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Abstract: In this paper, singularly perturbed differential-difference equation having boundary layers at one end (left 

or right) is considered. In order to obtain numerical solution to these problems, the given second order equation 

having boundary layer is converted into a singularly perturbed ordinary differential equation using Taylor’s 

transformation afterwards the resultant singularly perturbed ordinary differential equation is replaced by an 

asymptotically equivalent to first order differential equation with a small deviating argument. Resulting first order 

differential equation, is solved by choosing the proper integrating factor (fitting factor) and linear interpolation 

formulas. The numerical results for several test examples demonstrate the applicability of the method. 
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1. INTRODUCTION 

Singularly perturbed delay differential equation is a differential equation in which the 

highest order derivative is multiplied by a small parameter and involving a delay term. This type 
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of equation arises frequently in the mathematical modelling of various practical phenomena for 

example: in the modelling of the human pupil-light reflex; model of HIV infection; the study of 

bi-stable devices in digital electronics; variational problem in control theory; first exit time 

problem in modelling of activation of neuronal variability; immune response; evolutionary 

biology; dynamics of networks of two identical amplifier; mathematical ecology; population 

dynamics; the modelling of biological oscillator and in a variety of models for physiological 

process. For a detailed theory and analytical discussion on delay differential equations having 

boundary layer one may refer the popular books by Bellman and Cooke [1], Driver [4], El’sgol'ts 

and Norkin [5], Hale [8], Nayfeh [17], O’Malley[18] and VanDyke[24]. Lange and Miura [12-

13] are the first to discuss the behavior of the analytical solution of singularly perturbed 

differential difference equations. Chakravarthy and Reddy [3] presented an initial-value 

approach for solving singularly perturbed two-point boundary value problems. Fevzi Erdogan [6] 

described an exponentially fitted method for singularly perturbed delay differential equations. 

Gemechis and Reddy [7] discussed the numerical Integration of a class of Singularly Perturbed 

Delay Differential Equations with small shift. Kadalbajoo and Sharma [9-10] described the 

numerical treatment of a mathematical model arising from a model of neuronal variability. 

Lakshmi Sirisha and Reddy [11] presented a Fitted second order scheme for solving Singularly 

Perturbed Differential Difference Equations. Nageshwar Rao and Pramod Chakrravarthy [14-15] 

described a Fitted Numerov method for singularly perturbed parabolic partial differential 

equation with a small negative shift arising in control theory. Natesan and Bawa [16] presented a 

second order numerical scheme for singularly perturbed reaction- diffusion robin problems. Ravi 

Kanth and Murali [19] described a numerical approach for solving singularly perturbed 

convection delay problems via exponentially fitted spline method. Reddy and Awoke [20] 

discussed the solving singularly perturbed differential difference equations via fitted method. 

Reddy and Soujanya and Phaneendra [21] presented the Numerical integration method for 

singularly perturbed delay differential equations. Salama, A.A and Al-Amery [22] presented an 
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Asymptotic-numerical method for singularly perturbed differential difference equations of 

mixed-type. Soujanya, Reddy and K. Phaneendra [22] discussed the  Numerical Solution of 

Singular Perturbation Problems via Deviating Argument and Exponential Fitting. 

In this paper, singularly perturbed differential-difference equation having boundary layers 

at one end (left or right) is considered. In order to obtain numerical solution to these problems, 

the given second order equation having boundary layer is converted into a singularly perturbed 

ordinary differential equation using Taylor’s transformation afterwards the resultant singularly 

perturbed ordinary differential equation is replaced by an asymptotically equivalent to first order 

differential equation with a small deviating argument. Resulting first order differential equation, 

is solved by choosing the proper integrating factor (fitting factor) and linear interpolation 

formulas. The numerical results for several test examples demonstrate the applicability of the 

method. 

