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1. INTRODUCTION 

The concept of topological vector spaces was introduced by Kolmogroff in 1934 [19]. Its 

properties and characterizations were studied and investigated by many different mathematicians. 

Due to its large number of exciting and interesting properties and characterizations, it has been 

used in different advanced branches of mathematics like fixed point theory, operator theory, 

variational inequalities, differential calculus, etc.  The researchers not only make use of topological 

vector spaces in many other fields to develop new concepts but also stretch and extend this notion 

in every possible way to make the field of study a more convenient and understandable. In 2008, 

M. Khan, T. Nori, and M. Hussain [16] introduced s g closed
 sets and s g open

 sets in topological 

spaces and showed that the family of all  s g open
  subsets of a topological space ( )X ,  forms a 
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topology on X  which is finer than .  Also, they studied some characterizations and basic 

properties of s g open
  sets and s g closed

  sets. They also used these sets to define and study a new 

class of functions, namely, s g continuous
 functions as well as  s g Normal

  spaces. We introduce 

s g irresolute
  topological vector spaces by using s g open

  sets and investigate several general properties and 

characterizations of this notion of s g irresolute
  topological vector space.  We also give several 

characterizations of s g Hausdorff
  spaces. Furthermore, we show that the extreme point of the 

convex subset of s g irresolute
  topological vector space X lies in the boundary spaces.  

 

2. s*g-OPEN SETS IN TOPOLOGICAL SPACES 

The  ( )X ,  and  ( )Y ,  ( )or simply, X and Y  denote topological spaces on which no separation 

axioms are assumed unless explicitly stated.  A subset A  of a topological space ( )X ,  is said to be 

open if A .   A subset A  of a topological space X  is said to be closed if the set cA X A= −  is open.  

The interior of a subset A  of a topological space X  is defined as the union of all open sets 

contained in A.  It is denoted by ( )Int A .  The closure of a subset A  of a topological space X  is 

defined as the intersection of all closed sets containing A. It is denoted by ( )Cl A .  

We start recalling the following definitions and results from  16 , which are necessary for this study 

in the sequel. 

Definition 2.1.  A subset A  of a topological space ( )X ,  is said to be semi open  set if 

( )A Cl Int A .     ( )SO X  represents the collection of all semi open sets in X .  

Definition 2.2.  A subset A  of a topological space ( )X ,  is said to be  semi closed  set  if X A−  is 

semi open. ( )SC X  represents the collection of all semi closed  sets in X .  

Definition 2.3.  A subset A  of a topological space ( )X ,  is said to be  open  set if 

( )( )A Int Cl Int A .     

Definition 2.4.  A subset A  of a topological space ( )X ,  is said to be  closed  set if X A− `is 

open.   

Definition 2.5. Let ( )X ,  be a topological space. A subset A  of X  is said to be generalized closed 

(briefly, g closed ) if ( )Cl A U  whenever A U and U is open in X . The complement of a 
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g closed set is g open.  

Definition 2.6. Let ( )X ,  be a topological space. A subset A  of X  is said to be generalized 

semi closed  (briefly, gs closed ) if ( )sCl A U  whenever A U and U is open in X .  The 

complement of a gs closed set is gs open.   

Definition 2.7.  Let ( )X ,  be a topological space. A subset A  of X  is said to be generalized 

closed  (briefly, g closed ) if  ( )Cl A U   whenever A U and U is open  in X .  The 

complement of a g closed set is g open.   

Definition 2.8. Let ( )X ,  be a topological space. A subset A of X  is said to be s g closed
   if  

( )Cl A G  whenever A G and G  is semi open  in X .  The collection of all s g closed
  subsets of X  

is denoted by ( )S GC X .  

Definition 2.9.  Let ( )X ,  be a topological space and A X.  Then the s g closure
  of A, denoted by 

( )s g Cl A
  is the intersection of all s g closed

  subsets of X  which contain A.   

Definition 2.10. Let ( )X ,  be a topological space. A subset A  of X  is said to be s g open
  if  X A−  

is  s g closed ,
  or equivalently, if ( )G Int A  whenever G A  and G  is semi closed  in X .  The 

collection of all s g open
  subsets of  X  is denoted by ( )S GO X .   

Definition 2.11.  Let ( )X ,  be a topological space and A X.  Then the s g interior
  of A, denoted by 

( )s g Int A
  is the union of all s g open

  subsets of X which are contained in A.   

Definition 2.12.  23  A subset A  of a topological space ( )X ,  is said to be: 

( )i  An s g open 
   set if ( )( )A s g Int Cl s g Int A .  

 
   

( )ii  A pre s g open
   set if ( )A s g Int Cl A .     

( )iii  A b s g open
   set if ( ) ( )A s g Int Cl A Cl s g Int A .          

( )iv  A s g open 
   set if ( )( )A Cl s g Int Cl A .     

Theorem 2.13.  The union of two s g closed
  sets (and hence the finite union of s g closed

 sets) in 

a topological space ( )X ,  is s g closed.
  

Proof .  Let A and B  be any two s g closed
  sets in a topological space ( )X , .  Let G be a 

semi open set containing A B.  Then ( )Cl A G  and ( )Cl B G  implies that ( )Cl A B G.  This 
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proves that A B  is s g closed.
  

Theorem 2.14.  An arbitrary intersection of  s g closed
  sets in a topological space X is s g closed.

  

Proof .  Theorem 3.12 in  16 .   

 Corollary 2.15.  For any space ( )X , ,  ( )S GO X  is a topology on X .  

Remarks 2.16. ( )1 We summarize the fundamental relationships between several types of 

generalized closed sets in the following diagram. None of the implications is reversible. 

closed s g closed g closed

closed g closed gs closed 

⎯⎯→ ⎯⎯→

 

⎯⎯→ ⎯⎯→

 

  

 

( )2  The following diagram represents the fundamental relationships between several types of open 

sets and s g open
  sets. None of the implications is reversible. 

open open pre open b open open

pre bs g

s g open s g open s g open s g openopen

 

 

   

⎯⎯→ − ⎯⎯→ − ⎯⎯→ − ⎯⎯→ −

    

− − − −
⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→



   

 

Definition 2.17.  Let ( )X ,  be a topological space and let x X .  A subset A of X  is said  to be 

s g neighborhood
  of x  if there exists an s g open

  set G  such that x G A.     

The set of all  s g neighborhoods
  of x X  is called s g neighborhood

  system at x  and is denoted  by  

( )  s g N x A X : A is s g neighborhood of x . =    

Remark 2.18.  Every neighborhood A  of x X is s g neighborhood
  of x.  But in general, an 

s g neighborhood
  A  of x X need not be a neighborhood of x  in X .   

Theorem 2.19.   Let ( )X ,  be a topological space and A,B X.  Then the following assertions are 

true. 

