈ . with ‖H‖ = 1, there

exists a unique ℎ ∈ . ∗ such that ‖ℎ‖ = ℎ(H) = 1.

Definition 2.3. Let r. : [0,∞) → [0,∞) be a function. Then modulus of smoothness of .

defined as

r. (B) = sup
{
‖H + H′‖ + ‖H − H′‖

2
− 1 : ‖H‖ ≤ 1, ‖H′‖ ≤ B

}
.

Definition 2.4. [17] A Banach space . is called uniformly smooth if limB→0 r. (B)/B = 0 and

@-uniformly smooth for @ > 1, if there exists 2 > 0 such that r. (B) ≤ 2 B@, B ∈ [0,∞).

Note that, if . is uniformly smooth then z is single-valued.

Lemma 2.5. [17] The real uniformly smooth Banach space . is @-uniformly smooth if and only

if there exists a non-negative constant 2@ > 0 such that, for every H, H′ ∈ .,

‖H + H′‖@ ≤ ‖H‖@ + @〈H′, z@ (H)〉 + 2@ ‖H′‖@ .

In order to proceed our next step, we write basic important concepts and definitions, which

will be used in this work.

Definition 2.6. Let single-valued mappings �, [ : . × . → ., and &, ' : . → . , then

(i) � (&, .) is [-cocoercive in regards & with non-negative constant `, if

〈� (&D, G) − � (&D′, G), z@ ([(D, D′))〉 ≥ ` ‖&D −&D′‖@, ∀G, D, D′ ∈ . ;

(ii) � (., ') is W-relaxed−[-accretive in regards ' with non-negative constant W, if

〈� (G, 'D) − � (G, 'D′), z@ ([(D, D′))〉 ≥ −W ‖D − D′‖@, ∀G, D, D′ ∈ . ;

(iii) � (&, .) is said to be ^1-Lipschitz continuous in regards & with non-negative constant ^1, if

‖� (&D, G) − � (&D′, G)‖ ≤ ^1 ‖D − D′‖, ∀G, D, D′ ∈ . ;
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(iv) � (., ') is ^2-Lipschitz continuous in regards ' with non-negative constant ^2, if

‖� (G, 'D) − � (G, 'D′)‖ ≤ ^2 ‖D − D′‖, ∀G, D, D′ ∈ . ;

(v) [ is be g-Lipschitz continuous with g > 0, if

‖[(D, D′)‖ ≤ g ‖D − D′‖, ∀D, D′ ∈ . ;

(vi) & is U-expansive with non-negative constant U, if

‖&(D) −&(D′)‖ ≥ U ‖D − D′‖, ∀D, D′ ∈ . .

Mapping & becomes expansive when U equal to 1.

Definition 2.7. Let �, [ : . ×. → . be the mappings and " : . ×. ( . be the multi-valued

mapping. Then

(i) " is <-relaxed [-accretive if

〈D − D′, z@ ([(G, G′))〉 ≥ −<‖G − G′‖@, ∀G, G′ ∈ ., D ∈ " (G, C), D′ ∈ " (G′, C), for each fixed t ∈ Y;

(ii) � is a-relaxed [-accretive in regards first component with non-negative constant a if

〈� (G, D) − � (G′, D), z@ ([(G, G′))〉 ≥ −a‖G − G′‖@, ∀G, G′, D ∈ . ;

(iii) � (., .) is Y1-Lipschitz continuous in regards first component with non-negative constant n1,

if

‖� (G, D) − � (G′, D)‖ ≤ n1 ‖G − G′‖, ∀G, G′, D ∈ . ;

(iv) � (., .) is Y2-Lipschitz continuous in regards second component with non-negative constant

n2, if

‖� (D, G) − � (D, G′)‖ ≤ n2 ‖G − G′‖, ∀G, G′, D ∈ . .

Definition 2.8. A multi-valued mapping ( : . ( ��(. ) is called �-Lipschitz continuous with

constant ; > 0, if

� ((D, (E) ≤ ; ‖D − E‖, ∀D, E ∈ . .
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3. � (., .)-q-[-Mixed Accretive Mappings

First, we define � (., .)-q-[-mixed accretive mappings and make some assumptions which are

needed in subsequent part of the section. Next, we will focus on its properties.

