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1. Introduction

It is an important tool for studying the solutions of single-valued or multi-valued

mapping equation to use differentiability and derivate of mapping. The early Frechet

derivate[1] was widely used for the solutions and the eigenvectors of single-valued map-

ping equation. The concept of semi-derivate was introduced by Petryshyn[2] in 1988
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and was used to study the positive solutions of single-valued strict set contractive map-

ping equation. In 1991, Yang [3] introduced the concept of weak demi-derivative, which

abolished the restriction conditions on semi-derivative, such as boundedness, continu-

ity, monotonousness. By using weak demi-derivative, Yang studied the corresponding

problems of solutions, positive solutions and multiple positive solutions of 1-set contrac-

tive mapping equation. To investigate the existence for positive solutions of multi-valued

strict set contractive mapping equation, in 1995, Yang [4] introduced the concept of quasi-

derivative for multi-valued mapping, which extended the concept of weak semi-derivative

of single-valued mapping. Motivated by the work of Yang, in this paper, we study the exis-

tence problems for multiple positive solutions and eigenvectors of the following set-valued

mapping equation

θ ∈ T (x)− x, (1.1)

by using quasi-derivative of multi-valued mapping under some suitable boundary condi-

tions. These works are very interesting in theory and applications. The results presented

in this paper improve and extend the corresponding results in [2-8].

2. Preliminaries

For the sake of convenience, throughout of this paper, we assume that X is a Banach

space with a cone K, K0 = K \{θ} 6= ∅, K∞ = K∪{∞}. Setting I = [0, 1], CK = C∩K,

“ ≤ ” denotes the order on X induced by K. C(X), cf(X), B(X), K(X) denote the

families of nonempty closed subsets, closed convex subsets, bounded subsets, compact

subsets of X, respectively. The boundary and closure of C relative to K are denoted

by ∂CK and C̄K , respectively. Denoting Ωr = {x ∈ X; ‖x‖ < r}. S((1.1), E) and

S+((1.1), E) denote the set of all solutions and set of positive solutions for equation (1.1)

in E, respectively.

We first recall some definitions and some known results.

Let C ⊂ X, T : C → 2X

(i) T is said to be a positively homogeneous mapping if T (λx) = λT (x) (λ > 0, x ∈ C).
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(ii) For u ∈ X, mapping T u : C−u→ 2X is called the u-parallel transformation of T ,

if

T u(x′) = T (u+ x′)− u (x′ ∈ C − u)

(iii) x ∈ C is said to be a u-eigenvector of T if, x− u is eigenvector of T u, i.e.,

tx′ ∈ T u(x′) (x′ = x− u 6= θ)

for some number t, where t is said to be the corresponding u-eigenvalue of T .

Definition 2.1.[4] Let T : K → cf(X).

(i) T is said to be quasi-differentiable at θ along K if T (θ) ∈ B(X) and there exists a

positively homogeneous and upper semi-continuous (in short u.s.c ) mapping T ′θ : K →

cf(X) such that

T (x) = T (θ) + T ′θ(x) + w(θ, x) (x ∈ K), (2.1)

where w(θ, ·) : K → 2X satisfies

lim sup
x∈K,‖x‖→0

{‖y‖
‖x‖

; y ∈ w(θ, x)} = 0. (2.2)

where T ′θ is said to be a quasi-derivative of T at θ along K.

(ii) T is said to be quasi-differentiable at ∞ along K if T (θ) ∈ B(X) and there exists a

positively homogeneous mapping T ′∞ : K → cf(X) such that

T (x) = T ′∞(x) + w(∞, x) (x ∈ K), (2.3)

where w(∞, ·) : K → 2Xsatisfies

lim sup
x∈K,‖x‖→∞

{‖y‖
‖x‖

; y ∈ w(∞, x)} = 0. (2.4)

where T ′∞ is said to be a quasi-derivative of T at ∞ along K.

