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Abstract. A circular distribution called Wrapped Quasi Lindley distribution with two parameters has been recently

proposed, but apart from the expressions for pdf, cdf, their circular representations, characteristic function and the

maximum likelihood equations for the proposed distribution, no other properties of the distribution as well as the

characteristics of the parameter estimates were explored by the authors. A slight error has also been observed in

the expression for pdf of the distribution. Also, the application of the distribution in modeling real life data was not

exhibited. Further, the form of the characteristic function in the paper is not compact and there is no closed form

of the expression of the trigonometric moments. This paper thus aims to rectify the expression for pdf and explore

a few descriptive measures and distributional properties of the Wrapped Quasi Lindley distribution and derive

closed form expressions for the characteristic function and hence the trigonometric moments using an identity. it is

found that the operations of wrapping and convoluting linear distributions around unit circle are commutative. The

maximum likelihood estimates of the parameters of the distribution are shown to be consistent through a simulation

study. The utility of the Wrapped Quasi Lindley model to a real-life data set on orientations is shown and the

goodness-of-fit of the distribution is assessed and compared to that of the Wrapped Exponential and Wrapped

Lindley distribution with the help of the log-likelihood, AIC and BIC measures. Further, the probabilities of the

orientations to lie in a certain interval are estimated on the basis of the fitted Wrapped Quasi Lindley distribution.
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The distribution is found to be more appropriate in modeling the situations where the directions having lower

magnitude have higher likelihood of occurrence.

Keywords: wrapped quasi Lindley distribution; circular data; trigonometric moments; convolution; simulation

study.
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1. INTRODUCTION

Circular statistics is the specialized branch of statistics which deals with circular data, i.e.

data which arise in terms of angles. Circular data is two-dimensional in nature and is repre-

sented either as a point on a circle of unit radius, centered at the origin or as a unit vector in

the plane, connecting the origin to the corresponding point[17]. Circular data arise in various

fields of science such as Geology (orientations of cross-beds in rivers, measured in degrees),

Meteorology (wind direction), Biology (vanishing angles of birds soon after their release) [19],

Medicine (times of arrival of patients in a casualty ward of a hospital), etc.

A sub class of circular probability distributions can be generated from the distributions on the

real line through the Wrapping approach. In this approach, a linear random variable (r.v.) is

transformed into a circular r.v. by reducing its modulo 2π . In other words, the circular r.v.

corresponding to the linear r.v. X is θ = X (mod 2π). [12] introduced Wrapped distributions

and obtained wrapped variables from the corresponding symmetric as well as non-symmetric

distributions on the real line. Many authors, since then, have carried out comprehensive work

on wrapped distributions. For instance, [9] studied the Wrapped Exponential and Wrapped

Laplace distributions, discussed their properties and statistical inference. [1] and [18] derived

the Wrapped Chi-square distribution and Wrapped Exponential distribution respectively and

studied their properties. [7] introduced the Wrapped Geometric distribution and also obtained

some generalizations of this distribution. [13] proposed the Lindley distribution and [5] exten-

sively studied its several properties. The same authors also showed it to be better in modeling

certain data sets in comparison to the classical Exponential distribution. [11] projected the

Wrapped Lindley distribution and explored its various properties. [20] introduced the Quasi

Lindley distribution, a generalization of the Lindley distribution and showed its flexibility over

the Lindley and exponential distribution. [2] proposed the Wrapped Quasi Lindley distribution
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wherein they derived expressions for pdf, cdf, their circular graphical representations, charac-

teristic function and the maximum likelihood equations. The pdf of the Wrapped Quasi Lindley

distribution (WQLD) with parameters β and α has been found to be

g(θ) =
θ exp(−βθ)

α +1

[
(α +θβ )

1− exp(−2πβ )
+
{2πβ exp(2πβ )}
{−1+ exp(2πβ )}2

]
However, the second term within the parentheses is incorrect; and consequently, the correct

expression for the pdf of the Wrapped Quasi Lindley distribution with parameters θ and α has

been derived and is shown below:

fw (β ) =
∞

∑
k=0

f (β +2kπ)

=
∞

∑
k=0

θ {α +θ (β +2kπ)}
α +1

exp{−θ (β +2kπ)}

=
θ exp(−βθ)

α +1

[
α

∞

∑
k=0

exp(−2kπθ)+θβ

∞

∑
k=0

exp(−2kπθ)+

2πθ

∞

∑
k=0

k exp(−2kπθ)

]

=
θ exp(−βθ)

α +1

[
(α +θβ )

1− exp(−2πθ)
+
{2πθ exp(−2πθ)}
{1− exp(−2πθ)}2

]
,(1)

θ > 0,α > 0,β ∈ (0,2π]

where the r.v. β follows the Wrapped Quasi Lindley distribution with parameters θ and α ,

denoted by WQLD(θ ,α).

