PRIMALITY TEST WITH PAIR OF LUCAS SEQUENCES

P. ANURADHA KAMESWARI*, B. RAVITHEJA
Department of Mathematics, Andhra University, Visakhapatnam-530003, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Lucas sequences and their applications play vital role in the study of primality tests in number theory. There are several known tests for primality of positive integer N using Lucas sequences which are based on factorization of $(N \pm 1)$ [2] [13]. In this paper we give a primality test for odd positive integer $N>1$ by using the set $L(\Delta, N)$ where $L(\Delta, N)$ is a set of $S(N)$ distinct pair of Lucas sequences $\left(V_{n}(a, 1), U_{n}(a, 1)\right)$, where $S(N)$ for $N=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ is given as $S(N)=\operatorname{LCM}\left[\left\{p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)\right\}_{i=1}^{s}\right]$ and $\Delta=a^{2}-4$ for some fixed integer a.

Keywords: Lucas sequences; primality testing.
2010 AMS Subject Classification: 94A60, 11 T 71.

1. Introduction

Lucas sequences are recurrence relations. Many studies on properties of Lucas sequences, and their connections with topics like trigonometric functions, Chebyshev's functions, Dickson functions, continued fractions are known [2][7]. The primality test for a positive integer N using Lucas sequences was first initiated by Lucas and later developed further by Lehmer, was based on factorization of $(N \pm 1)$ [2][8]. In this paper we give a primality test for odd positive integer $N>1$ by using the set $L(\Delta, N)$ where $L(\Delta, N)$ is a set of $S(N)$ distinct pair of Lucas sequences

[^0]$\left(V_{n}(a, 1), U_{n}(a, 1)\right)$, where $S(N)$ for $N=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ is given as $S(N)=\operatorname{LCM}\left[\left\{p_{i}^{e_{i}-1}\left(p_{i}-\right.\right.\right.$ $\left.\left.\left.\left(\frac{\Delta}{p_{i}}\right)\right)\right\}_{i=1}^{s}\right]$ and $\Delta=a^{2}-4$ for some fixed integer a. In the following we describe the pair of Lucas sequences and their properties.

Definition 1.1. Let a and b be two integers, α a root of the polynomial $x^{2}-a x+b$ in $\mathbf{Q}(\sqrt{\Delta})$ for $\Delta=a^{2}-4 b$ a non square, writing $\alpha=\frac{a+\sqrt{\Delta}}{2}$ and its conjugate $\beta=\frac{a-\sqrt{\Delta}}{2}$ we have $\alpha+\beta=$ $a, \alpha \beta=b, \alpha-\beta=\sqrt{\Delta}$, and the Lucas sequences $V_{n}(a, b)$ and $U_{n}(a, b), n \geq 0$ are defined as

$$
\left\{\begin{array}{l}
V_{n}(a, b)=\alpha^{n}+\beta^{n} \\
U_{n}(a, b)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
\end{array}\right.
$$

In particular, $V_{0}(a, b)=2, V_{1}(a, b)=a$ and $U_{0}(a, b)=0, U_{1}(a, b)=1$.
$V_{n}(a, b)$ and $U_{n}(a, b)$ are given by following recurrence sequences:

$$
\left\{\begin{array}{l}
V_{n}(a, b)=a V_{n-1}(a, b)-b V_{n-2}(a, b) \\
U_{n}(a, b)=a U_{n-1}(a, b)-b U_{n-2}(a, b)
\end{array}\right.
$$

Lucas sequences satisfy the following properties [3] [4] [9]:
(1) $\left(V_{2 n}(a, b), U_{2 n}(a, b)\right)=\left(\left(V_{n}(a, b)\right)^{2}-2 b^{n}, U_{n}(a, b) V_{n}(a, b)\right)$.
(2) $\left(V_{n}^{2}(a, b), U_{n}^{2}(a, b)\right)=\left(\Delta\left(U_{n}(a, b)\right)^{2}+4 b^{n}, U_{n-1}(a, b) U_{n+1}(a, b)+b^{n-1}\right)$.
(3) $\left(2 V_{m+n}(a, b), 2 U_{m+n}(a, b)\right)=\left(V_{m}(a, b) V_{n}(a, b)+\Delta U_{m}(a, b) U_{n}(a, b)\right.$,

$$
\left.U_{m}(a, b) V_{n}(a, b)+U_{n}(a, b) V_{m}(a, b)\right) \forall m \geq n .
$$

(4) $\left(V_{m+n}(a, b), U_{m+n}(a, b)\right)=\left(V_{m}(a, b) V_{n}(a, b)-b^{n} V_{m-n}(a, b)\right.$,

$$
\left.U_{m}(a, b) V_{n}(a, b)-b^{n} U_{m-n}(a, b)\right), \forall m \geq n
$$

In particular for $b=1$ the above properties can be written as
(1) $\left(V_{2 n}(a, 1), U_{2 n}(a, 1)\right)=\left(\left(V_{n}(a, 1)\right)^{2}-2, U_{n}(a, 1) V_{n}(a, 1)\right)$.
(2) $\left(V_{n}^{2}(a, 1), U_{n}^{2}(a, 1)\right)=\left(\Delta\left(U_{n}(a, 1)\right)^{2}+4, U_{n-1}(a, 1) U_{n+1}(a, 1)+1\right)$.
(3) $\left(2 V_{m+n}(a, 1), 2 U_{m+n}(a, 1)\right)=\left(V_{m}(a, 1) V_{n}(a, 1)+\Delta U_{m}(a, 1) U_{n}(a, 1)\right.$,

$$
\left.U_{m}(a, 1) V_{n}(a, 1)+U_{n}(a, 1) V_{m}(a, 1)\right) \forall m \geq n .
$$

(4) $\left(V_{m+n}(a, 1), U_{m+n}(a, 1)\right)=\left(V_{m}(a, 1) V_{n}(a, 1)-V_{m-n}(a, 1)\right.$,

$$
\left.U_{m}(a, 1) V_{n}(a, 1)-U_{m-n}(a, 1)\right), \forall m \geq n
$$

Definition 1.2. If $N=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ and $\Delta=a^{2}-4 b$ for some fixed integer a such that $(N, \Delta)=1$ then we have define $S(N)=\operatorname{LCM}\left[n_{1}, n_{2}, \ldots, n_{s}\right]$ where $n_{i}=p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)$ for all $1 \leq i \leq s$ and $\left(\frac{\Delta}{p_{i}}\right)$ is the Legendre symbol [12] of Δ with respect to the prime p_{i}.
(1) $\left(V_{S(N)}(a, b), U_{S(N)}(a, b)\right) \equiv\left(2 b^{\frac{k(1-\varepsilon)}{2}}, 0\right) \bmod N$.
(2) $\left(V_{S(N) t}(a, b), U_{S(N) t}(a, b)\right) \equiv\left(2 b^{\frac{k(1-\varepsilon)}{2}}, 0\right) \bmod N$.