 

2. DESCRIPTION OF THE METHOD  

2.1 Type-𝐈: Delay Differential Equation having boundary layer 

Consider the delay differential equation of the form: 

                 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥 − 𝛿) + 𝑏(𝑥)𝑦(𝑥) = 𝑓(𝑥),     0 ≤ 𝑥 ≤ 1,                   (1)                            

with boundary conditions 

      𝑦(𝑥) = 𝜑(𝑥) ,     − 𝛿 ≤ 𝑥 ≤ 0,                                                (2) 

and 

𝑦(1) = 𝛽,                                                          (3) 

where 0 < 𝜀 ≪ 1 is the perturbation parameter, 0 < 𝛿 = 𝑂(𝜀) is the small delay parameter, 

𝑎(𝑥), 𝑏(𝑥) and 𝑓(𝑥) are sufficiently differentiable functions in (0, 1). 𝜑(𝑥) is also bounded 

continuous function on [0, 1] and 𝛽 is a finite constant.  

From the Taylor’s series expansion 

                                   𝑦′(𝑥 − 𝛿) ≈ 𝑦′(𝑥) − 𝛿𝑦′′(𝑥).                                              (4) 
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Substituting Equation (4) into Equation (1), we get singularly perturbed ordinary differential 

equation: 

                      𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),   0 ≤ 𝑥 ≤ 1                     (5) 

with boundary conditions 

                                               𝑦(0) = 𝛼                                                                       (6) 

                                               𝑦(1) = 𝛽                                                                       (7) 

where 𝜀′ = 𝜀 − 𝑎(𝑥)𝛿, 𝐴(𝑥) = 𝑎(𝑥), 𝐵(𝑥) = 𝑏(𝑥) and 𝛼 is a finite constant. Further it is 

established that, when 𝑎(𝑥) ≥ 𝑀 > 0 in [0, 1], boundary layer will be at 𝑥 = 0 and when 

𝑎(𝑥) ≤ 𝑀 < 0 in [0, 1], boundary layer will be at 𝑥 = 1, where 𝑀 is some positive number. 

Since 0 < 𝛿 ≪ 1, the transition from Equation (1) to Equation (5) is admitted. For more details 

on the validity of this transition, one can refer El’sgolt’s and Norkin [5]. Here we assume that 

𝑎(𝑥) = 𝑎 and 𝑏(𝑥) = 𝑏 are constants. 

2.2 Type-II: Differential-Difference Equation having boundary layer 

Consider the differential-difference equation of the form:   

 𝜀𝑦′′(𝑥) + 𝑎(𝑥)𝑦′(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 𝛿) + 𝑐(𝑥)𝑦(𝑥) + 𝑑(𝑥)𝑦(𝑥 + 𝜂) = 𝑓(𝑥),                          (8) 

0 ≤ 𝑥 ≤ 1 with boundary conditions 

                                  𝑦(𝑥) = 𝜑(𝑥),  on −𝛿 ≤ 𝑥 ≤ 0,                                                                (9) 

       𝑦(𝑥) = 𝛾(𝑥),  on 1 ≤ 𝑥 ≤ 1 + 𝜂,                                                              (10) 

with the constant coefficients (i.e. 𝑎(𝑥) = 𝑎, 𝑏(𝑥) = 𝑏, 𝑐(𝑥) = 𝑐 and 𝑑(𝑥) = 𝑑 are constants) 

and 𝑓(𝑥), 𝜑(𝑥) and 𝛾(𝑥) are smooth functions. 0 < 𝜀 ≪ 1 is the perturbation parameter, 0 <

𝛿 = 𝑂(𝜀) and 0 < 𝜂 = 𝑂(𝜀) are the delay and advanced parameters respectively. 

From Taylor’s series expansion 

                                   𝑦(𝑥 − 𝛿) ≈ 𝑦(𝑥) − 𝛿𝑦′(𝑥) +
𝛿2

2
 𝑦′′(𝑥).                                                  (11) 

                                     𝑦(𝑥 + 𝜂) ≈ 𝑦(𝑥) + 𝜂𝑦′(𝑥) +
𝜂2

2
 𝑦′′(𝑥).                                                (12) 
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Substituting Equations (11)-(12) into Equation (8), we get singularly perturbed ordinary 

differential equation 

                         𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),  0 ≤ 𝑥 ≤ 1                           (13) 

with boundary conditions 

                                                                  𝑦(0) = 𝛼                                                            (14) 

                                                                  𝑦(1) = 𝛽                                                            (15) 

where 

                                               𝜀′ = 𝜀 + 𝑏(𝑥)
𝛿2

2
+ 𝑑(𝑥)

𝜂2

2
,                                                        (16) 

                                            𝐴(𝑥) =  𝑎(𝑥) − 𝛿𝑏(𝑥) + 𝜂𝑑(𝑥),                                                (17) 

                                           𝐵(𝑥) =  𝑏(𝑥) + 𝑐(𝑥) + 𝑑(𝑥),                                                    (18) 

Since 0 < 𝛿 ≪ 1 and 0 < 𝜂 ≪ 1, the transition from Equation (8) to Equation (13) is admitted. 