The closed form of the expressions for the characteristic function and hence, the trigonometric

moments and other related measures of this distribution are derived in Section 2. In the same

section, the commutativity of the operations of wrapping and convoluting linear distributions

on the unit circle is established. Simulation study to show the consistency of the maximum

likelihood estimators of the parameters of the distribution is displayed in Section 3. In Section

4, the proposed model is applied to the data on orientation of 50 starhead topminnows and

its goodness-of-fit to the data set considered is assessed. Also, the comparison of the fit of

the proposed model to the data with that of the wrapped Exponential and Wrapped Lindley

distribution is carried out. The estimation of the probabilities of the orientations to lie in a
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certain interval, on the basis of the fitted Wrapped Quasi Lindley distribution is also presented

in this section. Finally, Section 5 summarizes the findings of the paper.

2. PROPERTIES OF WQLD(θ ,α)

In this section, some distributional properties of WQLD(θ ,α) are explored and the expres-

sions for the characteristic function, trigonometric moments, coefficient of skewness and kurto-

sis and the median direction of the WQL(θ ,α) are derived. Further, a necessary and sufficient

condition for a circular r.v. to follow WQLD is also established.

2.1. Derivation of WQLD density from mixture of Wrapped Exponential and Wrapped

Gamma densities. We know that the operations of wrapping and mixing commute [10]. Also,

the Quasi Lindley distribution defined on the real line arises as a mixture of the Exponential and

the Gamma distribution [20]. Consequently, the WQL(θ ,α) arises as a mixture of Wrapped

Exponential (θ ) and Wrapped Gamma (2,θ ) distribution as shown below:

The mixture of the Wrapped exponential (θ ) and Wrapped Gamma (2,θ ) distribution with

mixing parameter α

α+1has the density function given by

f w (β ) =
α

α +1

[
θ exp(−βθ)

1− exp(−2πθ)

]
+

1
α +1

[
∞

∑
k=0

θ
2 exp{−θ (β +2πk)}(β +2πk)

]

=
θ exp(−βθ)

α +1

[
(α +θβ )

1− exp(−2πθ)
+
{2πθ exp(−2πθ)}
{1− exp(−2πθ)}2

]

which is the p.d.f. of WQL(θ ,α). Consequently, the Wrapped Quasi Lindley WQL(θ ,α) r.v.

Θ admits the representation

Θ
d
= IΘ1 +(1− I)Θ2

where Θ1 and Θ2 are independent Wrapped exponential (θ) and Wrapped Gamma (2,θ) r.v.’s

respectively; I is an indicator r.v. which takes on values 1 and 0 with probabilities α

1+α
and 1

1+α

respectively, independently of Θ1 and Θ2. Here, d
= denotes distributional equivalence.
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2.2. Characteristic Function. In this paper, the characteristic function and hence, the

trigonometric moments of the WQLD have been obtained in terms of simpler closed form ex-

pressions as shown below:

The characteristic function of a wrapped circular variable, say ϕp at an integer value p can be

obtained from the characteristic function of the corresponding unwrapped linear r.v, say φX (t)

via the following relation [17]:

(2) ϕp = φX (p)

The characteristic function of the Quasi Lindley (θ ,α) distribution is given by

(3) φX (t) =
θα (θ − it)+θ 2

(α +1)(θ − it)2 ; i =
√
−1

Therefore, the characteristic function of WQL(θ ,α) is

(4) ϕp =

[
θ 2 (α +1)− ipθα

]
(θ − ip)−2

(α +1)
p = 0,±1,±2, . . .