Definition 2.2. Let u ∈ K, C be a open subset of X. g : C̄K → 2X is said to

satisfy boundary condition (MS; ∂CK , u) if there exists a positive homogeneous function

l : X → [0,+∞) such that

l−1(0) = {θ}, l(y − x) 6= l(y − u)− l(x− u), (2.5)
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where x ∈ ∂CK , and either y ∈ g(x) \ C̄K as u ∈ CK or y ∈ g(x) as u 6∈ CK .

Let U be a bounded open subset of X with U ∩K 6= ∅ , T : UK → cf(K) be a u.s.c

strict set contractive mapping with x 6∈ T (x) (x ∈ ∂UK). The fixed point index iK(T, U)

is well defined and has the following properties[2,7]

(i) If iK(T, U) 6= 0 , then equation (1.1) has a solution in UK ;

(ii) For mapping x̂0 with constant value x0, if x0 ∈ UK then iK(x̂0, U) = 1;

(iii) Let U1, U2 be two open and bounded subsets of X such that U1 ∪ U2 ⊂ UK

and U1 ∩ U2 = ∅, if x 6= T (x) for x ∈ ∂U1K ∪ ∂U2K , then iK(T, U1 ∪ U2) =

iK(T, U1) + iK(T, U2)

(iv) Let H : [0, 1] × ŪK → cf(K) be a u.s.c mapping and HI(·) : ŪK → cf(K).

If HI(x) = ∪t∈IH(t, x) is a strict set contractive mapping and for all (t, x) ∈

[0, 1]× ∂UK , x 6∈ H(t, x), then iK(H(1, ·), U) = iK(H(0, ·), U).

Lemma 2.1.[4] Suppose that T : K → cf(X) is a u.s.c strict set contractive mapping,

a = θ or a =∞, T ′a is the quasi-derivate of T at a and 1 is not eigenvalue of T ′a. Then

(i) The solution set S((1.1), E) of the equation (1.1) in E is compact, where E = K

when a =∞, or E ∈ B(K) ∩ C(K) when a = θ.

(ii) Let T (K) ⊂ K, and let θ ∈ T (θ) when a = θ. Then there exists ρ > 0 such that,

if a =∞, then

iK(T,Ωr
K) = iK(T ′∞,Ω

r
K) (∀r > ρ), (2.6)

if a = θ, then either there exists a positive solution x of equation (1.1) satisfying ‖x‖ < r

for any r ∈ (0, ρ), or

iK(T,Ωr
K) = iK(T ′θ,Ω

r
K) (∀r ∈ (0, ρ)). (2.7)

Definition 2.3. Let T : K → 2X , L ⊂ K. T is said to be quasi-increasing along L if, for

any x, y ∈ L and any real numbers β and γ satisfying the following conditions

(i) x > y, (i.e., x− y ∈ K0);

(ii) γx, βy ∈ L;

(iii) γx(≥)T (x) and T (y)(≥)βy, the relation γx ≥ βy holds.
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Denote EV (T,A, u, 1) and EV (T,A, u, 1+) are the sets of all (u)-eigenvectors of T in A

with respect to (u)-eigenvalues= 1 or > 1, respectively. For A ∈ 2X and a ∈ X , notice

the fact that a ≥ b (or b ≥ a) for some b ∈ A by a(≥)A (or A(≥)a)

Setting

F (K,−) = {T : K → cf(X),there exist ρ > 0 and u ∈ K such that EV (T, ∂Ωρ
K , u, 1) ∪

EV (T, ∂Ωρ
K , u, 1+) = ∅};

F (K,+) = {T : K → cf(X),there exist ρ > 0, η > 1 and u ∈ K0 such that

EV (T, ∂Ωρ
K , θ, 1) = ∅, T (u)(≥)ηu and T is quasi-increasing along L(u)}

where

L(u) = {x ∈ K;x ≥ λuforsomeλ > 0}. (2.8)

Lemma 2.2.[4] Suppose that T : K → cf(X) is a u.s.c positively homogeneous strict set

contractive mapping.