In particular for $b=1$, we have
(1) $\left(V_{S(N)}(a, 1), U_{S(N)}(a, 1)\right) \equiv(2,0) \bmod N$.
(2) $\left(V_{S(N) t}(a, 1), U_{S(N) t}(a, 1)\right) \equiv(2,0) \bmod N$.

In the following an algorithm is given for computation of Lucas sequences $\left(V_{n}(a, 1), U_{n}(a, 1)\right)$ using Lucas addition chain as in [11]. This algorithm gives Lu-

Algorithm 1 Evaluate $\left(V_{n}(a, 1), U_{n}(a, 1)\right)$
step 0: (Initialize) Set $N \leftarrow \frac{n}{2^{k-i}}$ where $k=\lfloor\log n\rfloor, i=0,1,2, \ldots, k Y \leftarrow 1, Z \leftarrow 2$
step 1: $($ Value N$) N \leftarrow \frac{n}{2^{k-i}}$ and determine whether N is even or odd, if N is even skip to step 4.
step 2: set $Y \leftarrow 2 Y+1$ and $Z \leftarrow 2 Z$
step 3: $[N=n]$, if $N=n$ the algorithm terminates with Y as the answer.
step 4: $\operatorname{set} Y \leftarrow 2 Y, Z \leftarrow Y+1$ and return to step 1.
step 5: $\left[\operatorname{initialize}\left(V_{n}(a, 1), U_{n}(a, 1)\right]\right.$ set $V_{0}(a, 1)=2, V_{1}(a, 1)=a$ and $U_{0}(a, 1)=0, U_{1}(a, 1)=1$
step 6: For i from 0 to k set $n \leftarrow y+z$ compute $V_{y+z}(a, 1) \leftarrow V_{y}(a, 1) V_{z}(a, 1)-V_{y-z}(a, 1)$ and $U_{y+z}(a, 1) \leftarrow U_{y}(a, 1) V_{z}(a, 1)-U_{y-z}(a, 1)$
cas addition chain [5] [11] $\left\{e_{-1}, e_{0}, e_{1}, e_{1}+1, \ldots e_{k-1}-1, e_{k-1}, e_{k}\right\}$ and evaluates $\left\{\left(V_{e_{-1}}, U_{e_{-1}}\right),\left(V_{e_{0}}, U_{e_{0}}\right),\left(V_{e_{1}}, U_{e_{1}}\right), \ldots\left(V_{e_{t-1}}, U_{e_{t-1}},\left(V_{e_{t}}, U_{e_{t}}\right)\right)\right\}$ for all $t=0,1, \ldots, k$ by using the formulas $V_{y+z}(a, 1)$ and $U_{y+z}(a, 1)$.

2. Primality of N With $S(N)$

In the following we prove a theorem on primality of N with $S(N)$ [7] [9].

Theorem 2.1. If N is odd positive integer then N is prime if and only if $S(N)=N-\left(\frac{\Delta}{N}\right)$ for all Δ with $(\Delta, N)=1$.

Proof. Let N be a prime number then by definition for $N=p$, and any Δ with $(\Delta, N)=1$ we have $S(N)=S(p)=p-\left(\frac{\Delta}{p}\right)=N-\left(\frac{\Delta}{N}\right)$. Conversely suppose $S(N)=N-\left(\frac{\Delta}{N}\right)$, now if N is composite then for $N=\prod_{i=1}^{s} p_{i}^{e_{i}}$ we have the two cases (i) $s=1$ with $e_{1} \geq 2$ and (ii) $s \geq 2$. In case (i) for $s=1, e_{1} \geq 2$, we have $N=p_{1}^{e_{1}}, e_{1} \geq 2$ and $S(N)=S\left(p_{1}^{e_{1}}\right)=p_{1}^{e_{1}-1}\left(p-\left(\frac{\Delta}{p}\right)\right)$, therefore as $e_{1} \geq 2$ we have $p_{1} \mid S(N)$ but note $p_{1} \nmid p_{1}^{e_{1}} \pm 1$ i.e. $p_{1} \nmid N-\left(\frac{\Delta}{N}\right)$ a contradiction to $S(N)=N-\left(\frac{\Delta}{N}\right)$, hence N is not in case (i). Now if N is as in case (ii) we have $N=\prod_{i=1}^{s} p_{i}^{e_{i}}$, with $s \geq 2$ and $S(N)=\operatorname{LCM}\left[\left\{p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)\right\}_{i=1}^{s}\right]$. Now as $p_{i}^{\prime} \mathrm{s}$ are odd, $(\Delta, N)=1$ and $\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)$ are even, we note in the following that $S(N)<N-1$:

$$
\begin{aligned}
S(N) & =\operatorname{LCM}\left[\left\{p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)\right\}_{i=1}^{s}\right] \\
& =2 \operatorname{LCM}\left[\left\{p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)\right\}_{i=1}^{s}\right] \\
& \leq 2 \prod_{i=1}^{s}\left[\frac{1-\frac{1}{p_{i}}\left(\frac{\Delta}{p_{i}}\right)}{2} p_{i}^{e_{i}}\right] \\
& =2 N \prod_{i=1}^{s} \frac{1}{2}\left[1+\frac{1}{p_{i}}\right] \\
& \leq 2 N \frac{1}{2^{s}} \prod_{i=1}^{s}\left[1+\frac{1}{p_{i}}\right] \\
& =2 N \frac{1}{2^{s}}\left[1+\sum_{i} \frac{1}{p_{i}}+\sum_{i, j} \frac{1}{p_{i} p_{j}}+\ldots+\sum_{i, j \ldots s} \frac{1}{p_{i} p_{j} \ldots p_{s}}\right] \\
& \leq 2 N \frac{1}{2^{s}}\left[1+\sum_{i} \frac{1}{5}+\sum_{i, j} \frac{1}{5^{2}}+\ldots+\sum_{i, j \ldots s} \frac{1}{5^{s}}\right] \text { as } p_{i} \geq 5 \\
& =2 N \frac{1}{2^{s}}\left[1+s_{c_{1}}\left(\frac{1}{5}\right)+s_{c_{2}}\left(\frac{1}{5^{2}}\right)+\ldots+s_{c_{s}}\left(\frac{1}{5^{s}}\right)\right] \\
& =2 N \frac{1}{2^{s}}\left(1+\frac{1}{5}\right)^{s} \\
& =2 N\left(\frac{3}{5}\right)^{s} \\
& \leq 2 N\left(\frac{3}{5}\right)^{2} \text { as } s \geq 2 \\
& <2 N\left(\frac{2}{5}\right)=\frac{4 N}{5}<N-1
\end{aligned}
$$

Therefore $S(N)<N-1$, and as $(N-1)<(N+1)$ we also have $S(N)<N+1$ in particular we have $S(N)<N-\left(\frac{\Delta}{N}\right)$ which is a contradiction to $S(N)=N-\left(\frac{\Delta}{N}\right)$, therefore N is not in case (ii) as well, therefore N is not composite. Hence N is prime.

3. Primality Test With Pair of Lucas Sequences

Notation 3.1. Let N be a positive integer and $\Delta=a^{2}-4$ for some positive integer a such that $(N, \Delta)=1$, then the set of all the pairs of Lucas sequences is denoted as $L(\Delta, N)$ and is given as $L(\Delta, N)=\left\{\left(V_{n}(a, 1), U_{n}(a, 1)\right): 1 \leq n \leq S(N)\right\}$.

The following theorem assures that all the pairs in $L(\Delta, N)$ are distinct modulo N and $|L(\Delta, N)|=$ $S(N)$.

Theorem 3.2. $\left(V_{r}(a, 1), U_{r}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$ if and only if $r \equiv 0$ $\bmod S(N)[10]$.

Proof. Suppose $r \equiv 0 \bmod S(N)$, then we have $r=S(N) t$, for some integer t and $\left(V_{r}(a, 1), U_{r}(a, 1)\right) \equiv\left(V_{S(N) t}(a, 1), U_{S(N) t}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$, therefore $r \equiv 0 \bmod S(N) \operatorname{implies}\left(V_{r}(a, 1), U_{r}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$.
Conversely suppose $\left(V_{r}(a, 1), U_{r}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$, then for $N=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ note $\left(V_{r}(a, 1), U_{r}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod p_{i}^{e_{i}}$ for all $i=$ $1,2, \ldots, s$. We now show in the following that $p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)$ divides r for all $i=1,2, \ldots, s$. For all Δ with $(\Delta, N)=1$ as $\left(\Delta, p_{i}^{e_{i}}\right)=1$ using Euler's criterion we have

$$
\begin{aligned}
& \alpha^{p_{i}} \equiv\left\{\begin{array}{l}
\alpha \bmod p_{i} \text { if }\left(\frac{\Delta}{p_{i}}\right)=1, \\
\beta \bmod p_{i} \text { if }\left(\frac{\Delta}{p_{i}}\right)=-1
\end{array}\right. \\
& \Rightarrow \alpha^{p_{i}} \equiv\left\{\begin{array}{l}
\alpha+k p_{i} \text { if }\left(\frac{\Delta}{p_{i}}\right)=1, \\
\beta+k p_{i} \text { if }\left(\frac{\Delta}{p_{i}}\right)=-1
\end{array}\right.
\end{aligned}
$$

Therefore for $i=1,2, \ldots, s$ we have,

$$
\begin{aligned}
\alpha^{p_{i}} & =\left(\alpha^{p_{i}}\right)^{p_{i}^{e_{i}-1}}=\left(\alpha+k p_{i}\right)^{p_{i}^{e_{i}-1}} \\
& =\alpha^{p_{i}^{e_{i}-1}}+\binom{p_{i}^{e_{i}-1}}{1} \alpha^{p_{i}^{e_{i}-1}-1}\left(k p_{i}\right)+\binom{p_{i}^{e_{i}-1}}{2} \alpha^{p_{i}^{e_{i}-1}-2}\left(k p_{i}\right)^{2}+\ldots+ \\
& \binom{p_{i}^{e_{i}-1}}{p_{i}^{e_{i}-1}-1} \alpha\left(k p_{i}\right)^{p_{i}^{e_{i}-1}-1}+\left(k p_{i}\right)^{p_{i}^{e_{i}-1}} \\
\Rightarrow \alpha^{p_{i}^{e_{i}}} & \equiv \alpha^{p_{i}^{e_{i}-1}} \bmod p_{i}^{e_{i}} \text { if }\left(\frac{\Delta}{p_{i}}\right)=1 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\alpha^{p_{i}^{p_{i}}} & =\left(\alpha^{p_{i}}\right)^{p_{i}^{e_{i}-1}} \\
& =\left(\beta+k p_{i}\right)^{p_{i}^{e_{i}-1}} \\
\Rightarrow \alpha^{p_{i}^{e_{i}}} & \equiv \beta^{p_{i}^{e_{i}-1}} \bmod p_{i}^{e_{i}} \operatorname{if}\left(\frac{\Delta}{p_{i}}\right)=1
\end{aligned}
$$

therefore,

$$
\alpha^{p_{i}^{e_{i}}} \equiv \begin{cases}\alpha^{p_{i}^{e_{i}-1}} & \bmod p_{i}^{e_{i}} \text { if }\left(\frac{\Delta}{p_{i}}\right)=1, \\ \beta^{p_{i}^{e_{i}-1}} & \bmod p_{i}^{e_{i}} \text { if }\left(\frac{\Delta}{p_{i}}\right)=-1\end{cases}
$$