Using the result of [18] which gives ∀a,b,r ∈ R+, (a− ib)−r =
(
a2 +b2)−r

2 eir arctan( b
a) or(

a2 +b2)−r
2 eir tan−1( b

a), the following expressions are obtained

(θ − ip)−2 =
(
θ

2 + p2)−1
exp
{

2i tan−1
( p

θ

)}
[
θ

2 (α +1)− ipθα
]−1

=
[
θ

4 (α +1)2 + p2
θ

2
α

2
]−1

2 exp
{

i tan−1
(

pα

θ (1+α)

)}
So, the characteristic function of WQL(θ ,α) is finally obtained as,

(5) ϕp =

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
exp
[

2i tan−1
( p

θ

)
− i tan−1

(
pα

θ (1+α)

)]
This provides a closed form and simpler expression of the characteristic function of WQLD.

Again, an alternative expression for ϕp is

ϕp = ρp exp(iµp).

Comparing the above two equations, ρp and µp are obtained as

(6) ρp =

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
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(7) µp = 2tan−1
( p

θ

)
− tan−1

(
pα

θ (1+α)

)

A necessary and sufficient condition for a circular r.v. to follow WQLD(θ ,α) is presented in

the following remark:

Remark 1: Θ∼WLD(θ ,α) if and only if 2π−Θ∼WLD(−θ ,α), where θ ,α > 0.

Proof: We have, the c.f. of β ∼WQL(θ ,α) as

ϕp (β ) = E
(

eipβ

)

=

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
exp
[

2iarctan
( p

θ

)
− iarctan

(
pα

θ (1+α)

)]

Therefore, the c.f. of (2π−β ) is

ϕp (2π−β ) = E
(

eip(2π−β )
)

= eip2πE
(

e−ipβ

)

= (cos2π + isin2π)

[
θ 4 (α +1)2 +(−p)2

θ 2α2
] 1

2

(α +1)
(

θ 2 +(−p)2
)

exp
[

2iarctan
(
−p
θ

)
− iarctan

(
−pα

θ (1+α)

)]

=

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
exp
[

2iarctan
(
−p
θ

)
− iarctan

(
−pα

θ (1+α)

)]

which is the c.f. of WQL(−θ ,α).

Conversely, suppose 2π−β = β ′ ∼WQL(−θ ,α). Then the c.f. of β ′ is

ϕp
(
β
′) = E

(
eipβ ′

)

=

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
exp
[

2iarctan
(
−p
θ

)
− iarctan

(
−pα

θ (1+α)

)]
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So, the c.f. of β is

ϕp (β ) = E
(

eipβ

)
= E

(
eip(2π−β ′)

)
= eip2πE

(
e−ipβ ′

)

=

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)

exp
[

2iarctan
( p

θ

)
− iarctan

(
pα

θ (1+α)

)]

which is the c.f. of WQL(θ ,α).

2.3. Trigonometric moments and related descriptive measures. Let β ∼WQL(θ ,α). The

pth non-central trigonometric moment of β is given by [4]

ϕp = αp + iβp

where αp = ρp cos µp and βp = ρp sin µp. Therefore, equation (6) and (7) give

αp =

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
cos
[

2tan−1
( p

θ

)
− tan−1

(
pα

θ (1+α)

)]
(8)

βp =

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
sin
[

2tan−1
( p

θ

)
− tan−1

(
pα

θ (1+α)

)]
(9)

We see that the expressions of the trigonometric moments are also simpler in comparison to

those obtained in the paper by [2]. We know that the non-central trigonometric moments of β

are the Fourier coefficients in the Fourier series expansion of the p.d.f f (β ). Consequently, we

have the following Fourier representation of the WQL(θ ,α) density:
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f (β ) =
∞

∑
p=−∞

ϕpe−ipβ

=
1

2π

[
1+2

∞

∑
p=1

(αp cos pβ +βp sin pβ )

]

=
1

2π
+

1
π

∞

∑
p=1


[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
cos
[

2tan−1
( p

θ

)
− tan−1

(
pα

θ (1+α)

)]

cos pβ +

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
sin
[

2tan−1
( p

θ

)
− tan−1

(
pα

θ (1+α)

)]
sin pβ


In particular, the mean resultant length of β is

(10) ρ1 = ρ =

[
θ 4 (α +1)2 +θ 2α2

] 1
2

(α +1)(θ 2 +1)

and the mean direction of β is

(11) µ1 = µ = 2tan−1
(

1
θ

)
− tan−1

(
α

θ (1+α)

)
ρ indicates the extent of concentration of β towards the mean direction µ and it lies between

0 and 1. The closer it is to 1, the higher is the concentration towards µ . The c.f. and the

trigonometric moments of WQL(θ ,α) can also be obtained through the c.f. and moments of

the mixing distributions of WQL(θ ,α): WE (θ) and WG(2,θ).