( )1 ( )s g Int X X =  and ( )s g Int .  =    

( )2 ( ) ( )Int A s g Int A A.   

( )3 ( ) ( )A s g Cl A Cl A .   

( )4  If B is any s g open
  set contained in A,  then ( )B s g Int A .    
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( )5 A  is s g closed
  if and only if ( )s g Cl A A. =  

( )6  If A B,  then ( ) ( )s g Int A s g Int B .    

( )7 ( ) ( )s g Int s g Int A s g Int A .    =     

( )8  A  is s g open
 if and only if ( )s g Int A A. =  

( )9  ( )s g Cl X X =  and ( )s g Cl .  =          

( )10  If B is any s g closed
  set containing A,  then ( )s g Cl A B.   

( )11  If A B,  then ( ) ( )s g Cl A s g Cl B .    

( )12 ( ) ( )s g Cl s g Cl A s g Cl A .    =     

( )13  ( ) ( ) ( )s g Int A B s g Int A s g Int B  =   and ( ) ( ) ( )s g Cl A B s g Cl A s g Cl B .  =     

( )14 ( ) ( )X s g Int A s g Cl X A . − = −   

( )15 ( ) ( )X s g Cl A s g Int X A . − = −   

( )16  ( )x s g Cl A   if and only if for every s g open
  set U  containing x,  U A .   

( )17  ( )x s g Int A   if and only if there is an s g open
  set U  in X  such that x U A.      

( )18  ( ) ( )s g Cl U s g Cl U  

 

 
   and ( ) ( )s g Int U s g Int U .  

 

 
   

Definition 2.20  A mapping ( ) ( )f : X , Y , →  is called s g irresolute
  at a point x X  if for all 

s g open
  subsets V  in Y containing ( )f x ,  there is an s g open

  subset U of X such that x U  and

( )f U  is a subset of  V . The function f  will be called s g irresolute
  if f  is s g irresolute

  at each 

point x X .   

Theorem 2.21.   Let ( ) ( )f : X , Y , →  be a function. Then the following statements are equivalent.  

( )1  f  is s g irresolute.
  

( )2  For each x X and each s g neighborhood
 V  of ( )f x  in Y ,  there is an s g neighborhood

  U  of  

x  such that  ( )f U V.  

( )3  The inverse image of every s g closed
 subset of Y is an s g closed

  subset of X .  

( )4   The inverse image of every s g open
 subset of Y is an s g open

  subset of X . 

Definition 2.22. A function ( ) ( )f : X , Y , →  is called s g continuous
  if ( )1f V−  is s g open

 set in X

for every open set V in Y .  
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Proposition 2.23.  A function ( ) ( )f : X , Y , → is called s g continuous
 if and only if ( )1f V−  is 

s g closed
  set in X for every closed set V in Y .  

Definition 2.24.  A function ( ) ( )f : X , Y , → is called Pre s g open
   if  and only if  the image set 

( )f U  is s g open
  set in Y  for every s g open

  set U in X . 

Proposition 2.25.  A bijection function ( ) ( )f : X , Y , → is called s g homeomorphism
  if f  is  

pre s g open
   and s g irreseolute.

   

Theorem 2.26.  Let ( )X ,  be a topological space. Then the family ( )S GO X ,  of all s g open


subsets of X  forms a topology on X . 

Proposition 2.27.  A subset A  of a topological space ( )X ,  is s g open
  if and only if it is an 

s g neighborhood
  of each of its points.  

Proof .  :  If A  is s g open
  in X , then  x A A   for each x A.  Thus A  is an s g neighborhood

  

of each of its points.   

Conversely, suppose that A  is an s g neighborhood
  of each of its points. Then for each x A,  there 

exists an s g open
  set 

xU  in X  such that 
xx U A.   Hence xx A

U A.


  Since xx A
A U ,


  

therefore xx A
A U .


= Thus A  is an s g open

  set in X ,  since it is a union of s g open
 sets. 

 

3. PROPERTIES OF s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES 

In this section, we define and investigate some basic properties of s g irresolute
  topological vector 

spaces. 

Definition 3.1.  A topological space ( )( )K
X ,  is called s g irresolute

  topological vector space 

( )s gITVS  whenever the following conditions are satisfied. 

( )1  for each x,y X  and for each s g open
  neighborhood W  of +x y  in X ,  there exist s g open

  

neighborhoods  U  and  V  in X  of x  and y  respectively, such that U V W.+   

( )2  for each x X ,  K  and for each s g open
  neighborhood  W  of x  in X , there exist s g open

  

neighborhoods U of   in K  and V of x  in X , such that U.V W.  

Theorem 3.2.   Let ( )( )K
X ,  be an s g irresolute

  topological vector space. Then the following 

assertions are true. 
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( )1  The (left) right translation mapping  
xT : X X→  defined by ( )xT y y x;= + for all x,y X ,  is 

s g irresolute.
  

( )2  The multiplication mapping M : X X , →  defined by ( )M x x, =  for all x X , is s g irresolute.
  

Proof .  ( )1  Let W  be an s g open
  neighborhood of ( )xT y x y.= +  Then by definition, there exist 

s g open
  neighborhoods U  and V in X  containing y  and x  respectively, such that U V W.+   

This gives that ( )xT U U x U V W.= +  +   This proves that, 
xT : X X→  is an s g irresolute

  mapping.    

( )2  Let x X ,  K.  Then ( )M x x. =  Let W  be any s g open
  neighborhood  of x.  Then by 

definition of s gITVS,  there exist  s g open
  neighborhoods U  in K  of   and V in X of x,  such 

that U.V W.  This gives that ( )M V V U.V W. =    This proves that M : X X →  is an 

s g irresolute
  mapping. 

Theorem 3.3.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space.  Let ( )A S GO X .  Then the 

following statements are true. 

( )1  ( )x A S GO X ,+   for every x X .  

( )2  ( )A S GO X ,   for every −non zero  scalar K.  

Proof .  ( )1  Let  +y x A. Then = +y x a  for some a A. By definition of s g irresolute
  topological 

vector spaces, there exist s g open
  sets U  and V  in X  containing x−  and y  respectively such 

that U V A.+   This gives x V U V A.− +  +   This implies y V x A.  +  Therefore 

( )y s g Int x A . +  Hence, ( )x A s g Int x A .+ = +  This proves that +x A  is s g open
  in X .     

( )2  Let x A.  Then =x a  for some a A.  Thus 
1

a x A.


=   By definition of s g irresolute
  

topological vector spaces, there exist s g open
  sets U  in K  containing 

1


 and V  in X  containing 

x  such that U.V A.  This implies that 
1 1

a x V U .V A.
 

=     Hence x V A.  Thus we obtain 

( )x s g Int A .   Therefore, it follows that ( )A s g Int A .    Hence, ( )A s g Int A . =   This shows 

that  ( )A S GO X .   