(i) If T ∈ F (K,−), then iK(T,Ωr
K) = 1 (r > 0).

(ii) If T ∈ F (K,+), then iK(T,Ωr
K) = 0 (r > 0).

3. Main results

Lemma 3.1. Let U be a open subset of X and T : UK → cf(K) be a u.s.c strict set

contractive mapping. Then the following propositions hold.

(i) If U is a convex subset of X, x 6∈ T (x) (x ∈ ∂UK) and there exists a u ∈ UK such

that T satisfies boundary condition (MS; ∂UK , u), then iK(T, U) = 1.

(ii) If there exists u ∈ K \ ŪK such that T satisfies boundary condition (MS; ∂UK , u),

then iK(T, U) = 0.

Proof. Define H : I × ŪK → cf(K) as follows

H(t, x) = (1− t)u+ tT (x) ((t, x) ∈ I × ŪK). (3.1)

If condition (i) holds, then

x 6∈ H(t, x) ((t, x) ∈ I × ∂UK). (3.2)
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Otherwise, there exist x0 ∈ ∂UK and t0 ∈ I such that x0 ∈ H(t0, x0). Let y0 ∈ T (x0)

such that x0 = (1 − t0)u + t0y0. Obviously, t0 6= 0, 1, and so y0 6∈ ŪK . Suppose that

l : X → [0,+∞) is a positive homogeneous function satisfying (2.5). We have l(y0−x0) =

l[(y0 − u)− (x0 − u)] = l[( 1
t0
− 1)(x0 − u)] = ( 1

t0
− 1)l(x0 − u) = 1

t0
l(x0 − u)− l(x0 − u) =

l(y0 − u)− l(x0 − u), which is a contradiction. Since u ∈ UK , we have

iK(T, U) = iK(H(1, ·), U) = iK(H(0, ·), U) = iK(û, U) = 1

If condition (ii) holds, then (3.2) can be verified similarly. Since u 6∈ UK , it follows that

iK(T, U) = iK(û, U) = 0. This completes the proof.

Theorem 3.1. Suppose that T : K → cf(K) is a u.s.c strict set contractive mapping

such that T has a quasi-derivative T ′a at a = θ,∞ and θ ∈ T (θ). If the following two

conditions are satisfied

(i) T ′a ∈ F (K,+) (a = θ,∞);

(ii) there exist bounded convex open neighborhood Ω of θ and u ∈ ΩK such that

x 6∈ T (x) as x ∈ ∂ΩK and T satisfies boundary condition (MS; ∂ΩK , u).

then the equation (1.1) has at least two positive solutions in K.

Proof. It follows from condition (ii) and Lemma 3.1 that iK(T,ΩK) = 1.

For a =∞, it follows from Lemma 2.1 that there exists ρ1 > 0 such that iK(T,Ωr
K) =

iK(T ′∞,Ω
r
K) ( ∀r > ρ1).

For a = θ, there exists ρ2 > 0 such that either (I) there exists xr ∈ Ωr
K \ {θ} such that

xr ∈ T (xr) or (II) iK(T,Ωr
K) = iK(T ′θ,Ω

r
K) (∀r ∈ (0, ρ2)).

For the case of (II), from Lemma 2.2, we may take R > r > 0 such that Ω̄r ⊂ Ω ⊂

Ω̄ ⊂ ΩR and iK(T,Ωr
K) = iK(T ′θ,Ω

r
K) = 0 and iK(T,ΩR

K) = iK(T ′∞,Ω
R
K) = 0. Setting

A = ΩR
K \ Ω̄K , B = Ω \ Ω̄r

K , respectively. Then iK(T,A) = −1 and iK(T,B) = 1.

Therefore, equation (1.1) has two solutions x1, x2, which one is in A, another is in B.