$\operatorname{now} \alpha^{p_{i}^{e_{i}}} \equiv \alpha^{p_{i}^{e_{i}-1}} \bmod p_{i}^{e_{i}}$ if $\left(\frac{\Delta}{p_{i}}\right)=1 \Rightarrow \alpha^{p_{i}^{e_{i}}(p-1)} \equiv 1 \bmod p_{i}^{e_{i}}$ if $\left(\frac{\Delta}{p_{i}}\right)=1$ and $\alpha^{p_{i}} \equiv \beta^{p_{i}^{e_{i}-1}} \bmod p_{i}^{e_{i}}$ if $\left(\frac{\Delta}{p_{i}}\right)=-1 \Rightarrow \alpha^{p_{i}^{e_{i}}(p+1)} \equiv 1 \bmod p_{i}^{e_{i}}$ if $\left(\frac{\Delta}{p_{i}}\right)=-1$ therefore note $p_{i}^{e_{i}}$ is smallest such that

$$
\alpha^{p_{i}} \equiv \begin{cases}\alpha^{p_{i}^{e_{i}-1}} & \bmod p_{i}^{e_{i}} \text { if }\left(\frac{\Delta}{p_{i}}\right)=1, \\ \beta^{p_{i}^{e_{i}-1}} & \bmod p_{i}^{e_{i}} \text { if }\left(\frac{\Delta}{p_{i}}\right)=-1\end{cases}
$$

$\Rightarrow p_{i}^{e_{i}}$ is smallest such that $\alpha^{p_{i}^{e_{i}-1}}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right) \equiv 1 \bmod p_{i}^{e_{i}}$.
Now note $\left(V_{r}(a, 1), U_{r}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod p_{i}^{e_{i}}$
$\Rightarrow V_{r}(a, 1) \equiv V_{0}(a, 1) \bmod p_{i}^{e_{i}}$ and $U_{r}(a, 1) \equiv U_{0}(a, 1) \bmod p_{i}^{e_{i}}$
$\Rightarrow \alpha^{r}+\beta^{r} \equiv 2 \bmod p_{i}^{e_{i}}$ and $\frac{\alpha^{r}-\beta^{r}}{\alpha-\beta} \equiv 0 \bmod p_{i}^{e_{i}}$
$\Rightarrow \alpha^{r}+\beta^{r} \equiv 2 \bmod p_{i}^{e_{i}}$ and $\alpha^{r}-\equiv \beta^{r} \bmod p_{i}^{e_{i}}$
$\Rightarrow 2 \alpha^{r} \equiv 2 \bmod p_{i}^{e_{i}}$
$\Rightarrow \alpha^{r} \equiv 1 \bmod p_{i}^{e_{i}}$, therefore $p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)$ divides r for $i=1,2, \ldots, s$ therefore r is a
common multiple of $p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)$ and as $S(N)$ is the $\operatorname{LCM}\left[\left\{p_{i}^{e_{i}-1}\left(p_{i}-\left(\frac{\Delta}{p_{i}}\right)\right)\right\}_{i=1}^{s}\right]$ we have $S(N) \mid r$ which implies $r \equiv 0 \bmod S(N)$, therefore we have $\left(V_{r}(a, 1), U_{r}(a, 1)\right) \equiv$ $\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$ implies $r \equiv 0 \bmod S(N)$.

Now in the following theorem we propose a primality test for N by using the pair of Lucas sequences.

Theorem 3.3. For any odd positive integer $N>1, N$ is prime if and only if $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$, for all Δ with $(\Delta, N)=1$.

Proof. Let N be prime number, then by definition $S(N)=N-\left(\frac{\Delta}{N}\right)$ for all Δ with
$(\Delta, N)=1$ and as $S(N) \equiv 0 \bmod S(N)$, by Theorem 3.1 we have
$\left(V_{S(N)}(a, 1), U_{S(N)}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$
$\Rightarrow\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$
$\therefore N$ is prime implies $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$, for all Δ with $(\Delta, N)=1$.
Conversely let $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right) \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$, for all Δ with $(\Delta, N)=1$ then by Theorem 3.1 we have $N-\left(\frac{\Delta}{N}\right) \equiv 0 \bmod S(N)$, therefore we have $S(N) \mid$ $N-\left(\frac{\Delta}{N}\right)$, for all Δ with $(N, \Delta)=1$.
If possible suppose N is not a prime, then we have the cases that N is composite and not squarefree or N is composite and squarefree. First suppose N is composite and not squarefree then $N=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$, for $p_{1}, p_{2}, \ldots, p_{s}$ are distinct primes and $s \geq 1$ with $e_{i}>1$ for some $1 \leq i \leq s$, that is $e_{i}-1>0$ then for some $1 \leq i \leq s$, therefore $S(N)=\operatorname{LCM}\left[p_{1}^{e_{1}-1}\left(p_{1}-\left(\frac{\Delta}{p_{1}}\right)\right), p_{2}^{e_{2}-1}\left(p_{2}-\right.\right.$ $\left.\left(\frac{\Delta}{p_{2}}\right), \ldots, p_{s}^{e_{s}-1}\left(p_{s}-\left(\frac{\Delta}{p_{s}}\right)\right)\right] \Rightarrow p_{i}^{e_{i}-1} \nmid S(N)$ for some $1 \leq i \leq s$. Further for Δ with $(\Delta, N)=1$, we have $N-\left(\frac{\Delta}{N}\right)=N \pm 1$ and $p_{i} \nmid N$ for all $1 \leq i \leq s$ note $p_{i} \nmid\left(N-\left(\frac{\Delta}{N}\right)\right)$ for all $1 \leq i \leq s$. Therefore as $p_{i} \mid S(N)$ for some $1 \leq i \leq s$ and $p_{i} \nmid\left(N-\left(\frac{\Delta}{N}\right)\right)$ for all $1 \leq i \leq s$ note $S(N) \nmid N-\left(\frac{\Delta}{N}\right)$ which is contradiction to $S(N) \left\lvert\, N-\left(\frac{\Delta}{N}\right)\right.$ for all Δ with $(N, \Delta)=1$, therefore N is composite and not squarefree is not possible. Now if N is composite and squarefree then $N=p_{1} \cdot p_{2} \ldots p_{s}$ for $p_{i}^{\prime} s$ are distinct primes and $s>1$, therefore writing $N=p_{i} p_{j} t$ for $p_{i} \neq p_{j}$ for some $1 \leq i, j \leq s$ and for $p_{i}>3$ we have

$$
\begin{aligned}
& P_{i}-\left(\frac{\Delta}{p_{i}}\right) \equiv 0 \quad \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right) \\
& \Rightarrow p_{i} \equiv\left(\frac{\Delta}{p_{i}}\right) \quad \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right)
\end{aligned}
$$

