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Abstract. In the present paper we introduce a new notion of graph cliquish functions from a topological space to a 

metric space and study its relation with other types of generalized continuity. We also give a characterization of that 

new notion of generalized continuity on a dense set of points. 
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1. INTRODUCTION AND BASIC NOTATIONS 

In 1977 Z. Grande [2] introduced the notion of 𝐹- continuity for functions from [0,1] to ℝ. Lately 

A. Zaharescu [11] called this type generalized continuity appropriately the graph continuity. K. 

Sakalava [8],[9] gave a relationship between graph continuity and quasi-continuity. A. Mikuka [3] 

in 2003 introduced the notion of graph quasi-continuity.  

 In what follows 𝑋 is a topological space and 𝑌 is a metric space with metric 𝑑. For a subset 𝐴 ⊆

𝑋,  𝑓|𝐴 denotes the restriction of a function 𝑓: 𝑋 → 𝑌 on 𝐴. If 𝐺(𝑓) denotes the graph of 𝑓: 𝑋 → 𝑌 

then the symbol 𝑐𝑙(𝐺(𝑓)) denotes the closure of 𝐺(𝑓) in the product topology of 𝑋 × 𝑌. By 𝐶(𝑓) 



2384 

PIYALI MALLICK 

we denote the set of all points at which 𝑓: 𝑋 → 𝑌 is continuous. The letters ℝ, ℚ, ℤ  stand for the 

set of all reals, rationals and integers respectively and 𝑆(𝑥, 𝑟) denotes the open sphere with centre 

𝑥 and radius  𝑟.  

  A function 𝑓: 𝑋 → 𝑌 is said to be 

- graph continuous if there exists a continuous function 𝑔: 𝑋 → 𝑌 such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) [7]. 

-graph quasi-continuous if there exists a quasi-continuous function 𝑔: 𝑋 → 𝑌 such that 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓))[3]. 

-quasi-continuous at a point 𝑥0 ∈ 𝑋 if for each 𝜖 > 0 and each open neighbourhood 𝑈 of 𝑥0, there 

exists a non-empty open set 𝐺 ⊆ 𝑈 such that 𝑑(𝑓(𝑥), 𝑓(𝑥0)) < 𝜖 for each 𝑥 ∈ 𝐺 [4]. 

-cliquish at a point 𝑥0 ∈ 𝑋 if for each 𝜖 > 0 and each open neighbourhood 𝑈 of 𝑥0, there exists a 

non-empty open set 𝐺 ⊆ 𝑈 such that 𝑑(𝑓(𝑥), 𝑓(𝑦)) < 𝜖 whenever 𝑥, 𝑦 ∈ 𝐺 [10]. 

𝑓 is called quasi-continuous (cliquish) if it has this property at each point. 

Definition 1.1: A function 𝑓: 𝑋 → 𝑌 is said to be graph cliquish if there exists a cliquish function 

𝑔: 𝑋 → 𝑌 such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). 

Evidently every cliquish function is graph cliquish. Also, it follows that 

Remark 1.1: If a function 𝑓: 𝑋 → 𝑌 is graph cliquish with closed graph then 𝑓 is cliquish. 

 

2. THE GRAPH CLIQUISH AND OTHER CONTINUITY TYPES 

The following implications follow from the above definitions: 

     Continuity   ⟹   quasi-continuity     ⇒     cliquish 

             ⇓                                 ⇓                         ⇓ 

Graph continuity  ⇒ graph quasi-continuity ⇒graph cliquish 

And all of these are not invertible. 

Example 2.1: Consider the real line ℝ. Let 𝑓: ℝ → ℝ be defined by 

 𝑓(𝑥) = {
1,   if 𝑥 ∈  ℚ

0,    otherwise
. Here 𝑓 is not cliquish but graph continuous. 

Example 2.2:  Consider the real line ℝ. Let 𝑓: ℝ → ℝ be defined by 



2385 

ON GRAPH CLIQUISH FUNCTIONS 

𝑓(𝑥) = {
1,                     𝑥 ∈ ℤ         
0,         𝑥 ∈ ℚ ∩ (ℝ ∖ ℤ)
2,                  otherwise

 

Here 𝑓 is graph cliquish but not cliquish. Also 𝑓 is not graph quasi-continuous. 