For more details on the validity of this transition, one can refer El’sgolt’s and Norkin [5]. The 

behaviour of the boundary layer is given by the sign of 𝐴(𝑥) and 𝐵(𝑥). Further it is established 

that, if 𝐵(𝑥) ≤ 0, 𝐴(𝑥) ≥ 𝑀 > 0 in [0, 1] then Equation (8) has unique solution and a 

boundary layer at 𝑥 = 0 and if 𝐵(𝑥) ≤ 0, 𝐴(𝑥) ≤ 𝑀 < 0 in [0, 1] then Equation (8) has unique 

solution and a boundary layer at 𝑥 = 1, where 𝑀 is a positive number. 

2.3. Case (i) : For Left-end boundary layer  

Consider equation (5) or (13) with their boundary conditions 

                       𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),  0 ≤ 𝑥 ≤ 1                             (19) 

                                                                   𝑦(0) = 𝛼                                                           (20)   

𝑦(1) = 𝛽                                                           (21) 

From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of the 

point 𝑥, we have 

                                 𝑦(𝑥 − √𝜀′) ≈ 𝑦(𝑥) − √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥)                                                (22)  

From equation (19) and (22), we have 
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                                         𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 − √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)                                    (23) 

where  

                                                           𝑝(𝑥) =
−2

2√𝜀′ + 𝐴(𝑥)
                                                               (24) 

                                                           𝑞(𝑥) =
2 − 𝐵(𝑥)

2√𝜀′ + 𝐴(𝑥)
                                                               (25) 

                                                           𝑟(𝑥) =
𝑓(𝑥)

2√𝜀′ + 𝐴(𝑥)
                                                               (26) 

The transition from equation (19) to (23) is valid, because of the condition that √𝜀′ is small. For 

more details on the validity of this transition, one can refer El’sgolt’s and Norkin [5].  

Now, we divide the interval [0, 1] into 𝑛 equal parts with constant mesh length ℎ = 1 𝑛⁄ .  

Let 0 = 𝑥0,  𝑥1, … , 𝑥𝑛 = 1 be the mesh points, then we have 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, … , 𝑛. From our 

earlier assumptions, 𝐴(𝑥) and 𝐵(𝑥) are constants. Therefore, 𝑝(𝑥) and 𝑞(𝑥) are constants. 

Equation (23) can be written as 

                                               𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)                                            (27) 

We take an integrating factor 𝑒−𝑞𝑥 to equation (27) and producing (as in B. J. McCartin [2]) 

                              
𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 − √𝜀′) + 𝑟(𝑥)]                                                 (28) 

On integrating equation (28) from 𝑥𝑖 to 𝑥𝑖+1, we get  

                𝑒−𝑞𝑥𝑖+1𝑦𝑖+1 − 𝑒−𝑞𝑥𝑖𝑦𝑖 = ∫ 𝑒−𝑞𝑥
𝑥𝑖+1

𝑥𝑖

𝑝𝑦(𝑥 − √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥
𝑥𝑖+1

𝑥𝑖

𝑟(𝑥)𝑑𝑥           (29) 

Using the linear Newton’s forward interpolation on [𝑥𝑖   𝑥𝑖+1], which we insert into the above 

equation, we get 

𝑒−𝑞𝑥𝑖+1𝑦𝑖+1 = 𝑒−𝑞𝑥𝑖𝑦𝑖

+ 𝑝 ∫ 𝑒−𝑞𝑥
𝑥𝑖+1

𝑥𝑖

[𝑦(𝑥𝑖 − √𝜀′) +
(𝑥 − 𝑥𝑖)