$\Rightarrow N=p_{i} p_{j} t \equiv p_{j} t\left(\frac{\Delta}{p_{i}}\right) \quad \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right)$
$\Rightarrow N \equiv p_{j} t\left(\frac{\Delta}{p_{i}}\right) \quad \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right)$
$\Rightarrow N-\left(\frac{\Delta}{p_{i} p_{j} t}\right) \equiv p_{j} t\left(\frac{\Delta}{p_{i}}\right)-\left(\frac{\Delta}{p_{i} p_{j} t}\right) \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right)$
$\Rightarrow N-\left(\frac{\Delta}{N}\right) \equiv p_{j} t\left(\frac{\Delta}{p_{i}}\right)-\left(\frac{\Delta}{p_{i}}\right)\left(\frac{\Delta}{p_{j} t}\right) \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right)$
$\Rightarrow N-\left(\frac{\Delta}{N}\right) \equiv\left(\frac{\Delta}{p_{i}}\right)\left(p_{j} t-\left(\frac{\Delta}{p_{j} t}\right)\right) \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right)$
$\Rightarrow p_{j} t-\left(\frac{\Delta}{p_{j} t}\right) \equiv 0 \bmod p_{i}-\left(\frac{\Delta}{p_{i}}\right)$ as $\left.p_{i}-\left(\frac{\Delta}{p_{i}}\right) \right\rvert\, N-\left(\frac{\Delta}{N}\right)$
Therefore we have $p_{i}-\left(\frac{\Delta}{p_{i}}\right) \left\lvert\, p_{j} t-\left(\frac{\Delta}{p_{j} t}\right)\right.$, for all Δ with $(\Delta, N)=1$, but note this is a contradiction as there are some Δ such that $p_{i}-\left(\frac{\Delta}{p_{i}}\right) \nmid p_{j} t-\left(\frac{\Delta}{p_{j} t}\right)$ which is seen in the following:
For a_{1}, a_{2} with $a_{1} \equiv a_{2} \bmod p_{i}$ we have for $\Delta_{1}=a_{1}^{2}-4, \Delta_{2}=a_{2}^{2}-4$ such that $\left(\frac{\Delta_{1}}{N}\right) \neq\left(\frac{\Delta_{2}}{N}\right)$, then $\left(\frac{\Delta_{1}}{p_{i}}\right)=\left(\frac{\Delta_{2}}{p_{i}}\right)$ and $\left(\frac{\Delta_{1}}{p_{j} t}\right) \neq\left(\frac{\Delta_{2}}{p_{j} t}\right)$ and we have the following cases;
(i) $\left(\frac{\Delta_{1}}{p_{i}}\right)=\left(\frac{\Delta_{2}}{p_{i}}\right)=1$ and $\left(\frac{\Delta_{1}}{p_{j} t}\right)=1,\left(\frac{\Delta_{2}}{p_{j} t}\right)=-1$.
(ii) $\left(\frac{\Delta_{1}}{p_{i}}\right)=\left(\frac{\Delta_{2}}{p_{i}}\right)=1$ and $\left(\frac{\Delta_{1}}{p_{j} t}\right)=-1,\left(\frac{\Delta_{2}}{p_{j} t}\right)=1$.
(iii) $\left(\frac{\Delta_{1}}{p_{i}}\right)=\left(\frac{\Delta_{2}}{p_{i}}\right)=-1$ and $\left(\frac{\Delta_{1}}{p_{j} t}\right)=1,\left(\frac{\Delta_{2}}{p_{j} t}\right)=-1$.
(iv) $\left(\frac{\Delta_{1}}{p_{i}}\right)=\left(\frac{\Delta_{2}}{p_{i}}\right)=-1$ and $\left(\frac{\Delta_{1}}{p_{j} t}\right)=-1,\left(\frac{\Delta_{2}}{p_{j} t}\right)=1$.
in all the cases note either $p_{i}-\left(\frac{\Delta_{1}}{p_{i}}\right) \nmid p_{j} t-\left(\frac{\Delta_{1}}{p_{j} t}\right)$ or $p_{i}-\left(\frac{\Delta_{2}}{p_{i}}\right) \left\lvert\, p_{j} t-\left(\frac{\Delta_{2}}{p_{j} t}\right)\right.$
i.e. $\left(p_{i}-1\right) \nmid\left(p_{j} t-1\right)$ or $\left(p_{i}-1\right) \nmid\left(p_{j} t+1\right)$
$\left(p_{i}-1\right) \nmid\left(p_{j} t+1\right)$ or $\left(p_{i}-1\right) \nmid\left(p_{j} t-1\right)$
$\left(p_{i}+1\right) \nmid\left(p_{j} t-1\right)$ or $\left(p_{i}+1\right) \nmid\left(p_{j} t+1\right)$
$\left(p_{i}+1\right) \nmid\left(p_{j} t+1\right)$ or $\left(p_{i}+1\right) \nmid\left(p_{j} t-1\right)$
respectively as $\left(p_{i}-1\right) \mid\left(p_{j} t-1\right)$ and $\left(p_{i}-1\right) \nmid\left(p_{j} t+1\right)$ implies $\left(p_{i}-1\right) \mid \pm 2$ which implies $p_{i}=1$ or 3 , a contradiction which implies N is not a composite and squarefree number, therefore N is prime.

In the following, an algorithm is given for evaluating Lucas sequences $\left(V_{n}(a, 1), U_{n}(a, 1)\right)$ and test for primality of N.