Let assume that [, � : . × . → . , and q,&, ' : . → . be single-valued mappings and

" : . × . ( . be a multi-valued mapping.

Definition 3.1. Let � (., .) is [-cocoercive in regards & with non-negative constant ` and [-

relaxed accretive in regards ' with non-negative constant W, then " is called � (., .)-q-[-mixed

accretive in regards & and ' if

(i) for each fixed C, q>" (., C) is <-relaxed [-accretive in regards first argument ;

(ii) (� (., .) + q>" (., C)) (. ) = . .

Remark 3.2. If q(D) = dD, ∀ D ∈ . and d > 0, " (., .) = " and [(D, D′) = D − D′. Then

� (., .)-q-[-mixed accretive becomes � (., .)-mixed accretive mapping, see [7].

Let us consider the following

AssumptionM1: Let� is [-cocoercive in regards& with non-negative constant ` and [-relaxed

accretive in regards ' with non-negative constant W with ` > W.

Assumption M2: Let & is U-expansive.

Assumption M3: Let [ is g-Lipschitz continuous.

Assumption M4: Let " is � (., .)-q-[-mixed accretive mapping in regards & and ' for each

fixed C ∈ .

Theorem3.3. Let assumptions"1,"2 and"4 hold goodwith ℓ = `U@−W > <, then (� (&, ')+

q>" (., C))−1 is single-valued.

Proof. Let H, I ∈ (� (&, ') + q>" (., C))−1(G) for any given G ∈ . . It is obvious that


−� (&H, 'H) + G ∈ q>" (H, C),

−� (&I, 'I) + G ∈ q>" (I, C).
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Since q>" (., C) is <-relaxed [-accretive in the first argument, we have

−<‖H − I‖@ ≤ 〈−� (&H, 'H) + G − (−� (&I, 'I) + G), z@ ([(H, I))〉

= −〈� (&H, 'H) − � (&I, 'I), z@ ([(H, I))〉

= −〈� (&H, 'H) − � (&I, 'H), z@ ([(H, I))〉

−〈� (&I, 'H) − � (&I, 'I), z@ ([(H, I))〉.

(3.1)

Since assumption "1 holds, we have

−<‖H − I‖@ ≤ −`‖&H −&I‖@ + W‖H − I‖@ .(3.2)

Since assumption "2 holds, we have

−<‖H − I‖@ ≤ −`U@ ‖H − I‖@ + W‖H − I‖@

= −(`U@ − W) ‖H − I‖@

0 ≤ −(ℓ − <) ‖H − I‖@ ≤ 0,where ℓ = `U@ − W.

Since ` > W, U > 0, it follows that ‖H−I‖ ≤ 0. We get H = I, therefore (� (&, ')+q>" (., C))−1

is single-valued.

Definition 3.4. Let assumptions "1, "2 and "4 hold good with ℓ = `U@ − W > < then the

proximal-point mapping '� (.,.)−q−[
" (.,C) : . → . is given as

'
� (.,.)−q−[
" (.,C) (D) = (� (&, ') + q>" (., C))−1(D), ∀ D ∈ . .(3.3)

The next attempt is to prove the Lipschitz continuity of the proximal-point mapping defined

by (3.3).

Theorem 3.5. Let assumptions "1-"4 hold good with ℓ = `U@ − W > < and [ is g-Lipschitz

then '� (.,.)−q−[
" (.,C) : . → . is g@−1

ℓ−< -Lipschitz continuous, that is,

‖'� (.,.)−q−[
" (.,C) (H) − '� (.,.)−q−[

" (.,C) (I)‖ ≤ g
@ − 1
ℓ − < ‖H − I‖, ∀ H, I ∈ ., and fixed C ∈ . .
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Proof. For given points H, I ∈ . , It proceed from equation (3.3) that

'
� (.,.)−q−[
" (.,C) (H) = (� (&, ') + q>" (., C))−1(H),

'
� (.,.)−q−[
" (.,C) (I) = (� (&, ') + q>" (., C))−1(I).