Obviously, x1 and x2 are positive solutions of the equation (1.1) in K.

For the case of (I), equation (1.1) has also two positive solutions, one is xr in Ωr
K ,

another is in ΩK \ Ω̄r
K . This completes the proof.
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Theorem 3.2. Let T be the same as in Theorem 3.1. If the following two conditions are

satisfied

(i) T ′a ∈ F (K,−) (a = θ,∞);

(ii) there exist bounded convex open neighborhood Ω of θ and u ∈ K \ Ω̄K such that

T satisfies boundary condition (MS; ∂ΩK , u).

then equation (1.1) has at least two positive solutions in K.

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1, we omit it.

Theorem 3.3. Let T : K → cf(K) be a u.s.c strict set contractive mapping such that

T has a quasi-derivative T ′a at a = θ, ∞ and T ′θ ∈ F (K,−), T ′∞ ∈ F (K,+) and θ ∈ T (θ).

Suppose that T satisfies the boundary condition (MS; ∂ΩK , u) and the equation (1.1)

does not have any solutions on ∂ΩK . If there exist d > c > 0, bounded convex open

neighborhood Ω of θ, u ∈ Ωd
K and a continuous concave function ϕ : K → R+ = [0,+∞)

such that

(i) ϕ(u) > c and ϕ(x) ≤ ‖x‖ (x ∈ ΩK , );

(ii) Ωd ⊂ Ω

(iii) If ϕ(x) = c then ϕ(y) > c where either x ∈ Ω̄d
K and y ∈ T (x) or x ∈ Ω̄K \ Ω̄d

K ,

y ∈ T (x) and ‖y‖ > d.

then equation (1.1) has at least four solutions in K where at least three of them are

positive solutions.

Where ϕ is said to be concave function if, for any x, y ∈ K and t ∈ [0, 1], ϕ(tx + (1−

t)y) ≥ tϕ(x) + (1− t)ϕ(y).

In order to prove Theorem 3.3, we need the following lemma.

Lemma 3.2. Let T be a u.s.c strict set contractive mapping from K to cf(x) such that

T has a quasi-derivative T ′a at a = θ or ∞. And let θ is a isolated solution of equation

(1.1) (that means the θ is a solution of equation (1.1) and there exists a neighborhood N

of θ such that no solution is in N \ {θ}). Then

(i) If T ′a ∈ F (K,−), there exists ρ > 0 such that iK(T,Ωr
K) = 1;
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(ii) If T ′a ∈ F (K,+), there exists ρ > 0 such that iK(T,Ωr
K) = 0,

where r satisfies

r > ρ (a =∞) or r ∈ (0, ρ) (a = θ). (3.3)

Proof. It follows from Lemma 2.1 that there exists ρ > 0 such that iK(T,Ωr
K) =

iK(T ′a,Ω
r
K) where r satisfies (3.3). From Lemma 2.2, if T ′a ∈ F (K,−), then iK(T,Ωr

K) =

iK(T ′a,Ω
r
K) = 1; if T ′a ∈ F (K,+), then iK(T,Ωr

K) = iK(T ′a,Ω
r
K) = 0. This completes the

proof.

The proof of Theorem 3.3.

If θ is not isolated solution of equation (1.1), then the conclusions of Theorem 3.3 is

true automatically . If θ is a isolated solution of equation (1.1), from Lemma 3.2, there

exists ρ > 0 such that

iK(T,Ωr
K) = 1 (a =∞); (3.4)

iK(T,Ωr
K) = 0 (a = θ). (3.5)

where the r satisfies (3.3). Therefore, we may take R > c > r > 0 such that Ω̄r
K ⊂ ΩK ⊂

Ω̄K ⊂ ΩR
K and iK(T,Ωr

K) = 1, iK(T,ΩR
K) = 0.