Algorithm 2 Evaluate $\left(V_{n}(a, 1), U_{n}(a, 1)\right)$ and test for primality of N
step 0: (Initialize) Set $N \leftarrow \frac{n}{2^{k-i}}$ where $k=\lfloor\log n\rfloor, i=0,1,2, \ldots, k$
$Y \leftarrow 1, Z \leftarrow 2$
step 1: (Value N) $N \leftarrow \frac{n}{2^{k-i}}$ and determine whether N is even or odd, if N is even skip to step 4.
step 2: set $Y \leftarrow 2 Y+1$ and $Z \leftarrow 2 Z$
step 3: $[N=n]$, if $N=n$ the algorithm terminates with Y as the answer.
step 4: $\operatorname{set} Y \leftarrow 2 Y, Z \leftarrow Y+1$ and return to step 1 .
step 5: $\left[\right.$ initialize $\left(V_{n}(a, 1), U_{n}(a, 1)\right]$ set $V_{0}(a, 1)=2, V_{1}(a, 1)=a$ and $U_{0}(a, 1)=0, U_{1}(a, 1)=1$
step 6: For i from 0 to k set $n \leftarrow x+y$
compute $V_{y+z}(a, 1) \leftarrow V_{y}(a, 1) V_{z}(a, 1)-V_{y-z}(a, 1)$
and $U_{y+z}(a, 1) \leftarrow U_{y}(a, 1) V_{z}(a, 1)-U_{y-z}(a, 1)$
step 7: compute $\left(V_{N \pm 1}(a, 1), U_{N \pm 1}(a, 1)\right) \bmod N$, if it is $\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$ then N is prime otherwise N is composite.

Example 3.4. Let $N=2883155, a=41$ then $\Delta=1677$ such that $\left(\frac{\Delta}{N}\right)=\left(\frac{1677}{2883155}\right)=-1$
Now compute $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right) \bmod N$
$\equiv\left(V_{2883155+1}(41,1), U_{2883155+1}(41,1)\right) \bmod 2883155$
$\equiv\left(V_{2883156}(41,1), U_{2883156}(41,1)\right) \bmod 2883155$
$\equiv\left(V_{276}(41,1), U_{276}(41,1)\right) \bmod 2883155$
$\equiv(80,192239) \bmod 2883155$
so, $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right) \not \equiv\left(V_{0}(a, 1), U_{0}(a, 1)\right) \bmod N$, therefore N is not a prime.
Example 3.5. Let $N=104701, a=64$ then $\Delta=4092$ such that $\left(\frac{\Delta}{N}\right)=\left(\frac{4092}{104701}\right)=1$
Now compute $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right) \bmod N$
$\equiv\left(V_{104701-1}(64,1), U_{104701-1}(64,1)\right) \bmod 104701$
$\equiv\left(V_{104700}(64,1), U_{104700}(64,1)\right) \bmod 104701$
$\equiv(2,0) \bmod 2883155$
so, $\left(V_{N-\left(\frac{\Delta}{N}\right)}(64,1), U_{N-\left(\frac{\Delta}{N}\right)}(64,1)\right) \equiv\left(V_{0}(64,1), U_{0}(64,1)\right) \bmod N$, therefore N is a prime.

Note 3.6. The primality test is independent of choice of a and Δ.

Example 3.7. List of $L(\Delta, N)$ for $\left(\frac{\Delta}{N}\right)=1$ and $\left(\frac{\Delta}{N}\right)=-1$ for composite and prime N with respect to $S(N)$ is given in the following tables depicting that the primality test for $N=33$ and 37 is independent of a and Δ.

$L(\Delta, 33)$			
$a=12, \Delta=8,\left(\frac{\Delta}{N}\right)=1$ and $S(N)=12$		$a=18, \Delta=23,\left(\frac{\Delta}{N}\right)=-1$ and $S(N)=20$	
$\left(V_{0}, U_{0}\right)$	$(2,0)$	$\left(V_{0}, U_{0}\right)$	$(2,0)$
$\left(V_{1}, U_{1}\right)$	$(12,1)$	$\left(V_{1}, U_{1}\right)$	$(18,1)$
$\left(V_{2}, U_{2}\right)$	$(10,12)$	$\left(V_{2}, U_{2}\right)$	$(25,18)$
$\left(V_{3}, U_{3}\right)$	$(9,11)$	$\left(V_{3}, U_{3}\right)$	$(3,26)$
$\left(V_{4}, U_{4}\right)$	$(32,21)$	$\left(V_{4}, U_{4}\right)$	$(29,21)$
$\left(V_{5}, U_{5}\right)$	$(12,10)$	$\left(V_{5}, U_{5}\right)$	$(24,22)$
$\left(V_{6}, U_{6}\right)$	$(13,0)$	$\left(V_{6}, U_{6}\right)$	$(7,12)$
$\left(V_{7}, U_{7}\right)$	$(12,23)$	$\left(V_{7}, U_{7}\right)$	$(3,29)$
$\left(V_{8}, U_{8}\right)$	$(32,12)$	$\left(V_{8}, U_{8}\right)$	$(14,15)$
$\left(V_{9}, U_{9}\right)$	$(9,22)$	$\left(V_{9}, U_{9}\right)$	$(18,10)$
$\left(V_{10}, U_{10}\right)$	$(10,21)$	$\left(V_{10}, U_{10}\right)$	$(13,0)$
$\left(V_{11}, U_{11}\right)$	$(12,32)$	$\left(V_{11}, U_{11}\right)$	$(19,34)$
$\left(V_{12}, U_{12}\right)$	$(2,0)$	$\left(V_{12}, U_{12}\right)$	$(14,18)$
$\left(V_{13}, U_{13}\right)$	$(12,1)$	$\left(V_{13}, U_{13}\right)$	$(3,4)$
$\left(V_{14}, U_{14}\right)$	$(10,12)$	$\left(V_{14}, U_{14}\right)$	$(7,21)$
$\left(V_{15}, U_{15}\right)$	$(9,11)$	$\left(V_{15}, U_{15}\right)$	$(24,11)$
$\left(V_{16}, U_{16}\right)$	$(32,21)$	$\left(V_{16}, U_{16}\right)$	$(29,12)$
$\left(V_{17}, U_{17}\right)$	$(12,10)$	$\left(V_{17}, U_{17}\right)$	$(3,7)$
$\left(V_{18}, U_{18}\right)$	$(13,0)$	$\left(V_{18}, U_{18}\right)$	$(25,15)$
$\left(V_{19}, U_{19}\right)$	$(12,23)$	$\left(V_{19}, U_{19}\right)$	$(18,32)$
$\left(V_{20}, U_{20}\right)$	$(32,12)$	$\left(V_{20}, U_{20}\right)$	$(2,0)$
$\left(V_{21}, U_{21}\right)$	$(9,22)$	$\left(V_{21}, U_{21}\right)$	$(18,1)$
$\left(V_{22}, U_{22}\right)$	$(10,21)$	$\left(V_{22}, U_{22}\right)$	$(25,18)$
$\left(V_{23}, U_{23}\right)$	$(12,32)$	$\left(V_{23}, U_{23}\right)$	$(3,26)$
$\left(V_{24}, U_{24}\right)$	$(2,0)$	$\left(V_{24}, U_{24}\right)$	$(29,21)$
$\left(V_{25}, U_{25}\right)$	$(12,1)$	$\left(V_{25}, U_{25}\right)$	$(24,22)$
$\left(V_{26}, U_{26}\right)$	$(10,12)$	$\left(V_{26}, U_{26}\right)$	$(7,12)$
$\left(V_{27}, U_{27}\right)$	$(9,11)$	$\left(V_{27}, U_{27}\right)$	$(3,29)$
$\left(V_{28}, U_{28}\right)$	$(32,21)$	$\left(V_{28}, U_{28}\right)$	$(14,15)$
$\left(V_{29}, U_{29}\right)$	$(12,10)$	$\left(V_{29}, U_{29}\right)$	$(18,10)$
$\left(V_{30}, U_{30}\right)$	$(13,0)$	$\left(V_{30}, U_{30}\right)$	$(13,0)$
$\left(V_{31}, U_{31}\right)$	$(12,23)$	$\left(V_{31}, U_{31}\right)$	$(18,23)$
$\left(V_{32}, U_{32}\right)$	$(32,12)$	$\left(V_{32}, U_{32}\right)$	$(14,18)$
$\left(V_{33}, U_{33}\right)$	$(9,22)$	$\left(V_{33}, U_{33}\right)$	$(3,4)$