Let D0 = '
� (.,.)−q−[
" (.,C) (H) and D1 = '

� (.,.)−q−[
" (.,C) (I).


H − �

(
&(D0), '(D0)

)
∈ q>" (D0, C)

I − �
(
&(D1), '(D1)

)
∈ q>" (D1, C).

Since " is <-relaxed [-accretive in the first arguments, we have

〈(H − � (&(D0), '(D0))) − (I − � (&(D1), '(D1))), z@ ([(D0, D1))〉

≥ −< ‖D0 − D1‖@,

〈(H − I − � (&(D0), '(D0)) + � (&(D1), '(D1)), z@ ([(D0, D1))〉

≥ −< ‖D0 − D1‖@,

which implies

〈H − I, z@ ([(D0, D1))〉 ≥ 〈� (&(D0), '(D0)) − � (&(D1), '(D1)), z@ ([(D0, D1))〉

≥ −<‖D0 − D1‖@ .

Now, we have

‖H − I‖ ‖[(D0, D1)‖@−1 ≥ 〈H − I, [(D0, D1)〉

≥ 〈� (&(D0), '(D0)) − � (&(D1), '(D1)), z@ ([(D0, D1))〉 − < ‖D0 − D1‖@

= 〈� (&(D0), '(D0)) − � (&(D1), '(D0)), z@ ([(D0, D1))〉

+ 〈� (&(D1), '(D0)) − � (&(D1), '(D1)), z@ ([(D0, D1))〉 − < ‖D0 − D1‖@ .

Since assumption "1 holds, we have

‖H − I‖ ‖D0 − D1‖@−1 ≥ `‖&(D0) −&(D1)‖@ − W‖D0 − D1‖@ − < ‖D0 − D1‖@ .

Since assumptions "2, "3 hold and [ is g-Lipschitz continuous, we have

‖H − I‖ g@−1 ‖D0 − D1‖@−1 ≥ (`U@ − W) ‖D0 − D1‖@ − < ‖D0 − D1‖@

≥ (ℓ − <) ‖D0 − D1‖@,
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where ℓ = (`U@ − W).

Hence,

‖H − I‖ g@−1‖D0 − D1‖@−1 ≥ (ℓ − <) ‖D0 − D1‖@, i.e.

‖'� (.,.)−q−[
" (.,C) (H) − '� (.,.)−q−[

" (.,C) (I)‖ ≤ g@−1

ℓ − < ‖H − I‖, ∀ H, I ∈ . .

Hence, we get the required result.

4. An Application of � (., .)-q-[-Mixed Accretive Mapping

Here we attempt to show that � (., .)-q-[-mixed accretive mapping under acceptable assump-

tions can be used as a powerful tool to solve variational inclusion problems in Banach space.

Let (, ), � : . ( ��(. ) be themulti-valuedmappings, and let&, ', q : . → . , � : .×. → .

and [, � : . × . → . be single-valued mappings. Suppose that multi-valued mapping

" : . × . ( . be a � (., .)-q-[-mixed accretive mapping in regards &, '. We consider the

following generalized set-valued variational like inclusion problem to find D ∈ . , E ∈ ((D),

F ∈ ) (D) and C ∈ � (D) such that

0 ∈ � (E, F) + " (D, C).(4.1)

If . is real Hilbert space and " (., C) is maximal monotone operator, then the similar problem to

(4.1) studied by Huang et al. [6].

If � ≡ ) ≡ 0, ( is identity mapping and " (., .) = " (.), � (., .) = � (.), then the problem (4.1)

reduced to find D ∈ . such that

0 ∈ � (D) + " (D),(4.2)

considered by Bi et al. [2]. Now, It is understood the appropriate choice of mapping " included

in problem (4.1), gives the various variational inclusion problems which have been studied in

the recent past, for example, see [14, 15].