ℎ
{𝑦(𝑥𝑖+1 − √𝜀′) − 𝑦(𝑥𝑖 − √𝜀′)}] 𝑑𝑥

+ ∫ 𝑒−𝑞𝑥
𝑥𝑖+1

𝑥𝑖

[𝑟𝑖 +
(𝑥 − 𝑥𝑖)

ℎ
{𝑟𝑖+1 − 𝑟𝑖}] 𝑑𝑥                                                        (30) 
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𝑦𝑖+1 = 𝑒𝑞ℎ𝑦𝑖 + 𝑝𝑦(𝑥𝑖 − √𝜀′) ∫ 𝑒𝑞(𝑥𝑖+1−𝑥)
𝑥𝑖+1

𝑥𝑖

𝑑𝑥 +
𝑝𝑦(𝑥𝑖+1 − √𝜀′)

ℎ
∫ 𝑒𝑞(𝑥𝑖+1−𝑥)

𝑥𝑖+1

𝑥𝑖

(𝑥 − 𝑥𝑖)𝑑𝑥

+
𝑝𝑦(𝑥𝑖 − √𝜀′)

ℎ
∫ 𝑒𝑞(𝑥𝑖+1−𝑥)

𝑥𝑖+1

𝑥𝑖

(𝑥𝑖 − 𝑥)𝑑𝑥 + 𝑟𝑖 ∫ 𝑒𝑞(𝑥𝑖+1−𝑥)
𝑥𝑖+1

𝑥𝑖

𝑑𝑥

+
𝑟𝑖+1

ℎ
∫ 𝑒𝑞(𝑥𝑖+1−𝑥)

𝑥𝑖+1

𝑥𝑖

(𝑥 − 𝑥𝑖)𝑑𝑥

+
𝑟𝑖

ℎ
∫ 𝑒𝑞(𝑥𝑖+1−𝑥)

𝑥𝑖+1

𝑥𝑖

(𝑥𝑖 − 𝑥)𝑑𝑥                                                                              (31) 

After evaluating the integrals involves in equation (31), we get 

𝑦𝑖+1 = 𝑒𝑞ℎ𝑦𝑖 + 𝐽[𝑝𝑦(𝑥𝑖 − √𝜀′) + 𝑟𝑖] + 𝐾 [
𝑝𝑦(𝑥𝑖+1 − √𝜀′)

ℎ
+

𝑟𝑖+1

ℎ
]

+ 𝐿 [
𝑝𝑦(𝑥𝑖 − √𝜀′)

ℎ
+

𝑟𝑖

ℎ
]                                                                                         (32) 

where  

                                                                 𝐽 =
𝑒𝑞ℎ

𝑞
−

1

𝑞
                                                                         (33) 

                                                                𝐾 = −
ℎ

𝑞
−

1

𝑞2
+

𝑒𝑞ℎ

𝑞2
                                                           (34) 

                                                                 𝐿 =
ℎ

𝑞
+

1

𝑞2
−

𝑒𝑞ℎ

𝑞2
                                                               (35) 

From finite difference approximation, we have 

                                            𝑦(𝑥𝑖 − √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖 +

√𝜀′

ℎ
𝑦𝑖−1                                            (36) 

                                          𝑦(𝑥𝑖+1 − √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖+1 +

√𝜀′

ℎ
𝑦𝑖                                          (37) 

From equation (36) and equation (37), equation (32) becomes  

 

                                     𝐸𝑖𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖,     𝑖 = 1,2, … , 𝑛 − 1                                  (38) 
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where  

 𝐸𝑖 = −
𝐽𝑝√𝜀′

ℎ
−

𝐿𝑝√𝜀′

ℎ2
 

                                                      𝐹𝑖 = 𝐽𝑝 (1 −
√𝜀′

ℎ
) +

𝐾𝑝√𝜀′

ℎ2
+

𝐿𝑝

ℎ
(1 −

√𝜀′

ℎ
) + 𝑒𝑞ℎ 

𝐺𝑖 = 1 −
𝐾𝑝

ℎ
(1 −

√𝜀′

ℎ
) 

𝐻𝑖 = 𝐽𝑟𝑖 +
𝐾𝑟𝑖+1

ℎ
+

𝐿𝑟𝑖

ℎ
 

This is a tridiagonal system of  𝑛 − 1  equations. We solve this tridiagonal system with given two 

boundary conditions by Thomas algorithm. 