Table 1. Values of $L(\Delta, 33)$ for $\left(\frac{\Delta}{33}\right)=1$ and $\left(\frac{\Delta}{33}\right)=-1$

$L(\Delta, 37)$			
$a=17, \Delta=26,\left(\frac{\Delta}{N}\right)=1$ and $S(N)=36$		$a=11, \Delta=6,\left(\frac{\Delta}{N}\right)=-1$ and $S(N)=38$	
$\left(V_{0}, U_{0}\right)$	$(2,0)$	$\left(V_{0}, U_{0}\right)$	$(2,0)$
$\left(V_{1}, U_{1}\right)$	$(17,1)$	$\left(V_{1}, U_{1}\right)$	$(11,1)$
$\left(V_{2}, U_{2}\right)$	$(28,17)$	$\left(V_{2}, U_{2}\right)$	$(8,11)$
$\left(V_{3}, U_{3}\right)$	$(15,29)$	$\left(V_{3}, U_{3}\right)$	$(3,9)$
$\left(V_{4}, U_{4}\right)$	$(5,32)$	$\left(V_{4}, U_{4}\right)$	$(25,14)$
$\left(V_{5}, U_{5}\right)$	$(33,34)$	$\left(V_{5}, U_{5}\right)$	$(13,34)$
$\left(V_{6}, U_{6}\right)$	$(1,28)$	$\left(V_{6}, U_{6}\right)$	$(7,27)$
$\left(V_{7}, U_{7}\right)$	$(21,35)$	$\left(V_{7}, U_{7}\right)$	$(27,4)$
$\left(V_{8}, U_{8}\right)$	$(23,12)$	$\left(V_{8}, U_{8}\right)$	$(31,17)$
$\left(V_{9}, U_{9}\right)$	$(0,21)$	$\left(V_{9}, U_{9}\right)$	$(18,35)$
$\left(V_{10}, U_{10}\right)$	$(14,12)$	$\left(V_{10}, U_{10}\right)$	$(19,35)$
$\left(V_{11}, U_{11}\right)$	$(16,35)$	$\left(V_{11}, U_{11}\right)$	$(6,7)$
$\left(V_{12}, U_{12}\right)$	$(36,28)$	$\left(V_{12}, U_{12}\right)$	$(10,4)$
$\left(V_{13}, U_{13}\right)$	$(4,34)$	$\left(V_{13}, U_{13}\right)$	$(30,27)$
$\left(V_{14}, U_{14}\right)$	$(32,32)$	$\left(V_{14}, U_{14}\right)$	$(24,34)$
$\left(V_{15}, U_{15}\right)$	$(22,29)$	$\left(V_{15}, U_{15}\right)$	$(12,14)$
$\left(V_{16}, U_{16}\right)$	$(9,27)$	$\left(V_{16}, U_{16}\right)$	$(34,9)$
$\left(V_{17}, U_{17}\right)$	$(20,1)$	$\left(V_{17}, U_{17}\right)$	$(29,11)$
$\left(V_{18}, U_{18}\right)$	$(35,0)$	$\left(V_{18}, U_{18}\right)$	$(26,1)$
$\left(V_{19}, U_{19}\right)$	$(20,36)$	$\left(V_{19}, U_{19}\right)$	$(35,0)$
$\left(V_{20}, U_{20}\right)$	$(9,3)$	$\left(V_{20}, U_{20}\right)$	$(26,36)$
$\left(V_{21}, U_{21}\right)$	$(22,8)$	$\left(V_{21}, U_{21}\right)$	$(29,26)$
$\left(V_{22}, U_{22}\right)$	$(32,5)$	$\left(V_{22}, U_{22}\right)$	$(34,28)$
$\left(V_{23}, U_{23}\right)$	$(4,3)$	$\left(V_{23}, U_{23}\right)$	$(12,23)$
$\left(V_{24}, U_{24}\right)$	$(36,9)$	$\left(V_{24}, U_{24}\right)$	$(24,3)$
$\left(V_{25}, U_{25}\right)$	$(16,2)$	$\left(V_{25}, U_{25}\right)$	$(30,10)$
$\left(V_{26}, U_{26}\right)$	$(14,25)$	$\left(V_{26}, U_{26}\right)$	$(10,33)$
$\left(V_{27}, U_{27}\right)$	$(0,16)$	$\left(V_{27}, U_{27}\right)$	$(6,20)$
$\left(V_{28}, U_{28}\right)$	$(23,25)$	$\left(V_{28}, U_{28}\right)$	$(19,2)$
$\left(V_{29}, U_{29}\right)$	$(21,2)$	$\left(V_{29}, U_{29}\right)$	$(18,2)$
$\left(V_{30}, U_{30}\right)$	$(1,9)$	$\left(V_{30}, U_{30}\right)$	$(31,20)$
$\left(V_{31}, U_{31}\right)$	$(33,3)$	$\left(V_{31}, U_{31}\right)$	$(27,33)$
$\left(V_{32}, U_{32}\right)$	$(5,5)$	$\left(V_{32}, U_{32}\right)$	$(7,10)$
$\left(V_{33}, U_{33}\right)$	$(15,8)$	$\left(V_{33}, U_{33}\right)$	$(13,3)$
$\left(V_{34}, U_{34}\right)$	$(28,20)$	$\left(V_{34}, U_{34}\right)$	$(25,23)$
$\left(V_{35}, U_{35}\right)$	$(17,1)$	$\left(V_{35}, U_{35}\right)$	$(3,28)$
$\left(V_{36}, U_{36}\right)$	$(2,0)$	$\left(V_{36}, U_{36}\right)$	$(8,26)$
$\left(V_{37}, U_{37}\right)$	$(17,1)$	$\left(V_{37}, U_{37}\right)$	$(11,36)$
$\left(V_{38}, U_{38}\right)$	$(28,17)$	$\left(V_{38}, U_{38}\right)$	$(2,0)$