On the other hand, it follows from Lemma 3.1 that iK(T,ΩK) = 1. Setting

D = {x ∈ ΩK ;ϕ(x) > c}. (3.6)

Clearly, D 6= ∅ (because u ∈ D) and θ 6∈ D. In addition, it is easy to show that D is

convex open subset with respect to K and D ∩ Ωr = ∅.

Define H : D̄ × I → cf(K) by

H(x, t) = (1− t)u+ tT (x) ((x, t) ∈ D̄ × I). (3.7)

Now we prove

x 6∈ H(x, t) (x ∈ ∂DK , t ∈ I). (3.8)

Otherwise, there exist x0 ∈ ∂DK and t0 ∈ I such that x0 = (1 − t0)u + t0T (x0). Let

y0 ∈ T (x0) such that x0 = (1− t0)u + t0y0. If x0 ∈ ∂ΩK then x0 6∈ T (x0), thus t0 6= 0, 1.

Setting m = 1
t0
> 1, we have m(x0−u) = y0−u. Therefore, for any positive homogeneous

function l : X → [0,+∞) satisfying (2.5), we have l(y0 − x0) = l[(m − 1)(x0 − u)] =
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l(y0−u)− l(x0−u). This contradicts with the boundary condition (MS; ∂ΩK , u). Hence,

x0 ∈ ΩK and so ϕ(x0) = c.

On the other hand, if x0 ∈ Ω̄d
K , then ϕ(y0) > c, thus, ϕ(x0) ≥ (1− t0)ϕ(u) + t0ϕ(y0) >

c, which is a contradiction; if x0 6∈ Ω̄d
K , then y0 6∈ Ω̄d

K , and ϕ(x0) > c. This also

is a contradiction. Hence, (3.8) is true. Therefore, iK(T,DK) = iK(H(·, 1), DK) =

iK(H(·, 0), DK) = 1. It implies that there exists x1 ∈ DK , which is a solution of equation

(1.1).

Putting A = ΩR
K \ Ω̄K , B = ΩK \ (Ω̄r

K ∪D̄K). Obviously, iK(T,A) = −1 and iK(T,B) =

−1. Hence, there exist x2 ∈ A and x3 ∈ B which are solutions of equation (1.1).

In addition, it follows from iK(T,Ωr
K) = 1 that there exists x4 ∈ Ωr

K , which is solution

of equation (1.1). This completes the proof.

Now, we further study the multiple positive solutions problems under other boundary

condition.

Let u ∈ K0, Ω be an open subset of X, T : K → cf(X).

(i) T is said to satisfy boundary condition (XC, ∂ΩK) if, y 6≥ x (x ∈ ∂ΩK , y ∈

T (x) \ ΩK).

(ii) T is said to satisfy boundary condition (QX, ∂ΩK , u) if, y 6< x (x ∈ ∂ΩK ∩ L(u),

y ∈ T (x)), where L(u) is defined by (2.8).

Lemma 3.3. Let Ω be a bounded convex open neighborhood of θ, u ∈ K0 and T : Ω̄K →

cf(K) be a u.s.c strict set contractive mapping with x 6∈ T (x) (x ∈ ∂ΩK).

(i) If T satisfies boundary condition (XC, ∂ΩK), then iK(T,ΩK) = 1;

(ii) If T satisfies boundary condition (QX, ∂ΩK , u), then iK(T,ΩK) = 0.

Proof. If T satisfies boundary condition (XC, ∂ΩK), we define H : ΩK × I → cf(K) by

H(x, t) = tT (x). It is easy to see that for each t ∈ I, H(·, t) is a u.s.c strict set contractive

mapping. Now we verify that

x 6∈ H(x, t) (x ∈ ∂ΩK , t ∈ I). (3.9)
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Otherwise, there exist x0 ∈ ∂ΩK and t0 ∈ I such that x0 ∈ t0T (x0). Thus we may

take y0 ∈ T (x0) such that x0 = t0y0. Clearly, t0 6= 0, 1. Setting m = 1
t0
> 1, we have

y0 = mx0 ≥ x0 and y0 ∈ T (x0) \ Ω̄K . This is contradiction with boundary condition

(XC, ∂ΩK). It implies that (3.9) is true. Thus, iK(T,ΩK) = iK(θ̂,ΩK) = 1.