2.4. Case (ii) : For Right-end boundary layer 

Consider equation (5) or (13) with their boundary conditions 

                       𝜀′𝑦′′(𝑥) + 𝐴(𝑥)𝑦′(𝑥) + 𝐵(𝑥)𝑦(𝑥) = 𝑓(𝑥),  0 ≤ 𝑥 ≤ 1                             (39) 

                                                                   𝑦(0) = 𝛼                                                           (40) 

                                                                   𝑦(1) = 𝛽                                                           (41) 

From Taylor’s series expansion about the deviating argument √𝜀′ in the neighbourhood of the 

point 𝑥, we have 

                                 𝑦(𝑥 + √𝜀′) ≈ 𝑦(𝑥) + √𝜀′𝑦′(𝑥) +
𝜀′

2
𝑦′′(𝑥)                                                (42)  

From equation (39) and (42), we have 

                                         𝑦′(𝑥) = 𝑝(𝑥)𝑦(𝑥 + √𝜀′) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)                                    (43) 

where  

                                                        𝑝(𝑥) =
−2

−2√𝜀′ + 𝐴(𝑥)
                                                               (44) 

                                                        𝑞(𝑥) =
2 − 𝐵(𝑥)

−2√𝜀′ + 𝐴(𝑥)
                                                               (45) 

                                                        𝑟(𝑥) =
𝑓(𝑥)

−2√𝜀′ + 𝐴(𝑥)
                                                               (46) 
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The transition from equation (39) to (43) is valid, because of the condition that √𝜀′ is small. For 

more details on the validity of this transition, one can refer El’sgolt’s and Norkin [5].  

Now, we divide the interval [0, 1] into 𝑛 equal parts with constant mesh length ℎ = 1 𝑛⁄ .  

Let 0 = 𝑥0,  𝑥1, … , 𝑥𝑛 = 1 be the mesh points, then we have 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, … , 𝑛. From our 

earlier assumptions, 𝐴(𝑥) and 𝐵(𝑥) are constants. Therefore, 𝑝(𝑥) and 𝑞(𝑥) are constants. 

Equation (43) can be written as 

                                               𝑦′(𝑥) − 𝑞𝑦(𝑥) = 𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)                                            (47) 

We take an integrating factor 𝑒−𝑞𝑥 to equation (47) and producing (as in B. J. McCartin[2]) 

                              
𝑑

𝑑𝑥
[𝑒−𝑞𝑥𝑦(𝑥)] = 𝑒−𝑞𝑥[𝑝𝑦(𝑥 + √𝜀′) + 𝑟(𝑥)]                                                 (48) 

On integrating equation (48) from 𝑥𝑖−1 to 𝑥𝑖, we get  

                𝑒−𝑞𝑥𝑖𝑦𝑖 − 𝑒−𝑞𝑥𝑖−1𝑦𝑖−1 = ∫ 𝑒−𝑞𝑥
𝑥𝑖

𝑥𝑖−1

𝑝𝑦(𝑥 + √𝜀′)𝑑𝑥 + ∫ 𝑒−𝑞𝑥
𝑥𝑖

𝑥𝑖−1

𝑟(𝑥)𝑑𝑥           (49) 

Using the linear Newton’s backward interpolation on [𝑥𝑖−1  𝑥𝑖], which we insert into the above 

equation, we get 

𝑒−𝑞𝑥𝑖𝑦𝑖 = 𝑒−𝑞𝑥𝑖−1𝑦𝑖−1

+ 𝑝 ∫ 𝑒−𝑞𝑥
𝑥𝑖

𝑥𝑖−1

[𝑦(𝑥𝑖 + √𝜀′) +
(𝑥 − 𝑥𝑖)

ℎ
{𝑦(𝑥𝑖 + √𝜀′) − 𝑦(𝑥𝑖−1 + √𝜀′)}] 𝑑𝑥

+ ∫ 𝑒−𝑞𝑥
𝑥𝑖

𝑥𝑖−1

[𝑟𝑖 +
(𝑥 − 𝑥𝑖)

ℎ
{𝑟𝑖 − 𝑟𝑖−1}] 𝑑𝑥                                                        (50) 