Lemma 4.1. Let mapping q : . → . satisfying the properties q(D + E) = q(D) + q(E) and

 4A (q) = {0}, where  4A (q) = {D ∈ . : q(D) = 0}. If (D, E, F, C), where D ∈ . , E ∈ ((D),
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F ∈ ) (D) and C ∈ � (D) is a solution of problem (4.1) if and only if (D, E, F, C) satisfies the

following relation:

D = '
� (.,.)−q−[
," (.,C) [� (&D, 'D) − q>� (E, F)] .(4.3)

Proof. Assume that D ∈ . , E ∈ ((D), F ∈ ) (D) and C ∈ � (D) satisfies the equation (4.3):

D = '
� (.,.)−q−[
," (.,.) [� (&D, 'D) − q>� (E, F)] .

By definition (3.1), we have

D = [� (&, ') + q>" (., C)]−1 [� (&D, 'D) − q>� (E, F)]

⇔ [� (&D, 'D) − q>� (E, F)] ∈ [� (&D, 'D) + q>" (D, C)]

⇔ 0 ∈ q>� (E, F) + q>" (D, C)

⇔ q−1(0) ∈ (� (E, F) + " (D, C))

⇔ 0 ∈ (� (E, F) + " (D, C)).

Algorithm 4.2. For any given I0 ∈ . , we can choose D0 ∈ . , E0 ∈ ((D0), F0 ∈ ) (D0),

C0 ∈ � (D0) and 0 < n < 1 such that sequences {D=}, {E=}, {F=} and {C=} satisfy

D=+1 = '
� (.,.)−q−[
" (.,C) (I=),

E= ∈ ((D=), ‖E= − E=+1 ‖ ≤ � (((D=), ((D=+1)) + n=+1‖D= − D=+1‖,

F= ∈ ) (D=), ‖F= − F=+1‖ ≤ � () (D=), ) (D=+1)) + n=+1‖D= − D=+1‖,

C= ∈ � (D=), ‖C= − C=+1‖ ≤ � (� (D=), � (D=+1)) + n=+1‖D= − D=+1‖,

I=+1 = � (&D=, 'D=) − q>� (E=, F=),

where = ≥ 0, and � (., .) is the Hausdorff metric on CB(. ).

Next, we find the convergence of the iterative algorithm for generalized set-valued variational

inclusion (4.1).

Theorem 4.3. Let us consider the problem (4.1) with assumptions "1-"3 hold good and

q(D + E) = q(D) + q(E) and  4A (q) = {0}. Let assume that

(i) (, ) and � are ;1, ;2 and ;3 �-Lipschitz continuous, respectively;

(ii) � (&, ') is ^1, ^2-Lipschitz continuous in regards � and �, respectively;
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(iii) q>� is is a-relaxed [-accretive in regards first component;

(iv) q>� is n1, n2-Lipschitz continuous in regards first and second component, respectively;

(v) 0 < @

√[
(^1 + ^2)@ + @a;@1 + @n1;1

[
(^1 + ^2)@−1 + g@−1;

@−1
1

]
+ 2@n@1 ;

@

1

]
<
(ℓ−<) (1−b;3)

g@−1 − n2;2;

(vi) ‖'� (.,.)−q−[
" (.,I=) (D) − '� (.,.)−q−[

" (.,I=−1) (D)‖ ≤ b‖I= − I=−1‖, ∀ I=, I=−1 ∈ ., b > 0;

Then problem (4.1) has a solution (D, E, F, C), where D ∈ ., E ∈ ((D), F ∈ ) (D) and C ∈ � (D),

and the iterative sequences {D=}, {E=}, {F=} and {C=}, generated by Algorithms 4.2 converges

strongly to (D, E, F, C).

Proof. Using Algorithms 4.2 and �-Lipschitz continuity of (, ) and �, we have

‖E= − E=−1‖ ≤ � (((D=), ((D=−1)) + n=‖D= − D=−1‖

≤ ;1 ‖D=+1 − D=‖ + n=‖D= − D=−1‖.

Similarly we have

‖E= − E=−1‖ ≤ (;1 + n=) ‖D= − D=−1‖(4.4)

‖F= − F=−1‖ ≤ (;2 + n=) ‖D= − D=−1‖(4.5)

‖C= − C=−1‖ ≤ (;3 + n=) ‖D= − D=−1‖,(4.6)

where = = 1, 2, .....