Corollary 3.4. Let ( )( )K
X ,  be an s g irresolute

  topological vector space. Let A  be an s g open
  

subset of X . Then the following statements are true.  
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( )1  ( )x A s g Cl s g Int x A  +  +    for each x X .  

( )2  ( )A s g Cl s g Int A        for any non-zero scalar .  

Theorem 3.5.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space. Let  ( )A S GO X  and B  be 

any subset of X . Then prove that ( )A B S GO X .+   

Proof.  Suppose  ( )A S GO X  and B X.  Then, for each b B  and by Theorem 3.3 (1), we have 

( )A b S GO X .+   Then  A B A b : b B+ = +   is a union of s g open
  sets. Since arbitrary union of 

s g open
  sets is s g open,

  therefore A B+  is s g open
  in X .  

Corollary 3.6.  Suppose ( )( )K
X ,  is an s g irresolute

  topological vector space and let ( )A S GO X .  

Then the set ( )
1n

U nA


=
=  is s g open

  in X . 

Theorem 3.7.  Let ( )( )K
X ,  be an s g irresolute

 topological vector space. Let A X.  Then the 

following statements are true. 

( )1  ( ) ( )s g Int x A x s g Int A , + = +   for any x X .  

( )2  ( ) ( )s g Int A s g Int A ,   =     for any non-zero scalar K.  

Proof . ( )1  By ( )Theorem 3.3 1 ,  ( )x s g Int A+   is s g open.
  Therefore ( )x s g Int A x A+  +  implies 

( ) ( )x s g Int A s g Int x A . +  +   Now let ( )z s g Int x A . +  Then = +z x y  for some y A.  By 

definition of s gITVS,  there exist s g open
  sets U  and V  in X  containing x  and y  respectively, 

such that ( )U V s g Int x A .+  +  This gives that ( )z x y x V s g Int x A x A.= +  +  +  +  Therefore it follows 

that ( ) ( )V x s g Int x A x x A A. − + +  − + + =  Since V is s g open,
  then ( )V s g Int A  and therefore 

( )y s g Int A .   Thus ( )x z s g Int A .− +   Hence ( )z x s g Int A . +  Therefore, it follows that 

( ) ( )s g Int x A x s g Int A . +  +   Consequently, we conclude that ( ) ( )s g Int x A x s g Int A . + = +   

( )2  By ( )Theorem 3.3 2 ,  ( )s g Int A     is s g open.
  Thus ( )s g Int A A      implies that 

( ) ( )s g Int A s g Int A .        Next, if ( )y s g Int A ,   then =y x  for some x A.  By definition of  

s gITVS,  there exist s g open
  sets  U of   in K and V  of x  in X  such that ( )U.V s g Int A .   

Therefore, ( )y x V U.V s g Int A A.   =      This implies that x V A.   Since V  is s g open.
  

Thus ( )x s g Int A .   Consequently, ( )y x s g Int A .   =     Therefore we obtain 



2791 

s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES 

( ) ( )s g Int A s g Int A .        Hence we conclude that  ( ) ( )s g Int A s g Int A .   =      

Theorem 3.8.  Let 
( )( )K

X ,  be an s g irresolute
 topological vector space.  Let A,B X.  Then   

( ) ( ) ( )s g Int A s g Int B s g Int A B .  +  +    

Proof .  We know that ( )s g Int A A   and ( )s g Int B B.   Hence we obtain  

( ) ( )s g Int A s g Int B A B. +  +   By Theorem 3.5, ( ) ( )s g Int A s g Int B +   is s g open.
  Therefore we 

have ( ) ( ) ( ) ( ) ( )s g Int A s g Int B s g Int s g Int A s g Int B s g Int A B .      + = +  +       Thus we get 

( ) ( ) ( )s g Int A s g Int B s g Int A B .  +  +    

Theorem 3.9.  Let F  be any s g closed
  subset of an s g irresolute

  topological vector space X . Then 

the following statements are true. 

( )1  ( )x F S GC X ,+   for every x X .    

( )2  ( )F S GC X ,   for each non – zero scalar K.  

Proof.  ( )1  Suppose that ( )y s g Cl x F . +  Consider z x y= − +  and let W  be any s g open
  set in X  

containing z.  Then there exist s g open
  sets U  and V  in X  such that x U,−  y V  and 

U V W.+   Since ( )y s g Cl x F , +  ( )x F V .+   So, there is an element ( )a x F V. +  Thus 

 +a x F  and a V.  Hence x a F− +   and x a U V .− +  +  Therefore ( )x a F U V F W.− +  +   

Thus F W .  Therefore ( )z s g Cl F F. =  Hence y x F. +  Thus we conclude that 

( )x F s g Cl x F .+ = +  This proves that +x F  is s g closed
  set in X . 

( )2  Assume that ( )x s g Cl F .   Let W  be any s g open
  neighborhood of 

1
y x


=  in X .  Since X  

is s gITVS,  there exist s g open
  sets U  in K  containing 

1


 and V  in X  containing x  such that 

U.V W.  By hypothesis, ( )F V .   Therefore, there is an element ( )a F V.  Thus a F  and 

a V.  Hence 
1

a F


  and 
1 1

a V U .V W .
 

    Therefore F W .  Hence ( )y s g Cl F F. =  Thus 

x F  and thereby, ( )F s g Cl F . =   Hence ( )F S GC X .   

Corollary 3.10.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space and let A X.  Then 

( ) ( )s g Cl x s g Cl A x s g Cl A   + = +     for each x X .    

Theorem 3.11.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space and S  be a subspace of 
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X . If S  contains a −non empty  s g open
  subset of X , then S  is s g open

  in X .     

Proof .  Suppose U  is a −non empty  s g open
  subset of X  such that U S.  By ( )Theorem 3.3 1 ,  for 

any y S ,  U y+  is an s g open
  subset of X .  Since S  is a subspace of X ,  so also we have 

U y S+   for any y S , Thus  S U y : y S= +   is s g open
  in X  being a union of s g open

  sets.   

Theorem 3.12.  Let A  be any subset of an s g irresolute
  topological vector space X .   Then the 

following statements are true. 

( )1  ( ) ( )x s g Cl A s g Cl x A , + = +   for any x X . 

( )2  ( ) ( )s g Cl A s g Cl A ,   =     for any non-zero scalar .   