The circular variance of β is defined by

(12) V = 1−ρ = 1−

[
θ 4 (α +1)2 +θ 2α2

] 1
2

(α +1)(θ 2 +1)

The interpretation of V is contrary to that of ρ .

The pth central trigonometric moments of β are given by

ᾱp = ρp cos(µp− pµ)

β̄p = ρp sin(µp− pµ)
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Therefore, the pth central trigonometric moments of the proposed distribution are

ᾱp =

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
cos
[{

2tan−1
( p

θ

)
− tan−1

(
pα

θ (1+α)

)}
−

p
{

2tan−1
(

1
θ

)
− tan−1

(
α

θ (1+α)

)}]
(13)

β̄p =

[
θ 4 (α +1)2 + p2θ 2α2

] 1
2

(α +1)(θ 2 + p2)
sin
[{

2tan−1
( p

θ

)
− tan−1

(
pα

θ (1+α)

)}
−

p
{

2tan−1
(

1
θ

)
− tan−1

(
α

θ (1+α)

)}]
(14)

The measures of skewness and kurtosis, denoted by ζ 0
1 and ζ 0

2 respectively are defined as

ζ 0
1 = β̄2

V
3
2
, ζ 0

2 = ᾱ2−ρ4

V 2

Thus, ζ 0
1 and ζ 0

2 for WQL(θ ,α) is given by

ζ
0
1 =

β̄2{
1− [θ 4(α+1)2+θ 2α2]

1
2

(α+1)(θ 2+1)

} 3
2

(15)

ζ
0
2 =

ᾱ2−ρ4{
1− [θ 4(α+1)2+θ 2α2]

1
2

(α+1)(θ 2+1)

}2(16)

ζ 0
1 is nearly zero for unimodal symmetric data sets and ζ 0

2 is close to zero for the data sets which

are single peaked and for which the Wrapped normal distribution provides a good fit ([16]).

The median direction of a circular distribution having density f (.), denoted by ξ0 is the solution

of the following equation in the interval [0,2π) [9]:∫ ξ0+π

ξ0
f (β )dβ=

∫ ξ0+2π

ξ0+π
f (β )dβ = 1

2

where f is such that f (ξ0)> f (ξ0 +π).

Thus, we have

∫
ξ0+π

ξ0

θ exp(−βθ)

α +1

[
(α +θβ )

1− exp(−2πθ)
+
{2πθ exp(−2πθ)}
{1− exp(−2πθ)}2

]
dβ =

1
2

(17)
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and ∫
ξ0+2π

ξ0+π

θ exp(−βθ)

α +1

[
(α +θβ )

1− exp(−2πθ)
+
{2πθ exp(−2πθ)}
{1− exp(−2πθ)}2

]
dβ =

1
2

(18)

Simplifying and then adding (17) and (18), we get

1 =
α

(α +1){1− exp(−2πθ)}
[exp(−θξ0)− exp(−θ (ξ0 +2π))]+

θ 2

(α +1){1− exp(−2πθ)}
[ξ0 exp(−θξ0)− (ξ0 +2π))exp(−θ (ξ0 +2π))]+

1
(α +1){1− exp(−2πθ)}

[exp(−θξ0)− exp(−θ (ξ0 +2π))]+

2πθ exp(−2πθ)

(α +1){1− exp(−2πθ)}2 [exp(−θξ0)− exp(−θ (ξ0 +2π))]

⇒ 1 = exp(−θξ0)

[
1+

2πθ exp(−2πθ)

(α +1){1− exp(−2πθ)}
+θ

2
{

2π exp(−2πθ)

(α +1){1− exp(−2πθ)}
+

ξ0

(α +1)

}]
(19)

ξ0 is obtained by solving equation (19). The values of the above measures for different values

of θ and α are listed in Table 1. Table 1 shows that when α and θ is kept fixed, concentra-

tion towards the mean direction and kurtosis increase with an increase in θ and α respectively

whereas the distribution becomes more negatively skewed. The median diection of the distribu-

tion approaches the zero direction with an increase in the values of both θ and α .
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TABLE 1. Values of the trigonometric moments and related measures of