 

3. RESULTS 

The following results are known: 

Result 3.1: If 𝑓: 𝑋 → 𝑌 is cliquish then 𝑋 ∖ 𝐶(𝑓) is of first category [5]. Also, we know that  

Result 3.2: In a Baire space the complement of every set of first category is dense [6].  

Using these two results it easily follows that  

Result 3.3:  If 𝑋 is a Baire space and if 𝑓: 𝑋 → 𝑌 is cliquish then 𝐶(𝑓) is dense in 𝑋. 

Now we can formulate the following properties of a graph cliquish function. 

Theorem 3.1: Let 𝑓: 𝑋 → 𝑌  be graph cliquish. Then for any 𝜀 > 0  the set 𝐴(𝑓, 𝑔, 𝜀) =

{𝑥 ∈ 𝑋 ∶     𝑑(𝑓(𝑥), 𝑔(𝑥)) < 𝜀} is dense in 𝑋, for any cliquish function 𝑔: 𝑋 → 𝑌  with 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)). 

Proof: Let 𝜀 > 0  and 𝑈 be a non-empty open set in 𝑋. Let 𝑥0 ∈ 𝑈. Since 𝑔 is cliquish at 𝑥0, there 

exists a non-empty open set 𝑈1 ⊆ 𝑈 such that 𝑑(𝑔(𝑥), 𝑔(𝑦)) <
𝜀

2
  whenever 𝑥, 𝑦 ∈ 𝑈1. 

Let 𝑥1 ∈ 𝑈1. Then (𝑥1, 𝑔(𝑥1)) ∈ 𝑐𝑙(𝐺(𝑓)). So, [𝑈1 × 𝑆(𝑔(𝑥1),
𝜀

2
)] ⋂𝐺(𝑓) ≠ 𝜑. 

Choose 𝑥2 ∈ 𝑈1 such that 𝑑(𝑓(𝑥2), 𝑔(𝑥1)) <
𝜀

2
. 

Now, 𝑑(𝑓(𝑥2), 𝑔(𝑥2)) ≤ 𝑑(𝑓(𝑥2), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥2)) < 𝜀 

So, 𝑥2 ∈ 𝐴(𝑓, 𝑔, 𝜀). 

Hence 𝐴(𝑓, 𝑔, 𝜀) is dense in 𝑋. 

Remark 3.1: Let 𝑓: 𝑋 → 𝑌 be given and 𝑔: 𝑋 → 𝑌 be a cliquish function such that for any 𝜀 > 0, 

the set 𝐴(𝑓, 𝑔, 𝜀) is dense in 𝑋. Then it is not necessarily true that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). 

Example 3.1: Consider ℝ  with the topology 𝜏 = {𝐴 ⊆ ℝ: 0 ∈ 𝐴} ∪ {𝜑}  and ℝ  with the usual 

metric 𝑑. 
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The functions 𝑓, 𝑔: (ℝ, 𝜏) → (ℝ, 𝑑) are defined as  

  𝑓(𝑥) = 0; ∀ 𝑥 ∈ ℝ and 𝑔(𝑥) = { 
0,             𝑥 = 0
1,   otherwise

 

𝑔 is cliquish. Now, 𝐴(𝑓, 𝑔, 𝜀)={
{0},   0 < 𝜀 ≤ 1
ℝ,            𝜀 > 1

 

𝐴(𝑓, 𝑔, 𝜀) is dense in (ℝ, 𝜏) for any 𝜀 > 0. But, 𝐺(𝑔) ⊈ 𝑐𝑙(𝐺(𝑓)). 

Remark 3.2: In example 3.1, 𝐶(𝑔) = {0} and 𝐺(𝑔|𝑐(𝑔)) ⊆ 𝑐𝑙(𝐺(𝑓|𝑐(𝑔)) 

Result 3.4: Let 𝐴(⊆ 𝑋) be dense in 𝑋. If 𝑓: 𝑋 → 𝑌 is cliquish then 𝑓|𝐴 is also cliquish. 

Proof: Let 𝑥0 ∈ 𝐴 , 𝑈 be an open neighbourhood of 𝑥0 in 𝐴 and 𝜀 > 0. 

Now, 𝑈 = 𝐴 ∩ 𝑈1, 𝑈1 is open in 𝑋. 