Proof .  ( )1  By applying ( )Theorem 3.9 1 ,  ( )x s g Cl A+   is s g closed.
  Hence x A+  ( )x s g Cl A+   

implies ( ) ( )s g Cl x A x s g Cl A . +  +   For the reverse inclusion, let ( )z x s g Cl A . +   Then = +z x y, 

for some ( )y s g Cl A .   Let W  be any s g open
  neighborhood of z  in X .  Then, there exist 

s g open
  neighborhoods U  and V  of x  and y  respectively in X  such that U V W.+   Since 

( )y s g Cl A ,   A V .  Consider a A V .  Then ( ) ( ) ( )x a x A U V x A W.+  + +  +   Therefore 

we have  ( )x A W .+   Consequently, ( )z s g Cl x A . +  Thus ( )x s g Cl A+   ( )s g Cl x A . +  

Hence, ( ) ( )x s g Cl A s g Cl x A . + = +    

( )2  By ( )Theorem 3.9 2 , ( )s g Cl A     is s g closed.
  Therefore ( )A s g Cl A       implies that 

( ) ( )s g Cl A s g Cl A .        Next, let ( )x s g Cl A   and let W  be any s g open
  neighborhood of  

=z x  in X .  Then we get s g open
  sets U  in K  containing   and V  in X  containing x  such 

that U .V W .  Since ( )x s g Cl A ,   there is an element a A V  and thus 

( ) ( ) ( ) ( ) ( )y a A V A UV A W.    =     Hence ( )A W .  Therefore it follows that 

( )z x s g Cl A . =    Thus  ( ) ( )s g Cl A s g Cl A .        Hence the assertion follows.  

Theorem 3.13.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space. Let A  and B  be subsets 

of X .  Then prove that ( ) ( ) ( )s g Cl A s g Cl B s g Cl A B .  +  +      

Proof .  Let ( )x s g Cl A   and ( )y s g Cl B .   Let W  be an s g open
  neighborhood of +x y.  Then 

there exist s g open
  neighborhoods U and V  of x  and y  respectively, such that U V W.+    

Since, ( )x s g Cl A ,   ( )y s g Cl B ,   there are a A U  and b B V .  Then, 



2793 

s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES 

( ) ( ) ( )a b A B U V A B W.+  + +  + Thus we have ( )A B W .+   This implies that

( )x y s g Cl A B .+  +  Hence eventually  we obtain ( ) ( ) ( )s g Cl A s g Cl B s g Cl A B .  +  +    

Theorem 3.14.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space. For given y X  and K

with 0 ,  each translation mapping yT : X X→  defined by ( )yT x x y= +  and multiplication 

mapping M : X X →  defined by ( )M x x, =  where x X , is s g homeomorphism
  onto itself. 

Proof .  First, we show that yT : X X→  is s g homeomorphism.
  It is obviously bijective. By Theorem 

3.2 (1), yT  is s g irresolute.
  Moreover, yT  is pre s g open−   because for any s g open

  set U ,  by 

Theorem 3.3 (1), ( )yT U U y= +  is s g open.
  Similarly, we can prove that M

 is s g homeomorphism.
  

Theorem 3.15.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space. Then any s g open
  

subspace of X  is s g closed
  in X . 

Proof.  Let G  be an s g open
  subspace of X . Then by Theorem 3.3 (1), for any x X G, −   G x+  

is s g open.
  We also clearly have x G x X G. +  −  Then,  Z G x : x X G X G= +  − = −  being a 

union of s g open
 sets is s g open.

  Therefore, G X Z= −  is s g closed.
  

Theorem 3.16.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space and B  be an s g open
  set 

in X . Then for any subset A  of X ,we have ( )A B s g Cl A B.+ = +  

Proof .  Since we know that ( )A s g Cl A ,   so ( )A B s g Cl A B.+  +   Conversely, let 

( )y s g Cl A B +  and write = +y x b,  where ( )x s g Cl A   and b B.  There exists an s g open
  

neighborhood V  of zero such that ( )bT V V b B.= +   Now, V  is s g open
  neighborhood of 0  in X , 

this gives that −V is also s g open
  neighborhood of 0  in X .  Then −x V is an s g open



neighborhood of x.  Since ( )x s g Cl A ,   so there exists an element ( )a A x V . −  We know that 

y x b a a x b a V b A B.= + = − + +  + +  + Therefore, ( )s g Cl A B A B. +  +  Hence, consequently, we 

obtain ( )A B s g Cl A B.+ = +  

Theorem 3.17.  Let 
( )( )K

X ,  be an s g irresolute
  topological vector space. Then the scalar multiple 

of s g closed
  set is s g closed.

   

Proof .  Let B  be an s g closed
  set in X  and let  0K . −  Then X B−  is s g open

  set in X .  Now 

( ) ( ) ( )M X B X B X B X B S GO X .     − = − = − = −   Therefore,  ( )B S GC X .   
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Definition 3.18.  A topological space ( )X ,  is said to be s g compact
  if every cover of X   by 

s g open
  sets of  X  has a finite sub cover.  A subset A  of X  is said to be s g compact

  relative to 

X  if every cover of A  by s g open
  sets of X has a finite sub cover. 

Theorem 3.19.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space and let A  be any 

s g compact
  set in X . Then prove that +x A  is s g compact

  for each x X .  

Proof.  Let  U :  =   be an s g open
 cover of x A.+  Then  A x U :   − +   and 

  ( )x U : S GO X .   − +    By hypothesis,  0A x U :   − +   for some finite subset 
0 .   

Whence we find that  0x A U : .  +    This shows that +x A  is  s g compact.
  Hence, the proof 

is complete.  

Theorem 3.20.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space. The scalar multiple of 

s g compact
  set is s g compact.

  

Proof .  Let A  be an s g compact
  subset of X .  If 0=  we are nothing to prove.  Assume 

 0K . −  Let  U :  =   be an s g open
  cover of A.  Then 

( )  ( )
1 1

A U :  
 

   
 =  =   
   

 
1

U : .  


  
  

  
 Since   ( )U : S GO X      and ( )( )K

X ,  is 

s gITVS,  so we obtain ( )
1

U : S GO X ,  


  
   

  
 By hypothesis A  is s g compact,

  therefore there 

exists a finite subset 
0   such that 0

1
A U : .  



  
   

  
 This implies that  0A U : .     

Hence A  is s g compact.
  

Definition 3.21.  A mapping ( )( ) ( )( )X YK K
f : X , Y , →  is said to be linear if 

( ) ( ) ( )+ = +f x y f x f y ,     for all x,y X  and , K.   

Definition 3.22.  A mapping f : X K→  is called linear functional if ( ) ( ) ( )f x y f x f y ,   + = +  for 

all x,y X  and , K.    The kernel of f  is defined by ( ) ( ) 0Ker f x X : f x .=  =  

Theorem 3.23.  Let ( )( ) ( )( )X YK K
f : X , Y , →  be a linear mapping such that f  is s g irresolute

   at 0.  

Then f  is s g irresolute
  on X .  