If T satisfies boundary condition (QX, ∂ΩK , u), we can prove that x − βu 6∈ T (x)

for x ∈ ∂ΩK ∩ L(u), β > 0. Otherwise, there exist x ∈ ∂ΩK ∩ L(u), β > 0 such that

x − βu 6∈ T (x). Taking y ∈ T (x) such that x − βu = y, i.e., x = βu + y > y. This is

contradiction with boundary condition (QX, ∂ΩK , u). It follows from Lemma 4 of [7] that

iK(T,ΩK) = 0. This completes the proof.

Theorem 3.4. Suppose that T : K → cf(K) is a u.s.c strict set contractive mapping and

θ ∈ T (θ) and T has a quasi-derivative T ′a at a = θ,∞. If one of the following conditions

is satisfied

(i) T ′a ∈ F (K,−) and there exist a bounded convex open neighborhood Ω of θ and

u ∈ K0 such that T satisfies boundary condition (QX, ∂ΩK , u)

(ii) T ′a ∈ F (K,+) and there exists a bounded convex open neighborhood Ω of θ such

that T satisfies boundary condition (XC, ∂ΩK).

then the equation (1.1) has positive solutions.

Proof. Without loss of generality, we assume that θ is isolated solution of equation (1.1)

and x ∈ ∂ΩK such that x /∈ T (x).

If the condition (i) is satisfied, it follows from Lemma 3.2 that there exists ρ > 0 such

that iK(T,Ωr) = iK(T ′a,Ω
r) = 1 as r satisfies (3.3), where a = θ or∞. We may take r > 0

such that either Ω
r

K ⊂ ΩK as a = θ or ΩK ⊂ Ωr
K as a = ∞ and iK(T,Ωr

K) = 1. On the

other hand, it follows from (ii) of Lemma 3.3 that iK(T,ΩK) = 0. Letting A = ΩK \ Ω
r

K

as a = θ or A = Ωr
K \ ΩK as a =∞. We have

iK(T,A) = {
−1 (a = θ)

1 (a =∞)

This implies that the equation (1.1) has positive solutions in A.
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Similarly, it can be proved that there exist positive solutions of equation (1.1) when

the condition (ii) is satisfied. The proof is completed.

Theorem 3.5. Suppose that T : K → cf(K) is a u.s.c strict set contractive mapping

such that θ ∈ T (θ) and T has a quasi-derivative T ′a at a = θ,∞. If there exists a bounded

convex open neighborhood Ω of θ such that x 6∈ T (x)) as x ∈ ∂ΩK and one of the following

conditions is satisfied

(i) T ′a ∈ F (K,−) and there exists u ∈ K0 such that T satisfies boundary condition

(QX, ∂ΩK , u)

(ii) T ′a ∈ F (K,+) and T satisfies boundary condition (XC, ∂ΩK).

then the equation (1.1) has at least two positive solutions.

Proof. Without loss of generality, we assume that θ is isolated solution of equation

(1.1) in K. If condition (i) is satisfied, by Lemma 2.1, we may take R > r > 0 such

that Ω̄r
K ⊂ ΩK ⊂ Ω̄K ⊂ ΩR

K and iK(T,Ωr
K) = iK(T,ΩR

K) = 1. On the other hand, it

follows from Lemma 3.3 that iK(T,ΩK) = 0. This implies that iK(T,ΩK \ Ω̄r
K) = −1 and

iK(T,ΩR
K \ Ω̄) = 1. Therefore, there exist x1 ∈ ΩK \ Ω̄r

K and x2 ∈ ΩR
K \ Ω̄ which are two

positive solutions of equation (1.1). Similarly, we can prove that there exist two positive

solutions of equation (1.1) when the condition (ii) is satisfied. The proof is completed.