𝑦𝑖 = 𝑒𝑞ℎ𝑦𝑖−1 + 𝑝𝑦(𝑥𝑖 + √𝜀′) ∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

𝑑𝑥 +
𝑝𝑦(𝑥𝑖 + √𝜀′)

ℎ
∫ 𝑒𝑞(𝑥𝑖−𝑥)

𝑥𝑖

𝑥𝑖−1

(𝑥 − 𝑥𝑖)𝑑𝑥

+
𝑝𝑦(𝑥𝑖−1 + √𝜀′)

ℎ
∫ 𝑒𝑞(𝑥𝑖−𝑥)

𝑥𝑖

𝑥𝑖−1

(𝑥𝑖 − 𝑥)𝑑𝑥 + 𝑟𝑖 ∫ 𝑒𝑞(𝑥𝑖−𝑥)
𝑥𝑖

𝑥𝑖−1

𝑑𝑥

+
𝑟𝑖

ℎ
∫ 𝑒𝑞(𝑥𝑖−𝑥)

𝑥𝑖

𝑥𝑖−1

(𝑥 − 𝑥𝑖)𝑑𝑥 +
𝑟𝑖−1

ℎ
∫ 𝑒𝑞(𝑥𝑖−𝑥)

𝑥𝑖

𝑥𝑖−1

(𝑥𝑖 − 𝑥)𝑑𝑥                       (51) 

After evaluating the integrals involves in equation (31), we get 
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𝑦𝑖 = 𝑒𝑞ℎ𝑦𝑖−1 + 𝐽[𝑝𝑦(𝑥𝑖 + √𝜀′) + 𝑟𝑖] + 𝐾 [
𝑝𝑦(𝑥𝑖 + √𝜀′)

ℎ
+

𝑟𝑖

ℎ
]

+ 𝐿 [
𝑝𝑦(𝑥𝑖−1 + √𝜀′)

ℎ
+

𝑟𝑖−1

ℎ
]                                                                                (52) 

where  

                                                                 𝐽 =
𝑒𝑞ℎ

𝑞
−

1

𝑞
                                                                         (53) 

                                                               𝐾 = −
ℎ𝑒𝑞ℎ

𝑞
−

1

𝑞2
+

𝑒𝑞ℎ

𝑞2
                                                     (54) 

                                                                𝐿 =
ℎ𝑒𝑞ℎ

𝑞
+

1

𝑞2
−

𝑒𝑞ℎ

𝑞2
                                                         (55) 

From finite difference approximation, we have 

                                            𝑦(𝑥𝑖 + √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖 +

√𝜀′

ℎ
𝑦𝑖+1                                            (56) 

                                          𝑦(𝑥𝑖−1 + √𝜀′) ≈ (1 −
√𝜀′

ℎ
) 𝑦𝑖−1 +

√𝜀′

ℎ
𝑦𝑖                                          (57) 

From equation (56) and equation (57), equation (52) becomes  

                                     𝐸𝑖𝑦𝑖−1 − 𝐹𝑖𝑦𝑖 + 𝐺𝑖𝑦𝑖+1 = 𝐻𝑖,     𝑖 = 1,2, … , 𝑛 − 1                                  (58) 

where  

           𝐸𝑖 = −𝑒𝑞ℎ −
𝐿𝑝

ℎ
(1 −

√𝜀′

ℎ
) 

                                                      𝐹𝑖 = −1 + 𝐽𝑝 (1 −
√𝜀′

ℎ
) +

𝐿𝑝√𝜀′

ℎ2
+

𝐾𝑝

ℎ
(1 −

√𝜀′

ℎ
) 

𝐺𝑖 = −
𝐽𝑝√𝜀′

ℎ
−

𝐾𝑝√𝜀′

ℎ2
 

𝐻𝑖 = 𝐽𝑟𝑖 +
𝐾𝑟𝑖

ℎ
+

𝐿𝑟𝑖−1

ℎ
 

This is a tridiagonal system of  𝑛 − 1  equations. We solve this tridiagonal system with given two 

boundary conditions by Thomas algorithm. 
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3. NUMERICAL EXPERIMENTS 

In this section, six model examples are solved and the solutions are compared with the 

exact/available solutions. The exact solution of equation (8) is given by (with assumptions 