Proof.  Let  x  be any non-zero element of X  and V  be any s g open
  set in Y  containing ( )f x . 
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Since the translation of a s g open
  set in an s g irresolute

  topological vector spaces is s g open,
  

( )V f x−  is s g open
  set in Y containing 0.  Since f  is s g irresolute

  at 0, there exists an s g open
  

set U  in X  containing 0  such that ( ) ( )f U V f x . −  Furthermore,  the linearity of  f implies that  

( )f x U V.+   By Theorem 3.3 (1), +x U  is s g open
  and hence f  is s g irresolute

  at x.  By 

hypothesis, f  is s g irresolute
  at 0.  This reflects that f  is s g irresolute.

  

Corollary 3.24.  Let ( )( )K
X ,  be an s g irresolute

  topological vector space. Let  f : X K→  be a linear 

function which is s g irresolute
  at 0.  Then the set ( ) 0F x X : f x=  =  is s g closed.

    

 

4. CHARACTERIZATIONS OF s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES 

In this section, we give some characterizations of s g irresolute
 topological vector spaces. 

Theorem 4.1.  Let ( )X ,  be an s gITVS.  For x X ,  the following assertions are true: 

( )1  If ( )U s g N x ,   then x U.  

( )2  If ( )U s g N x   and V is a neighborhood  of x, then ( )U V s g N x .   

( )3  If ( )U s g N x ,   then there exists ( )V s g N x  such that ( )U s g N y ,   for all  y V .  

( )4  If ( )U s g N x   and U V,  then ( )V s g N x .    

( )5  If ( )0U s g N ,   then  ( )0U s g N    for every non-zero element R.   

( )6  If ( )U s g N x   and V is an s g neighborhood
  of x, then ( )U V s g N x .   

( )7  ( )0U s g N   if and only if ( )x U s g N x .+    

Proof . We will prove ( )2 ,  ( )5  and ( )7  while the proofs of others follow easily. 

( )2  If U is an s g neighborhood
  of x,and V is a neighborhood of x, then there is an s g open

 subset 

A  and an open set B  such that x A U  and x B V.   Then x A B U V   and ( )S GO X . 

Thus ( )A B S GO X .  Therefore U V is an s g neighborhood
  of  x.  

( )5  Let U  be an s g neighborhood
  for  zero. Then there exists an s g open

  neighborhood V  of zero 

such that V U.  Since the map M : X X , → defined by ( )M x x, =  is s g irresolute.
  The inverse 

map N ;X X , →  defined by ( )
1

N x x,


= is also an s g irresolute.
 Thus M  is s g homeomorphism,

  for 

each  0R . −  Hence ( )M V V = is an s g open
  neighborhood of zero. Furthermore, clearly 
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V U.  Thus consequently ( )0U s g N .    

( )7  Suppose U  is an s g neighborhood
  for zero. Then there exists an s g open

  neighborhood V  of 

zero such that V U.  Since the map 
xT : X X ,→ defined by ( ) = +xT y y x,  is s g irresolute.

  The 

inverse map xS ;X X ,→  defined by ( )xS y x y,= − is also an s g irresolute.
  Thus 

xT  is 

s g homeomorphism,
 for each x X .  Hence ( )xT V x V= + is an s g open

  neighborhood for a point x. 

Clearly x V x U.+  +  Thus 
xx U N .+   The converse can be proved similarly.  

Definition 4.2.  A subset A  of a topological vector space X  is called balanced if and only if A A 

for each R  such that 1 .  

Definition 4.3.  A subset A  of a topological vector space X  is called absorbing if for all x X there 

exists a number 0 such that x A for  .   

Definition 4.4.  A set C  of a topological vector space X is said to be convex, if and only if it contains 

all segments between its points: x C, y C,  for  0 1t ,  implies ( )1tx t y C,+ −   or equivalently  

( )1tC t C C,+ −  for all  0 1t , .  A set C  of a topological vector space X is said to be absolutely 

convex if it is both convex and balanced.  

Theorem 4.5.   Let ( )( )K
X ,  be an s g irresolute

  topological vector space. If a subset C  of X is 

convex, then ( )s g Cl C
  is also convex. 

Proof .   The convexity of C implies ( )1tC t C C.+ −   By Theorem 3.12 (2), and Theorem 3.13, it 

follows immediately that ( ) ( ) ( )1t s g Cl C t s g Cl C    + − =     ( )s g Cl tC + ( )1s g Cl t C −   

( ) ( )1s g Cl tC t C s g Cl C . + − =     Thus ( ) ( ) ( ) ( )1t s g Cl C t s g Cl C s g Cl C .     + −        Hence we 

conclude that ( )s g Cl C
  is convex. 

Theorem 4.6.    Let ( )( )K
X ,  be an s gITVS.  If a subset C  of X is convex, then ( )s g Int C

  is also 

convex. 

Proof .  By Theorem 3.7 (2), and Theorem 3.8, ( ) ( ) ( )1t s g Int C t s g Int C    + − =      ( )s g Int tC +  

( )1s g Int t C −    ( ) ( )1s g Int tC t C s g Int C . + − =     Therefore ( )s g Int C
  is convex. 

Theorem 4.7.  Let ( )( )R
X ,  be an s gITVS. Then the following statements are equivalent: 

( )a  Every s g neighborhood
  U  of zero is absorbing.  
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( )b  For every s g neighborhood
  U  for zero, there exists a balanced set ( )0V s g N   such that 

V U.  

Proof.  ( )a  Suppose U  is an s g neighborhood
  for zero. Then there exists an s g open

  subset 

0V N  such that V U.  By hypothesis X  is an s gITVS.  So there exist s g open
  sets 

1V  of  

containing zero  and 
2V of X containing zero such that 

1 2 V .V V . The set 
1V contains an open 

interval of the form ( ), − for some 0.  Therefore  tx V U  for all ( )t ,  − and for all 
2x V . 

This implies U is absorbing.  

( )b  Let U  be an s g neighborhood
  of zero. By hypothesis X  is an s gITVS.  So there exist s g open

  

sets 1V  of  containing zero and 
2V of X containing zero such that 

1 2V .V U. Then there exists 

0  such that ( ) 1, V . −   Define  2W tV : t R, t .=    Since 
2tV  is an s g neighborhood

  of zero, 

for  0t  and 
2tV U  for ( ) −t , .   Thus W  is an s g neighborhood

 for zero and W U.  Now we 

have to show that W is balanced. Let  r R  such that 1r .  Let ( ) −t ,   and 
2x V .  Since  

rt r t t .=    Thus ( ) ( ) ( ) 2r tx rt x , .V W. =  −   This shows that rW W. Therefore  W is 

balanced. 