Theorem 3.6. Let R > r > 0 and T : ΩR
K → cf(K) be a u.s.c strict set contractive

mapping which satisfies boundary conditions (XC, ∂ΩR
K) and (XC, ∂Ωr

K). If there exist

u ∈ Ω̄R
K , c > 0 and a concave continuous function ϕ : K → R+ with ϕ(u) > 0, and the

following conditions are satisfied

(i) When x ∈ Ω̄R
K with ϕ(x) ≥ c, ϕ(y) > c for any y ∈ T (x).

(ii) ϕ(x) ≤ c as x ∈ Ω̄r
K

(iii) EV (T, ∂ΩR
K , u,+1) = ∅.

then equation (1.1) has at least two positive solutions in Ω̄R
K \ Ωr

K and if equation (1.1)

does not have solutions in ∂Ωr
K , then equation (1.1) has at least three solutions in Ω̄R

K

where at least two of them are positive solutions.
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Proof. 1. Denote B = Ω̄R. Define Fu : K → cf(K) by Fu(x) = T (B̂u(x)), where B̂u is

radial retraction mapping of B with respected to u, i.e.,

B̂u(x) = {
x x ∈ B

h−1(x− u)x+ (1− h−1(x− u))u x 6∈ B

where h is Minkowskii function of B − u. Clearly, Fu is a u.s.c strictly set contractive

mapping and Fu(x) = T (x) as x ∈ BK .

Now we show that Fu does not have fixed points in K \B when EV (Fu, ∂B, u, 1+) = ∅.

Otherwise, there exists x0 ∈ K \ B such that x0 ∈ Fu(x0) = T (B̂u(x0)). Setting x̄ =

B̂u(x0) = λ0x0 + (1− λ0)u (λ0 = h−1(x0 − u) < 1). Thus, x̄ ∈ ∂BK and x̄ = B̂u(x̄), and

so Fu(x̄) = T (x̄). On the other hand, since x0 = 1
λ0

[x̄+ (λ0− 1)u], 1
λ0

(x̄− u) ∈ Fu(x̄)− u.

This is a contradiction with EV (Fu, ∂B, u, 1+) = ∅.

2. Taking l > max{R, S}, where S = Sup{‖y‖;x ∈ BK , y ∈ T (x)}. Suppose that

F is a restriction of Fu on Ω̄l
K . We can prove that F : Ω̄l

K → Ω̄l
K is a u.s.c strictly

set contractive mapping such that x 6∈ F (x) as x ∈ ∂Ωl
K . In fact, it is easy to see that

F : Ω̄l
K → Ω̄l

K is a u.s.c strictly set contractive mapping. If there exists x ∈ ∂Ωl
K such that

x ∈ F (x) = T (x̄) where x̄ = B̂u(x) = h−1(x−u)x+(1−h−1(x−u))u, then x̄ ∈ ∂BK = ∂ΩR
K

and h(x−u)(x̄−u) ∈ T (x̄)−u. Taking y ∈ T (x̄) such that h(x−u)(x̄−u) = y−u, then

y 6∈ Ω̄R
K and y− u > x̄− u. This contradicts with the condition that T satisfies condition

(XC, ∂ΩR
K). It follows that iK(F,Ωl

K) = 1.

3. Denote A = {x ∈ Ω̄l
K ;ϕ(x) > c}. It follows from u ∈ A that A 6= ∅. Obviously,

A is an open subset with respect to K and A ∩ Ω̄r
K = ∅. Define H : A × I → cf(K)

by H(x, t) = tu + (1 − t)F (x). It is easy to prove that x 6∈ H(x, t) as x ∈ ∂A, t ∈ I.