By Lipschitz continuity of proximal point mapping and condition (vi), we have

‖D=+1 − D=‖ ≤ ‖'� (.,.)−q−[" (.,C=) [� (&D=, 'D=) − q>� (E=, F=)]

−'� (.,.)−q−[
" (.,C=−1) [� (&D=−1, 'D=−1) − q>� (E=−1, F=−1)] ‖

≤ ‖'� (.,.)−q−[
" (.,C=) [� (&D=, 'D=) − q>� (E=, F=)]

−'� (.,.)−q−[
" (.,C=) [� (&D=−1, 'D=−1) − q>� (E=−1, F=−1)] ‖

+‖'� (.,.)−q−[
" (.,C=) [� (&D=−1, 'D=−1) − q>� (E=−1, F=−1)] ‖

−'� (.,.)−q−[
" (.,C=−1) [� (&D=−1, 'D=−1) − q>� (E=−1, F=−1)] ‖



� (., .)-q-[-MIXED ACCRETIVE MAPPING WITH AN APPLICATION 2337

≤ g@−1

ℓ − < ‖� (&D=, 'D=) − q>� (E=, F=) − (� (&D=−1, 'D=−1) − q>� (E=−1, F=−1))‖

+b‖I= − I=−1‖

≤ g@−1

ℓ − < ‖� (&D=, 'D=) − � (&D=−1, &D=−1) − (q>� (E=, F=) − q>� (E=−1, F=))‖

+ g
@−1

ℓ − < ‖q>� (E=−1, F=) − q>� (E=−1, F=−1)‖ + b‖I= − I=−1‖.(4.7)

Now, we compute

‖� (&D=, 'D=) − � (&D=−1, 'D=−1) − (q>� (E=, F=) − q>� (E=−1, F=))‖@

≤ ‖� (&D=, 'D=) − � (&D=−1, 'D=−1)‖@

−@〈q>� (E=, F=) − q>� (E=−1, F=), z@ ([(E=, E=−1))〉

−@〈q>� (E=, F=) − q>� (E=−1, F=),

z@ [� (&D=, 'D=) − � (&D=−1, &D=−1)] − z@ ([(E=, E=−1))〉

+2@ ‖q>� (E=, F=) − q>� (E=−1, F=)‖@

≤ ‖� (&D=, 'D=) − � (&D=−1, 'D=−1)‖@

−@〈q>� (E=, F=) − q>� (E=−1, F=), z@ ([(E=, E=−1))〉

+@‖q>� (E=, F=) − q>� (E=−1, F=)‖

×
[
‖� (&D=, 'D=) − � (&D=−1, 'D=−1)‖@−1 + ‖[(E=, E=−1)‖@−1

]
+2@ ‖q>� (E=, F=) − q>� (E=−1, F=)‖@ .(4.8)

Since � (&, ') is ^1, ^2-Lipschitz continuous in regards &, ', respectively, We have

‖� (&D=, 'D=) − � (&D=−1, 'D=−1)‖@ ≤ (^1 + ^2)@ ‖D= − D=−1‖@ .(4.9)

Since q>� (., .) is a-relaxed [-accretive, then we have

〈q>� (E=, F=) − q>� (E=−1, F=), z@ ([(E=, E=−1)〉 ≥ −a‖E= − E=−1‖

≥ −a(;1 + n=)‖D= − D=−1‖.(4.10)
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As q>� (., .) is n1-Lipschitz continuous in the first argument and using (4.4), we have

‖q>� (E=, F=) − q>� (E=−1, F=)‖ ≤ n1‖E= − E=−1‖ ≤ n1(;1 + n=)‖D= − D=−1‖.(4.11)

Similarly we have

‖q>� (E=−1, F=) − q>� (E=−1, F=−1)‖ ≤ n2(;2 + n=)‖D= − D=−1‖.(4.12)

Using Equation (4.9),(4.11) and assumption ("3), we have

‖q>� (E=, F=) − q>� (E=−1, F=)‖

×
[
‖� (&D=, 'D=) − � (&D=−1, 'D=−1)‖@−1 + ‖[(E=, E=−1)‖@−1

]
≤ n1(;1 + n=)‖D= − D=−1‖ ×

[
(^1 + ^2)@−1‖D= − D=−1‖@−1 + g@−1‖E= − E=−1‖@−1

]
≤ n1(;1 + n=)‖D= − D=−1‖ ×

[
(^1 + ^2)@−1 + g@−1(;1 + n=)@−1

]
‖D= − D=−1‖@−1

= n1(;1 + n=)
[
(^1 + ^2)@−1 + g@−1(;1 + n=)@−1

]
‖D= − D=−1‖@ .(4.13)