Since 𝑓  is cliquish at 𝑥0 , ∃  a non-empty open set 𝐺(⊆ 𝑈1)  in 𝑋  such that 𝑑(𝑓(𝑥), 𝑓(𝑦)) < 𝜖 

whenever 𝑥, 𝑦 ∈ 𝐺. 

Since 𝐴  is dense in 𝑋 , 𝐴 ∩ 𝐺 ≠ 𝜑 . Also 𝐴 ∩ 𝐺  is open in 𝐴  and 𝑑((𝑓|𝐴)(𝑥), (𝑓|𝐴)(𝑦)) < 𝜀 

whenever 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐺.  

So, 𝑓|𝐴 is cliquish. 

Now we can formulate the following characterization of graph cliquish function on a dense set.  

Theorem 3.2:  Let 𝑋 be a Baire space and 𝑓: 𝑋 → 𝑌 be given. For a cliquish function 𝑔: 𝑋 → 𝑌  

the following conditions are equivalent: 

a) 𝐺(𝑔|𝐶(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓|𝐶(𝑔)) 

b) For any 𝜀 > 0, 𝐴(𝑓|𝐶(𝑔),  𝑔|𝐶(𝑔), 𝜀) is dense in 𝑋. 

Proof:  

a)⇒ 𝒃): 

It follows from the Result 3.4 and Theorem 3.1.  

b)⇒ 𝒂):  

Let 𝑥0 ∈ 𝐶(𝑔) , 𝑈  be an open neighbourhood of 𝑥0  and 𝜀 > 0.  It is sufficient to show that 

[𝑈 × 𝑆(𝑔(𝑥0), 𝜀)] ∩ 𝐺(𝑓|𝐶(𝑔)) ≠ 𝜑. 



2387 

ON GRAPH CLIQUISH FUNCTIONS 

Since 𝑔 is continuous at 𝑥0, there exists an open neighbourhood 𝑈1 of 𝑥0 such that 𝑈1 ⊆ 𝑈 and 

𝑔(𝑈1) ⊆ 𝑆(𝑔(𝑥0),
 𝜀

2
). 

Now 𝐴 (𝑓|𝐶(𝑔), 𝑔|𝐶(𝑔),
𝜀

2
) = {𝑥 ∈ 𝐶(𝑔): 𝑑(𝑓(𝑥), 𝑔(𝑥)) <

𝜀

2
} is dense in 𝑋. 

So, 𝑈1 ∩ 𝐴 (𝑓|𝐶(𝑔), 𝑔|𝐶(𝑔),
𝜀

2
) ≠ 𝜑. 

Choose 𝑥1 ∈ 𝑈1 ∩ 𝐶(𝑔) such that 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) <
𝜀

2
. 

Now, 𝑑(𝑓(𝑥1), 𝑔(𝑥0)) ≤ 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥0)) < 𝜀. 

So, (𝑥1, 𝑓(𝑥1)) ∈ [𝑈 × 𝑆(𝑔(𝑥0), 𝜀)] ∩ 𝐺(𝑓|𝐶(𝑔)). 

Theorem 3.3: Let 𝑓: 𝑋 → 𝑌  be cliquish. Then for any 𝜀 > 0  the set 𝐵(𝑓, 𝑔, 𝜀) = {𝑥 ∈

𝑋: 𝑑(𝑓(𝑥), 𝑔(𝑥)) ≥ 𝜀} is nowhere dense in 𝑋 for any cliquish function 𝑔: 𝑋 → 𝑌 with 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)). 

Proof:  Let 𝜀 > 0 and 𝑈 be a non-empty open set in 𝑋.  

Let 𝑥0 ∈ 𝑈. Since 𝑔 is cliquish at 𝑥0, ∃ a non-empty open set 𝑈1 ⊆ 𝑈 such that 𝑑(𝑔(𝑥), 𝑔(𝑦)) <

𝜖

3
 whenever 𝑥, 𝑦 ∈ 𝑈1. 

Let 𝑥1 ∈ 𝑈1. Since 𝑓 is cliquish at 𝑥1, ∃ a non-empty open set 𝑈2 ⊆ 𝑈1 such that 𝑑(𝑓(𝑥), 𝑓(𝑦)) <

𝜖

3
  whenever 𝑥, 𝑦 ∈ 𝑈2. 