WQL(θ ,α) for the different values of θ and α

α = 0.6 α = 1.5

Measure θ = 0.2 θ = 0.7 θ = 1.4 θ = 2.5 θ = 0.2 θ = 0.7 θ = 1.4 θ = 2.5

µ 1.665 1.428 0.978 0.612 1.497 1.211 0.835 0.525

ρ 0.081 0.373 0.685 0.871 0.121 0.433 0.720 0.886

V 0.919 0.627 0.315 0.129 0.878 0.566 0.279 0.113

ζ 0
1 -0.043 -0.301 -1.067 -2.292 -0.072 -0.426 -1.299 -2.627

ζ 0
2 -0.006 0.095 1.023 3.063 0.008 0.256 1.519 3.971

ξ0 1.748 0.3339 0.136 0.0107 1.149 0.0713 0.0020 0.0010

θ = 0.5 θ = 1.7

Measure α = 0.3 α = 0.8 α = 1.5 α = 2.3 α = 0.3 α = 0.8 α = 1.5 α = 2.3

µ 1.781 1.487 1.338 1.265 0.928 0.807 0.724 0.674

ρ 0.220 0.267 0.312 0.343 0.749 0.767 0.787 0.802

V 0.780 0.733 0.688 0.657 0.251 0.233 0.213 0.198

ζ 0
1 -0.115 -0.188 -0.250 -0.292 -1.318 -1.509 -1.704 -1.849

ζ 0
2 -0.015 0.032 0.096 0.148 1.374 1.754 2.230 2.628

ξ0 0.445 0.296 0.200 0.146 0.303 0.004 0.0004 0.0002
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We already know that the operations of wrapping and mixing linear distributions around a

unit circle commute. The operations of wrapping and convoluting linear distributions around a

unit circle also commute and the result is expressed in Remark 2 which is as stated below:

Remark 2: The circular distribution obtained by wrapping the convolution of two linear dis-

tributions around a unit circle coincide with the convolution of their corresponding wrapped

distributions.

Proof: Suppose X and Y be two independently distributed r.v.’s with the density functions fX (.)

and fY (.) respectively. Further, let X ∈ S ⊆ IR. Then the density function of Z = X +Y is ob-

tained as

fZ (z) =
∫

S
fX (t) fY (z− t)dt

The wrapped distribution corresponding to fZ (.) is given by

f w
Z (z) =

∞

∑
k=−∞

fz (z+2πk)

=
∞

∑
k=−∞

∫
S

fX (t) fY (z+2πk− t)dt

=
∞

∑
k=−∞

∫
S

fY (z− t +2πk) fX (t)dt

=
∫

S

∞

∑
k=−∞

fY (z− t +2πk) fX (t)dx

=
∞

∑
−∞

{∫ 2π

0
f w
Y (z− (t +2π j)) fX (t +2π j)

}
dt

=
∞

∑
−∞

{∫ 2π

0
f w
Y (z− t−2π j) fX (t +2π j)

}
dt

=
∞

∑
−∞

∫ 2π

0
f w
Y (z− t) fX (t +2π j)dt [ f (θ) = f (θ +2π)]

=
∫ 2π

0

∞

∑
−∞

fX (t +2π j) f w
Y (z− t)dt

=
∫ 2π

0
f w
X (t) f w

Y (z− t)dt
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which coincides with the convolution of the wrapped densities corresponding to X and Y . By

virtue of the Fubini’s theorem, since the integral is bounded and the integrands are non-negative,

the interchanging of the order of integration and summation is valid.

The maximum likelihood estimates of the parameters θ and α of WQL(θ ,α) maximize the

log-likelihood function given by

logL = n logθ −θ

n

∑
i=1

βi−n log(α +1)+
n

∑
i=1

log
[{

α +θβi

1− exp(−2πθ)

}
+{

2πθ exp(−2πθ)

(1− exp(−2πθ))2

}]
(20)

w.r.t variations in θ and α , where β1,β2, . . .βn is a random sample of size n from WQL(θ ,α).

Since the maximum likelihood equations are non-linear in nature and difficult to be solved

analytically, a suitable numerical technique is employed to obtain solutions for θ and α [2].

3. SIMULATION STUDY

A simulation study to generate random variables from WQL(θ ,α) is carried out and m.l.e of

the parameters θ and α are obtained. For different values of θ and α , samples of size 100, 250,

500 and 800 are generated. The program is replicated N = 1000 times to get the m.l.e. of θ and

α . Steps of the simulation algorithm to obtain the m.l.e. of the parameters are as given below:

• Step 1: A random variable is generated from the U (0,1) distribution, say u.