Theorem 4.8. Let X  be an s g irresolute
  topological vector space. Then 

( ) ( ) 0s g Cl A A U :U s g N . = +     

Proof .  Assume ( )x s g Cl A ,   and let U  be an s g neighborhood
 of zero. Then by Theorem 4.7(b), 

there exits a balanced neighborhood V for zero such that V U.  Thus x V+ is an s g neoghborhood


for x  and ( )x s g Cl A ,   so  ( )x V A .+   Take ( )a x V A. +  Then a x V + and a A.  Let 

= +a x v for some v V.  Since V  is balanced, so A V A V .− = +  Take ( )x a v A V= + −  −  implies 

x A V A U. +  +  Thus x A U, +  for any s g neighborhood
  U of zero. Therefore, we obtain

( ) ( ) 0s g Cl A A U :U s g N .  +     

Conversely if ( )x s g Cl A ,   then there exists a balanced neighborhood U for zero such that 

( )x U A .+ =  Thus x A U A U. − = + It follows that ( )  ( )0A U :U s g N s g Cl A . +     Thus we get 

( ) ( ) 0s g Cl A A U :U s g N . = +    

Theorem 4.9.  Let X  be an s gITVS.  Then the following assertions are true. 

( )a  For every ( )0U s g N ,   there exists symmetric set ( )0V s g N   such that V V U.+   
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( )b  For every ( )0U s g N ,  there exits an s g closed
 balanced set ( )0V s g N   such that V U.  

( )c  For every ( )0U s g N ,   there exists symmetric set ( )0V s g N   such that V V V U.+ +   

Proof.  ( )a  Assume ( )0U s g N .   By hypothesis X  is an s gITVS.  There exist s g open
  

neighborhoods 
1V  and 

2V  for zero in X such that 
1 2V V U.+   Let ( ) ( )1 1 2 2V V V V V .= − − Then V  is 

a symmetric s g open
  neighborhood of  zero  and 

1 2V V V V U.+  +   

( )b Let U  be an s g neihborhood
  of zero in X . By part (a) there is s g neihborhood

 V for zero with 

V V U.+   By Theorem 4.7 (b), there exits s g neihborhood
  W for zero which is balanced and W V.  

By Theorem 4.8, ( )s g Cl W W V V V U.  +  +   This shows that U  contains a s g closed


neighborhood of zero.  

( )c  Follows easily from (a). 

Definition 4.10.  A topological space ( )X ,  is called s g Hausdorff ,
  if each two distinct points x  and 

y  in X , there exist disjoint s g open
  sets  U,  V such that x U  and y V .  

Now we give some properties of s g Hausdorff
  space. 

Theorem 4.11.  Let X  be an s gITVS.  Then  the following statements are equivalent. 

( )a  X  is s g Hausdorff .
  

( )b  If x X , 0x ,  then there exists ( )0U s g N   such that x U.  

( )c  If x,y X ,  x y, there exists ( )V s g N x  such that y V .  

Proof .  By continuity of translation, it is sufficient to prove the equivalence between (a) and (b) 

only.  

( ) ( )a b : Assume x  be a non-zero vector belongs to X . Therefore there are disjoint s g open
 sets 

U,V X  such that 0 U  and x V .  Thus ( )0U s g N ,  ( )V s g N x   and x U.  

( ) ( )b a :  Let x,y X  be such that 0x y .−   Then there exists ( )0U s g N  such that x y U.−   By 

Theorem 4.9 (a), there exists s g neihborhood
  W of zero such that W W U.+   By Theorem  4.7 (b), 

W  can be assumed to be balanced. Let 
1V x W= +  and 

2V y W.= +  We note that ( )1V s g N x ,   

( )2V s g N y   and 
1 2V V ,=  since if 

1 2z V V ,  then z x W−   and z y W .−   Since W  is balanced, 

so ( )z x W.− −   It follows that ( ) ( )x y z y z x W W U,− = − + − −  +    which is a contradiction. So, we 

must have 
1 2V V .=  Finally, by the definition of  s g neihborhood ,

  there exist ( )1 2

* * *V ,V S GO X  such 
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that 1 1

*x V V ,   2 2

*y V V ,   and 1 2

* *V V .=  This shows that the space X is s g Hausdorff .
  This 

completes the proof.  

The following result follows from Theorem 4.11.  

Corollary 4.12.  Let X  be an s gITVS.  Then  the following statements are equivalent. 

( )a  X  is s g Hausdorff .
  

( )b  ( )   0 0U :U s g N . =  

( )c  ( )   U :U s g N x x . =  

Theorem 4.13.  An s gITVS X  is s g Hausdorff
 if and only if every one-point set in X  is s g closed

  

in X .  

Proof .  Let x X and  y X x . −  Then 0− y x , and by assumption, there exists ( )0U s g N   such 

that y x U.−   By Theorem 4.9 (b), there exists an s g closed
  and balanced set ( )0V s g N   such 

that V U.  It follows that − y x V  that is y x X V .−  −  Thus ( )  y X V x . − +  But ( )  X V x− +  is 

s g open,
  since V  is s g closed ,

  and ( )    X V x X x .− +  −  This shows that  X x−  is s g open.
  For 

the converse, let x X  and assume that  x  is s g closed.
  Then by Theorem 4.8,    ( )x s g Cl x= =  

  ( )  ( ) 0U x :U s g N V :V s g N x , +  =    where   ( )V U x s g N x .= +    Then by Corollary 4.12,  

X  is s g Hausdorff .
  This completes the proof. 

Since translation is an s g homeomorphism
  and as a consequence of Theorem 4.13, we have the 

following result. 

Corollary 4.14.  An s gITVS X  is s g Hausdorff
  if and only if  0  is s g closed

  in X .  

Theorem 4.15.  Let C,K be disjoint sets in an s gITVS
X  with C s g closed ,

  K  s g compact.
  Then 

there exists ( )0U s g N   with ( ) ( )K U C U .+ + =  

Proof .  If K ,=  then there is nothing to prove. Otherwise, let x K  by the invariance with 

translation, we can assume 0=x . Then X C−  is an s g open
  neighborhood of zero. Since addition 

is s g irresolute
  and s g continuous,

  by 0 0 0 0+ + = ,  there is an s g open
  neighborhood ( )0U s g N   

such that 3U U U U X C.= + +  −  By defining ( )W U U U= −   we have that W is s g open
  

symmetric and 3W W W W X C.= + +  −  This means that  3x : x W C =  =

   2x : x W y x : y C,x W −    ( )W C W . +  This concludes the proof for a single point.  
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Sine K is s g compact,
  then repeating the above argument for all x K , we obtain symmetric 

s g open
  sets 

xV such that ( ) ( )2 x xx V C V .+ + =  The sets  xV : x K  are an s g open
  covering of K,  

but K  is s g compact.
  Hence there is a finite number of points ix K ,  1 2=i , ,...,n,  such that

( )
1

i

n

i x

i

K x V .
=

 +  Define the s g open
  neighborhood V of zero by 

1
i

n

x

i

V V .
=

=  Then we get 

( ) ( )K V C V+ +   ( ) ( )
1

i

n

i x

i

x V V C V
=

+ + +  ( )( )
1

2
i i

n

i x x

i

x V C V .
=

 + + =
 

 This completes the proof. 