By Theorem 3.1,  𝑈2 ∩ 𝐴(𝑓, 𝑔,
𝜀

3
) ≠ 𝜑 . 

Choose 𝑥2 ∈ 𝑈2 such that 𝑑(𝑓(𝑥2), 𝑔(𝑥2)) <
𝜖

3
  .  

Let 𝑥3 ∈ 𝑈2. 

Then, 𝑑(𝑓(𝑥3), 𝑔(𝑥3)) ≤ 𝑑(𝑓(𝑥3), 𝑓(𝑥2)) + 𝑑(𝑓(𝑥2), 𝑔(𝑥2)) + 𝑑(𝑔(𝑥2), 𝑔(𝑥3)) 

                                           <
𝜖

3
 +

𝜖

3
 +

𝜖

3
 = 𝜀   

So, 𝑥3 ∈ 𝑋\𝐵(𝑓, 𝑔, 𝜀).  

Hence, 𝑈2 ∩ 𝐵(𝑓, 𝑔, 𝜀)=𝜑. 

Thus, 𝐵(𝑓, 𝑔, 𝜀) is nowhere dense in 𝑋. 
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Corollary 3.1: If 𝑓: 𝑋 → 𝑌 , 𝑔: 𝑋 → 𝑌  are cliquish functions such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓))  then 

𝐴(𝑓, 𝑔, 𝜀) is semi-open for any 𝜀 > 0.  

It follows from the result that the complement of a no-where dense set is semi-open [1]. 

Theorem 3.4: 

Let 𝑓: 𝑋 → 𝑌 be such that the set 𝐵(𝑓, 𝑔, 𝜀) is nowhere dense for any 𝜀 > 0 and for any cliquish 

function 𝑔: 𝑋 → 𝑌. Then 𝑓 is cliquish on 𝑋.  

Proof: Let  𝑥0 ∈ 𝑋, 𝑈 be an open neighbourhood of 𝑥0 and 𝜀 > 0. 

Since 𝑔: 𝑋 → 𝑌  is cliquish at 𝑥0 , there exists a non-empty open set 𝑈1 ⊆ 𝑈  such that 

𝑑(𝑔(𝑥), 𝑔(𝑦)) <
𝜖

3
 for 𝑥, 𝑦 ∈ 𝑈1. 

As,  𝐵(𝑓, 𝑔,
𝜀

3
) is nowhere dense, we can find a non-empty open set 𝑈2 ⊆ 𝑈1 such that 

 𝑈2 ∩ 𝐵 (𝑓, 𝑔,
𝜀

3
) = 𝜑 

Then 𝑑(𝑓(𝑥), 𝑔(𝑥)) <
𝜖

3
 for 𝑥 ∈ 𝑈2. 

Let 𝑥1, 𝑥2 ∈ 𝑈2.  

Then 𝑑(𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥2)) + 𝑑(𝑔(𝑥2), 𝑓(𝑥2)) < 𝜀. 

Then 𝑓 is cliquish. 

Theorem 3.5: Let 𝑓: 𝑋 → 𝑌 and  𝑔: 𝑋 → 𝑌 be two cliquish functions such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). 

Then the set {𝑥 ∈ 𝑋: 𝑓(𝑥) ≠ 𝑔(𝑥)} is of first category.  

Proof:  

Now,  {𝑥 ∈ 𝑋: 𝑓(𝑥) ≠ 𝑔(𝑥)}=⋃ 𝐵(𝑓, 𝑔,
1

𝑛
)∞

𝑛=1 . The sets 𝐵(𝑓, 𝑔,
1

𝑛
) is nowhere dense by Theorem 

3.3 and so the proof is completed.  

Corollary 3.2: Let 𝑋 be a Baire space. If 𝑓: 𝑋 → 𝑌 and  𝑔: 𝑋 → 𝑌 are cliquish functions such that 

𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) then the set  {𝑥 ∈ 𝑋: 𝑓(𝑥) = 𝑔(𝑥)} is dense in 𝑋.  

Now, 𝑊 = {𝑥 ∈ 𝑋: 𝑓(𝑥) = 𝑔(𝑥)} = X \ {𝑥 ∈ 𝑋: 𝑓(𝑥) ≠ 𝑔(𝑥)} is residual. Since 𝑋  is a Baire 

space, 𝑊 is dense in 𝑋. 
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