Otherwise, there exist x0 ∈ ∂A, y0 ∈ F (x0) and t0 ∈ I such that x0 = t0u + (1 − t0)y0.

This implies that ϕ(x0) ≥ t0ϕ(u)+(1−t0)ϕ(y0) > c. It contradicts with ϕ(x0) = c. Thus,

ik(F,A) = 1, and so there exists x1 ∈ A such that x1 ∈ F (x1).

4. If equation (1.1) has solution x′1 ∈ ∂Ωr
K , then x1 and x′1 are positive fixed points of

F , thus the conclusions of Theorem are true. Now we assume that equation (1.1) does

not have any solutions in ∂Ωr. Thus, we have iK(F,A) = 1, and so there exists x2 ∈ Ωr
K

such that x2 ∈ T (x2).
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5. Denote U = Ωl
K \ (Ω̄r

K ∪ Ā). Since iK(T,Ωr
K) = 1 and A ∩ Ωr

K = ∅, we have

iK(F,U) = −1. Hence, there exists x3 ∈ U such that x3 ∈ T (x3). It follows from

EV (F, ∂B, u.1+) = ∅ that x1, x3 ∈ BK .

In conclusion, x1, x2 and x3 are solutions of equation(1.1), where at least x1 and x3 are

positive solutions. This completes the proof.

Theorem 3.7. Let T : K → cf(K) be a u.s.c strict set contractive mapping such that

T has quasi-derivative T ′a at a = θ,∞, T ′θ ∈ F (K,−), T ′∞ ∈ F (K,+) and θ ∈ T (θ).

Suppose that there exist d > c > 0 and a bounded convex open neighborhood Ω of θ and

u ∈ Ωd \ Ω. If T satisfies boundary conditions (XC, ∂ΩK), equation (1.1) does not have

any solutions on ∂ΩK and there exists a concave continuous function ϕ : K → R+ such

that the following conditions are satisfied

(i) ϕ(u) > c and ϕ(x) ≤ ‖x‖ as x ∈ ΩK ;

(ii) ϕ(y) > c as x ∈ Φ1 ∪ Φ2, y ∈ T (x) and ‖y‖ > d,

where Φ1 = {x ∈ Ω̄d
K ;ϕ(x) = c} and Φ2 = {x ∈ Ω̄K \ Ωd

K ;ϕ(x) = c}, respectively. Then

equation (1.1) has at least four solutions in K, where at least three of them are positive

solutions.

Proof. Without loss generality, we assume that θ is a isolated solution of equation (1.1)

in K.

1. By Lemma 3.2, there exists ρ > 0 such that

iK(T,Ωr
K) = {

0 (a =∞)

1 (a = θ)

where r satisfies (3.3). Thus, we may take R > c > r > 0 such that Ω̄r ⊂ Ω ⊂ Ω̄ ⊂ ΩR

and iK(T,Ωr
K) = 1, iK(T,ΩR

K) = 0. Hence, there exists x0 ∈ Ωr
K such that it is a solution

of equation (1.1)

2. By Lemma 3.3, we have iK(T,ΩK) = 1. Denote D = {x ∈ ΩK ;ϕ(x) > c}. It is easy

to see that D is nonempty convex subset of K and θ 6∈ D. Define H : D̄× I → cf(K) as

follows

H(x, t) = (1− t)u+ tT (x)
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Similarly, we can prove (3.8) holds. Therefore, iK(T,D) = 1, and equation (1.1) has a

solution x1 ∈ D.

3. Denote A = ΩR \ Ω̄K and B = ΩK \ (Ω̄r
K ∪D). It is easy to see that iK(T,A) = −1

and iK(T,B) = −1. Therefore, equation (1.1) has two solutions x2 ∈ A and x3 ∈ B.

In conclusion, x0, x1, x2, x3 are four solutions of equation (1.1) where at least x1, x2 and

x3 are positive solutions. The proof is completed.
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