Lemma 4.16.  If U is an s g open
  set and U A ,=  then ( )U s g Cl A .  =   

Proof .  Suppose that there exists an ( )x U s g Cl A .     Then ( )x s g Cl A   and U is an s g open
  

neighborhood of x  and X U−  is s g closed
  set containing A,  hence ( )s g Cl A X U  −  and 

( )x s g Cl A   which is contradiction, hence  ( )U s g Cl A .  =   

Corollary 4.17.  Let C,K be disjoint sets in an s gITVS  X  with C s g closed ,
  K  s g compact.

  Then 

there exists ( )0U s g N   with ( ) ( )s g Cl K U C U . + + =   

Proof . By Theorem 4.15, there exists ( )0U s g N   such that ( ) ( )K U C U .+ + =  Now 

 C U y U : y C+ = +   is s g open
  set being a union of s g open

 sets. Then by Lemma 4.16, we 

obtain  ( ) ( )s g Cl K U C U . + + =   

Theorem 4.18.  Let X  be an s gITVS.  Let f : X →  be a non-zero linear map. Then  ( )f G  is 

s g open
  in  whenever G  is s g open

  in X . 

Proof .  Let G be a nonempty s g open
  set. Then one can assume that there is  0 0x X −  such that 

( )0 1f x .=  For any a G,  it is required to show that ( ) ( )f a s g Int f G .     Since ( )G s g N a   by 

Theorem 4.1 we have ( )0G a s g N .−    By Theorem 4.7 (a) −G a  is absorbing, that is, absorbs 0x ,  

namely there exists an 0  such that 
0x G a  −  whenever   with .   Now for any    

with ( )f a −   we have ( )( ) 0f a x G a, −  − hence ( )( ) ( )0f f a x f G a . −  −   Since f  is linear. 

This implies that ( )( ) ( ) ( )0f a f x f G a . −  −  So we get  ( )( )( ) ( ) ( ) ( )1f a f G a f G f a . −  − = −  This 

implies that ( )f G   and ( ) ( )f a , .    − +  Thus ( ) ( ) ( )f a Int f G s g Int f G ;         hence  

consequently ( ) ( )f G s g Int f G .=     

Lemma 4.19.  14 .  Let X be vector space and K X .    For a K , the following statements are 
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equivalent. 

( )1  a  is an extreme point of K.  

( )2  If x,y K are such that ( )
1

2
a x y ,= + then = =a x y.  

( )3  Let x,y K  be such that x y, let ( )0 1 ,  and ( )1a x y. = + − Then we have either 0=  or 

1= .  

Theorem 4.20.  Let X  be an s gITVS  and C  be a convex subset of X . Then ( ) ( )s g Int C C .   =   

Proof .  If ( )s g Int C , =  then the result is trivial. Suppose that ( )s g Int C    and let ( )x s g Int C .   

Then there exists ( )0V s g N   such that x V C.+   As the map : X , → where ( ) x  =  is 

continuous at 1= ,  for this the s g Ineighborhood
 x V ,+ there is an 0r  such that  +x x V

whenever 1−  r.  In particular, we have ( )1 r x x V C+  +  and ( )1 r x x V C.−  +   Now consider 

( ) ( )( )1 1 1x r x r x = + + − −  and take 
1

2
. =  Consequently, we have ( ) ( )

1 1
1 1 1

2 2
x r x r x,

 
= + + − − 

 
 

which implies that x  is not an extreme point of C. 

Theorem 4.21.  Let X  be an s gITVS  and W  an  s g neighborhood
  of 0.  Then there is an 

s g neighborhood
  U  of 0  such that ( )s g Cl U W.   Equivalently, if C  is a s g closed

  subset of X

and x  a point of X  outside C  then there are disjoint s g open
  sets 1U  and 2U  with 

1x U   and  

2C U .     

Proof .  Let x  be a point outside an s g closed
  set C X.  We will produce an s g open

  set U

containing x  with ( )s g Cl U C ; =  then  
1U U=  and  ( )2U X s g Cl U ,= −    the complement of the 

s g closure
  of U,  are disjoint s g open

  sets with 
1x U   and 

2C U ,  as desired. We know that X  

looks the same everywhere, so we may work with 0=x . Let  W  be the complement of C. Then 

W is an s g open
  set with  0 W .  By hypothesis X is s gITVS.  So by Theorem 4.9 (a), there exists 

an s g open
  subset U  of 0  such that U U W.+    This means that U U+  is disjoint from C. 

Equivalently, U   is disjoint from C U .−  For otherwise there would be an x U  which could be 

expressed as −c y  with c C  and y U ,  which would imply that c x y U U W= +  +   is in  W.   

Now the set U−  is  s g open
  because the map X X :→  ( )1x x x→ − = −  is an s g homeomorphism,

 and 

hence so are all its translates x U .−  So the set   2U C U c U : c C= − = −   is s g open,
 being the union 



2802 

RAJA MOHAMMAD LATIF 

of s g open
  sets. Thus we have found an s g open

 set 
1U U=  containing 0  and an s g open

  set 
2U ,

disjoint from 
1U ,  with  

2C U .   

Theorem 4.22.   Let ( )( )K
X ,  be an s gITVS.  Then every s g open

  subspace S  of  X  is also  an 

s gITVS.   

Proof .  Let W be an s g open
 neighborhood of x y+  in S  where x, y  are two distinct points in S. 

Since S  is an s g open
 subspace of X , then W is an s g open

  neighborhood  of +x y  in X ,  and 

by definition of s gITVS,  there exist s g open
  neighborhoods U of x  in X  and  V  of y  in X such 

that U V W.+   Then the sets G U S=  and H V S=  are s g open
  neighborhoods of x  and y  in 

S  such that +  + G H U V W.  Now suppose K,  x S  and let W  be an s g open


neighborhood of x  in S.  Since S  is an s g open
  subspace of X ,  then W  is an s g open



neighborhood of x  in X . Then there exist s g open
  neighborhoods U of   in K  and V  of y  in 

X  such that U.V W. Then the set G U S=  is an s g open
 neighborhood of   in K and the set 

H V S=  is an s g open
 neighborhood of x  in S. Also G.H U.V W.   Hence S  is an s gITVS.  

Theorem 4.23.  Suppose that ( )( )K
X ,  is an s gITVS.  If S X is a linear subspace, then so is 

( )s g Cl S .
  