• Step 2: The expression of c.d.f. of WQL(θ ,α) is equated with u and is solved for β ,

which is a r.v. from WQL(θ ,α). Steps 1 and 2 are repeated to get a sample of the

desired size.

• Step 3: The m.l.e of θ and α is obtained by maximizing the log-likelihood function in

(20) for values of β generated in Step 2 w.r.t variations in θ and α respectively.

To calculate the average bias and MSE of the m.l.e., the following formulae are used:
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Let the true value of the parameter θ be θ ∗ and the m.l.e be θ̂ . Then the Bias and MSE of θ̂

in estimating θ is given by

Bias
(
θ̂
)

=
1
N

N

∑
i=1

(
θ̂i−θ

∗)
MSE

(
θ̂
)

=
1
N

N

∑
i=1

(
θ̂i−θ

∗)2

where N is the number of replications and θ̂i is the m.l.e. of θ obtained in the ith replicate.

Similarly, the Bias and MSE of the m.l.e. of α are calculated. The m.l.e. is consistent if the

Bias and MSE decreases (approaches to zero) with an increase in the sample size. Table 2 shows

the average values of the Bias and MSE of the m.l.e. of θ and α for the different sample sizes

and for different set of values of θ and α . The results in Table 2 show that the Bias and MSE

of the m.l.e of both θ and α approaches towards zero with an increase in the sample size. This

shows that the estimates of the parameters are accurate, precise, and hence, consistent.

TABLE 2. Average values of Bias and MSE of the m.l.e of α and θ for different

sample sizes and for different values of α and θ

α = 0.5,θ = 0.7 α = 0.8,θ = 1.5

n Bias(α) MSE (α) Bias(θ) MSE (θ) Bias(α) MSE (α) Bias(θ) MSE (θ)

100 -0.0063 0.0052 -0.0098 0.0087 -0.0084 0.0077 -0.0165 0.0313

250 -0.0013 0.0004 -0.0021 0.0014 -0.0047 0.0031 -0.0068 0.0121

500 -0.0007 0.0002 -0.0015 0.0008 -0.0016 0.0020 -0.0021 0.0067

800 -0.0004 0.0001 -0.0011 0.0003 -0.0009 0.0013 -0.0007 0.0033

The calculation of the trigonometric moments, other related measures is carried out using

the R software, version 3.4.0, through the user-contributed packages viz. CircStats [14] and

circular [15] with the help of self-programmed codes. The maxLik package [22] is used to

obtain the maximum likelihood estimates of the parameters and rootSolve package [21] is used

to generate random variables from WQL(θ ,α) and to solve non-linear equations.
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4. ANALYSIS AND RESULTS

This section comprises of the application of WQLD to a real-life data set. Further, the fit

of this distribution to the data is compared with that of the Wrapped Lindley distribution [11]

and Wrapped Exponential distribution [8] with the help of the statistics - log likelihood, AIC

(Akaike Information Criterion) and BIC (Bayesian Information Criterion). The data set consid-

ered here is the sun compass orientations of 50 starhead topminnows, measured under heavily

overcast conditions, which is procured from [6] and published in [4], Appendix B4.

The Wrapped Quasi Lindley distribution WQL(θ ,α), Wrapped Lindley distribution WL(θ)

and Wrapped Exponential distribution WE(θ) are applied to the data set and the parameters are

estimated. Table 3 summarizes the estimated parameters.

TABLE 3. Values of the statistics and other measures for the WQL(θ), WL(θ)

and WE(θ) fitted to the data on orientations of starhead topminnows

Distribution m.l.e of the parameters Log-likelihood AIC BIC

WQL(θ ,α) θ = 0.1209,α = 19.0512 -90.8215 185.643 189.4671

WL(θ) θ = 0.5138 -94.7979 191.5958 193.5079

WE(θ) θ = 0.1149 -95.8932 193.5157 195.1783

The goodness-of-fit of WQL(θ ,α) to the data is checked using Watson’s U2 one sample

test [3]. The p-value of the test is > 0.05, which shows that the Wrapped Quasi Lindley

distribution is a good fit to the given data. Figure 1 exhibits the distribution function plot

of WQL(0.1209,19.0512) fitted to the data. Smaller AIC and BIC values corresponding to

WQL(θ ,α) in comparison to WL(θ) and WE(θ) is a consequence of the proposed distribu-

tion being a two-parameter model, whereas the other two are one-parameter model. However,

smaller value of the log-likelihood corresponding to the WQL(θ ,α) and WE(θ) clearly shows

that the Wrapped Quasi Lindley distribution fits the data better than the Wrapped Lindley and

Wrapped Exponential distribution.
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FIGURE 1. Distribution function plot of WQL(0.1209,19.0512) fitted to the

data on sun compass orientations of 50 starhead topminnows

Table 4 shows the estimated probabilities of the orientation of the 50 starhead topminnows

to lie in a certain interval, based on the best fitting Wrapped Quasi Lindley distribution with

parameters θ = 0.1209,α = 19.0512.