TABLE 2. Values of $L(\Delta, 37)$ for $\left(\frac{\Delta}{37}\right)=1$ and $\left(\frac{\Delta}{37}\right)=-1$

In table 1 the shaded cells are depicting that the values of $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right)$ are not equal to $\left(V_{0}(a, 1), U_{0}(a, 1)\right)$ for composite $N=33$, for all the choices of a and Δ and in table 2 the shaded cells are depicting that the values of $\left(V_{N-\left(\frac{\Delta}{N}\right)}(a, 1), U_{N-\left(\frac{\Delta}{N}\right)}(a, 1)\right)$ are equal to $\left(V_{0}(a, 1), U_{0}(a, 1)\right)$ for prime $N=37$, for all the choices of a and Δ.

4. Conclusion

There are several studies on Lucas sequences and their applications [7] [9]. Primality tests with Lucas sequences by Lucas and Lehmer given in [9] are based on factorization of $N \pm 1$. In this paper we proposed a primality test with pair of Lucas sequences $\left(V_{n}(a, 1), U_{n}(a, 1)\right)$ $\bmod N$ from the set $L(\Delta, N)$ of $S(N)$ distinct Lucas sequences for $S(N)=\operatorname{LCM}\left[\left\{p_{i}^{e_{i}-1}\left(p_{i}-\right.\right.\right.$ $\left.\left.\left.\left(\frac{\Delta}{p_{i}}\right)\right)\right\}_{i=1}^{s}\right]$. An algorithm for primality test given, employing the addition chain as in [11] for computation of $\left(V_{n}(a, 1), U_{n}(a, 1)\right)$.

Acknowledgements

The financial support received for this research work under the scheme of Rajiv Gandhi National Fellowship from the University Grants Commission, India, is gratefully acknowledged by the second author.

CONFLICT OF InTERESTS

The author(s) declare that there is no conflict of interests.

References

[1] D.E. Knuth, The art of computer programming, Volume II: Seminumerical Algorithms, Third Edition, Addison-Wesley, Reading, 1998.
[2] D.H. Lehmer, An Extended theory of Lucas's functions, Ann. Math. 31 (1930), 419-448.
[3] L.E. Dickson, History of the theory of numbers, Textually unaltered reprint, Chelsea Publ, New York, 1966.
[4] P. Smith, M. Lennon, LUC: A new public-key system, Proceedings of the IFIP TC11, Ninth International Conference on Information Security: Computer Security, Toronto, May 12-14, 1993, 103-117.
[5] P.L. Montgomery, Evaluating recurrences of the form $X_{m+n}=f\left(X_{m}, X_{n}, X_{m-n}\right)$ via Lucas chains, 1992. https://cr.yp.to/bib/1992/montgomery-lucas.pdf
[6] H.C. Williams, A $(P+1)$ Method of factoring, Math. Comput. 39 (1982), 225-234.
[7] H. Riesel, Prime numbers and computer methods for factorization, Birkhäser, Boston, 2012.
[8] J. Brillhart, D.H. Lehmer, J.L. Selfridge, New Primality Criteria and Factorization of $2^{m} \pm 1$, Math. Comput. 29 (1975), 620-647.
[9] P. Ribenboim, The little book of bigger primes, 2nd ed, Springer, New York, 2004.
[10] P.A. Kameswari, B. Ravitheja, Encryption Using Lucas sequences $L(\Delta, p q)$ With Arithmetic on $L(\Delta, p q)$ via $L(\Delta, p)$ and $L(\Delta, q)$, Int. J. Sci. Res. Math. Stat. Sci. 6 (2019), 178-186.
[11] P.A. Kameswari, B. Ravitheja, Addition Chain for Lucas Sequences with Fast Computation Method, Int. J. Appl. Eng. Res. 13 (2018), 9413-9419.
[12] T.M. Apostol, Introduction to analytic number theory, Springer, New York, 2011.
[13] W. More, Probable Prime Tests Using Lucas Sequences, in: G.E. Bergum, A.N. Philippou, A.F. Horadam (Eds.), Applications of Fibonacci Numbers, Springer Netherlands, Dordrecht, 1998: pp. 283-289.

[^0]: *Corresponding author
 E-mail address: panuradhakameswari@yahoo.in
 Received August 8, 2020