By using (4.9)-(4.11), (4.13) in equation (4.8), we have

‖� (&D=, 'D= − � (&D=−1, 'D=−1) − (q>� (E=, F=) − q>� (E=−1, F=))‖@

≤ (^1 + ^2)@ ‖D= − D=−1‖@ + @a(;1 + n=)@ ‖D= − D=−1‖@

+@n1(;1 + n=)
[
(^1 + ^2)@−1 + g@−1(;1 + n=)@−1

]
‖D= − D=−1‖@

+2@n@1 (;1 + n
=)@ ‖D= − D=−1‖@

‖� (&D=, 'D= − � (&D=−1, 'D=−1) − (q>� (E=, F=) − q>� (E=−1, F=))‖

≤
[
(^1 + ^2)@ + @a(;1 + n=)@ + @n1(;1 + n=)

[
(^1 + ^2)@−1 + g@−1(;1 + n=)@−1

]

+2@n@1 (;1 + n
=)@

] 1
@ ‖D= − D=−1‖.(4.14)
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Using condition (vi) and (4.5),(4.6),(4.14) in equation (4.7) becomes

‖D=+1 − D=‖ ≤
[ g@−1

ℓ − <[
(^1 + ^2)@ + @a(;1 + n=)@ + @n1(;1 + n=)

[
(^1 + ^2)@−1 + g@−1(;1 + n=)@−1

]
+2@n@1 (;1 + n

=)@
] 1
@ + n2(;2 + n=)

]
+ b (;3 + n=)

]
‖D= − D=−1‖.

We can rewrite,

‖D=+1 − D=‖ ≤ Θ(n=) ‖D= − D=−1‖, where(4.15)

Θ(n=) =
[ g@−1

ℓ − <[
@

√[
(^1 + ^2)@ + @a(;1 + n=)@ + @n1(;1 + n=)

[
(^1 + ^2)@−1 + g@−1(;1 + n=)@−1

]
+ 2@n@1 (;1 + n=)@

]
+n2(;2 + n=)

]
+ b (;3 + n=)

]
.

Since 0 < n < 1, this implies that Θ(n=) → Θ as =→∞, where

Θ =

[ g@−1

ℓ − <

[
@

√[
(^1 + ^2)@ + @a;@1 + @n1;1

[
(^1 + ^2)@−1 + g@−1;

@−1
1

]
+ 2@n@1 ;

@

1

]
+n2;2)

]
+ b;3

]
.

It is given that 0 < Θ < 1, then {D=} is a Cauchy sequence in . . As . is a Banach space then

D= → D as =→∞.

From equation (4.4)-(4.6) and Algorithm 4.2, the sequences {E=}, {F=} and {C=} are also

Cauchy sequences in . . Thus, there exist E, F and C such that E= → E, F= → F and C= → C as

=→∞. In the sequel, we will show that E ∈ ((D). Since E= ∈ ((D=), then

3 (E, ((D)) ≤ ‖E − E=‖ + 3 (E=, ((D))

≤ ‖E − E=‖ + � (((D=), ((D))

≤ ‖E − E=‖ + 1 ‖D= − D‖ → 0, as =→∞,

which implies that 3 (E, ((D)) = 0. Due to ((D) ∈ ��(. ), we have E ∈ ((D). In the same

manner, we easily show that F ∈ ) (D) and C ∈ � (D).
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By the continuity of '� (.,.)−q−[
" (.,C) , &, ', (, ) �, q>�, [ and " and Algorithms 4.2, we know

that D, E, Fand C satisfy

D = '
� (.,.)−q−[
" (.,C) [� (&D, 'D) − q>� (E, F)] .

Now using Lemma 4.1, (D, E, F, C) is a solution of the problem (4.1). This completes the proof.
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