TABLE 4. Estimated probabilities of the orientation of the 50 starhead topmin-

nows to lie in a certain interval, based on the best fitting WQL(0.1209,19.0512)

Range (in degrees) Estimated probability

[0,50) 0.1758

[50,100) 0.1591

[100,150) 0.1440

[150,200) 0.1303

[200,250) 0.1179

[250,300) 0.1067

[300,360) 0.1151

It is clear from Table 4 that the starhead topminnows are most likely to move in the direction

[0o,50o) as measured by the sun compass. This also supports the intuitive claim made in section

(2) that the Wrapped Quasi Lindley model is more appropriate for data for which the directions

of lower magnitude have a higher probability of occurrence.
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5. CONCLUDING REMARKS

In this paper, a few descriptive measures and distributional properties of the Wrapped Quasi

Lindley distribution are explored and closed form expressions for the characteristic function and

hence the trigonometric moments using an identity are derived. The behaviour of the various

descriptive measures of the distribution are studied and a necesaary and sufficient condition for

a circular r.v. to follow the WQLD is established. The operations of wrapping and convoluting

linear distributions around unit circle are found to be commutative. A simulation study is per-

formed to check the consistency of the maximum likelihood estimates of the parameters of the

distribution. Lastly, to show application of the proposed model, the real data set on orientations

of 50 starhead topminnows is modeled using this distribution. The goodness-of-fit test applied

to the data showed that the Wrapped Quasi Lindley distribution is a good fit. Also, the multi-

ple goodness-of-fit statistics showed the Wrapped Quasi Lindley distribution to give a better fit

than Wrapped Exponential and Wrapped Lindley distribution. From the density plots for the

Wrapped Quasi Lindley distribution and with the help of estimated probabilities for the data set

considered, it is found that this distribution is more appropriate in modeling the situations where

the directions having lower magnitude have higher likelihood of occurrence. This exhibits the

usefulness of the distribution.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] M. Adnan, S. Roy, Wrapped chi-square distribution. J. Appl. Stat. Sci. 18 (2011), 307-317.

[2] A.M.H. Al-khazaleh, S. Alkhazaleh, On Wrapping of Quasi Lindley Distribution. Mathematics. 7 (2019),

930.

[3] S. Bhattacharjee, K. K. Das, Comparison of estimation methods of the joint density of a circular and linear

variable. J. Data Sci. 15 (2017), 129-154.

[4] N. I. Fisher, Statistical Analysis of Circular Data. Cambridge University Press, Cambridge, 1993.

[5] M. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its applications. Math. Comput. Simul.

78(4)(2008), 493-506.



PROPERTIES, PARAMETER ESTIMATES AND APPLICATIONS OF WQLD 2407

[6] C. P. Goodyear, Terrestrial and Aquatic Orientation in the Starhead Topminnow, Fundulus Notti, Science.

168 (1970), 603–605.

[7] S. Jacob, K. Jayakumar, Wrapped geometric distribution: A new probability model for circular data. J. Stat.

Theory Appl. 12 (4) (2013), 348-355.

[8] S. R. Jammalamadaka, T. Kozubowski, A wrapped exponential circular model. Proc. AP Acad. Sci. 5 (2001),

43–56.

[9] S. R. Jammalamadaka, T. Kozubowski, New families of wrapped distributions for modeling skew circular

data. Commun. Stat., Theory Meth. 33 (2004), 2059-2074.

[10] S. R. Jammalamadaka, T.J. Kozubowski, A General Approach for Obtaining Wrapped Circular Distributions

via Mixtures, Sankhya A. 79 (2017), 133–157.

[11] S. Joshi, K. Jose, Wrapped Lindley distribution, Commun. Stat., Theory Meth. 47 (5) (2017), 1013-1021.
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