Proof .  Let S  be a linear subspace of X .  Thus S S S+   and for all K, .S S.   By Theorem 

3.13,  ( ) ( ) ( ) ( )s g Cl S s g Cl S s g Cl S S s g Cl S .   +  +      By Theorem 3.12, for every K,  

( ) ( ) ( )s g Cl S s g Cl S s g Cl S .     =      Therefore, ( )s g Cl S
  is linear subspace of X .  

Definition 4.24.  Suppose that ( )( )K
X ,  is an s gITVS.  A subset E X  is said to be bounded if for all 

s g open
 sets V containing 0,  there exists s R  such that for all t s,  E tV. That is, every 

s g open
  neighborhood of zero contains E after being blown up sufficiently.  

Theorem 4.25.  Suppose that ( )( )K
X ,  is an s gITVS.  If E  is a bounded subset of X , then ( )s g Cl E

  

is bounded. 

Proof.  Let W be an s g open
 set containing 0, then by Theorem 4.21, there exists ( )0U s g N   such 

that ( )s g Cl U W.  Since E is bounded, so ( )E tU t s g Cl U tW ,      for sufficiently large values 

of t . It follows that for large enough t , ( ) ( ) ( )s g Cl E s g Cl tU t s g Cl U tW.          Thus, ( )s g Cl E
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is bounded.  

Theorem 4.26.  Let ( )X ,  be an s gITVS.  Let V  be an s g open
 neighborhood of zero in X . Then for 

every sequence  nr : n N of positive real numbers such that →nr ,  
1

n

n

r V X .


=

=  

Proof .  Let x X and consider the sequence 
n

x
: n N .

r

 
 

 
 This sequence converges to 0  by the 

s g irresoluteness
 of the scalar multiplication F X X . →  Thus, for sufficiently large n,  

n

x
V

r
  i.e., 

nx r V .  

Theorem 4.27.  Let ( )X ,  be an s gITVS.  Then every s g compact
 set is bounded. 

Proof .  Let C be an s g compact
 subset of X . We need to prove that it is bounded, namely, that for 

every s g open
 neighborhood V of 0,  C tV for sufficiently large t .  Let V be an s g open



neighborhood of 0, then by Theorem 4.7(b), there exists a balanced s g open
  neighborhood W of 

0  such that W V. By Theorem 4.26, 
1n

C nW .


=
  Since, C is s g compact,

  therefore there exists a 

positive integer m such that ( )
1 1

m m

j m j m mj j
C n W n n / n W n W.

= =
 =  Thus, for all t n,

( )m mC n W t n / t W tW tV , =     which implies that C  is bounded.  

Theorem 4.28.  Let ( )X ,  be an s gITVS.  Then every Cauchy sequence in X  is bounded. 

Proof .  Let   nx : n N  be a Cauchy sequence in X .  Let W be an s g open
  neighborhood of zero, 

then by Theorem 4.9 (a), there exists an s g open
 neighborhood V of 0  such that V V W.+  By 

definition of a Cauchy sequence, there exists N such that for all m,n N ,  
n mx x V−  and in 

particular for all n N,  +n Nx x V .  Set 1s such that Nx sV , then for all n N,  
nx sV V +   

sV sV sW.+  Since for balanced sets sW tW for s t,and since every s g open
 neighborhood of 0  

contains a balanced neighborhood, this proves that the sequence is bounded. 

Definition 4.29.  Let X  be a vector space over .  A non-negative real-valued function p  defined 

on X is a pseudonorm  if it satisfies the following two conditions. 

( )i  ( ) ( )p x p x , =  for all x X and ;  

( )ii  ( ) ( ) ( )p x y p x p y ,+  + for all x,y X .  

Now, we introduce the notion of locally convex s gITVS.  Moreover, we give a necessary and 
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sufficient condition, in terms of convex s g neighborhoods
 of 0, for an s gITVS  to be locally convex. 

Definition 4.30.  An s gITVS  ( )X ,  is locally convex if for all x X , every ( )S s g N x   contains a 

convex set ( )U s g N x .    

Theorem 4.31.  An s gITVS  ( )X ,  is locally convex if and only if every ( )0S s g N   contains a 

convex set ( )0U s g N .   

Proof .  The sufficiency part is trivial. Let ( )S s g N x .   Then by Theorem 4.1 (7), ( )0S x s g N−    

and by assumption, there exists a convex set ( )0U s g N   such that U S x. −  Hence by Theorem 

4.1 (7) again, ( )U x s g N x .+    As U x S+   and as U x+  is convex, ( )X ,  is a locally convex 

s gITVS.  

Corollary 4.32.  In a locally convex s gITVS  ( )X , ,  a pseudonorm  p  is s g irresolute
  if and only if p  

is s g irresolute
  at zero. 

Proof .  If p  is s g irresolute,
  then p  is s g irresolute

  at zero. Conversely, suppose p  is 

s g irresolute
  at 0,  and let x X  and ( ) ( )p x

V N .  Then by Theorem 4.1 (7), 

( ) ( ) ( ) ( )0 0p
V p x N N−  =  and thus ( ) ( ), V p x −  −  for some 0 .  Clearly ( )− ,   being an open 

set in is s g open
 set in .  By assumption, there exists ( )0U s g N   such that ( ) ( )p U ,  −  and 

as ( ) 0p y   for all y U ,  ( )  )0p U , . Then by Theorem 4.1 (7), ( )U x s g N x .+    For all y U ,  

( )0 p x y +   ( ) ( ) ( )p x p y p x ,+  + ( ) ( ) )0p x y , p x .+  +  Therefore it follows that ( )p U x V.+   

Definition 4.33.  Let A  be an absolutely convex subset of a vector space X . Then the functional 

defined by ( )  0p x inf : ,x A  =   is called the gauge  of A. 

Lemma 4.34.  14 .   In a vector space X , the gauge  of an absolutely convex and absorbent subset is 

a pseudonorm. 

Now, we prove the main result in which we characterize absolutely convex and absorbent 

s g neoghborhoods
  of zero in terms of their s g irresolute

 gauges.  

Theorem 4.35.  Let p  be a gauge  of an absolutely convex and absorbent subset U of an s gITVS  

( )X , .  Then p  is s g irresolute
 if and only if U is an s g neighborhood

 of zero. 

Proof .  If p  is s g irresolute,
  then as ( )11,−  is an s g open

 set in .  ( )  ( )11 11V x : p x p ,−=  = −    is an 
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s g open
 subset of X . Thus as V U,  ( )0U s g N .   Conversely, if ( )0U s g N   and 0 , then by 

Theorem 4.1 (5), ( )0V U s g N =    and ( )p x   for all x V.  Thus ( ) ( )p V , .  −  Hence, p  is 

s g irresolute
  at zero.  By Lemma 4.34, p  is a pseudonorm  and by Corollary 4.32, p  is 

s g irresolute
 at each x X .  Therefore p  is s g irresolute.
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