𝑓(𝑥) = 𝑓, 𝜑(𝑥) = 𝜑 and 𝛾(𝑥)= 𝛾 are constant) 

                                                𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 + 𝑓 𝑐′⁄                                                     (59) 

where 

𝑐′ = 𝑏 + 𝑐 + 𝑑 

𝑚1 = [−(𝑎 − 𝛿𝑏 + 𝜂𝑑) + √(𝑎 − 𝛿𝑏 + 𝜂𝑑)2 − 4𝜀𝑐′] 2⁄ 𝜀 

𝑚2 = [−(𝑎 − 𝛿𝑏 + 𝜂𝑑) − √(𝑎 − 𝛿𝑏 + 𝜂𝑑)2 − 4𝜀𝑐′] 2⁄ 𝜀 

𝑐1 = [−𝑓 + 𝛾𝑐′ + 𝑒𝑚2(𝑓 − 𝜑𝑐′] [(𝑒𝑚1 − 𝑒𝑚2)𝑐′]⁄  

𝑐2 = [𝑓 − 𝛾𝑐′ + 𝑒𝑚1(−𝑓 + 𝜑𝑐′] [(𝑒𝑚1 − 𝑒𝑚2)𝑐′]⁄  

Example 1. Consider the delay differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥 − 𝛿) − 𝑦(𝑥) = 0, 0 ≤ 𝑥 ≤ 1;  with 𝑦(0) = 1 and 𝑦(1) = 1. 

The exact solution is given by 

𝑦 = ((1 − 𝑒𝑚2)𝑒𝑚1𝑥 + (𝑒𝑚1 − 1)𝑒𝑚2𝑥)/(𝑒𝑚1 − 𝑒𝑚2) 

where 

𝑚1 =
−1 − √1 + 4(𝜀 − 𝛿)

2(𝜀 − 𝛿)
 and 𝑚2 =

−1 + √1 + 4(𝜀 − 𝛿)

2(𝜀 − 𝛿)
 

The computational results are shown in table-1 & 2, the layer behaviour in fig. 1 & 2 for 

different values of parameters.  

Example 2. Consider the differential-differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥) − 2𝑦(𝑥 − 𝛿) − 5𝑦(𝑥) + 𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1;  

with 𝑦(0) = 1 and  𝑦(1) = 1. 
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The exact solution is given by equation (59) and computational results are shown in table-3 & 4 

and the layer behaviour in fig. 3 & 4 for different values of parameters. 

Example 3. Consider the differential-differential equation having left boundary layer: 

𝜀𝑦′′(𝑥) + 𝑦′(𝑥) − 3𝑦(𝑥) + 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1; with 𝑦(0) = 1 and  𝑦(1) = 1. 

The exact solution is given by equation (59) and computational results are shown in table-5 & 6, 

the layer behaviour in fig. 5 & 6 for different values of parameters. 

Example 4. Now we consider the delay differential equation having right boundary layer:    

              𝜀𝑦′′(𝑥) − 𝑦′(𝑥 − 𝛿) − 𝑦(𝑥) = 0, 0 ≤ 𝑥 ≤ 1;  with 𝑦(0) = 1 and  𝑦(1) = −1. 

The exact solution is given by  

𝑦 = ((1 + 𝑒𝑚2)𝑒𝑚1𝑥 − (𝑒𝑚1 + 1)𝑒𝑚2𝑥)/(𝑒𝑚2 − 𝑒𝑚1) 

where 

𝑚1 =
1 − √1 + 4(𝜀 + 𝛿)

2(𝜀 + 𝛿)
 and 𝑚2 =

1 + √1 + 4(𝜀 + 𝛿)

2(𝜀 + 𝛿)
 

The computational results are shown in table-7 & 8, the layer behaviour in fig. 7 & 8 for 

different values of parameters. 

Example 5. Consider the differential-differential equation having right boundary layer: 

𝜀𝑦′′(𝑥) − 𝑦′(𝑥) − 2𝑦(𝑥 − 𝛿) + 𝑦(𝑥) − 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1; with 𝑦(0) = 1  

and  𝑦(1) = −1. 

The exact solution is given by equation (59) and computational results are shown in table-9 & 

10, the layer behaviour in fig. 9 & 10 for different values of parameters. 

Example 6. Consider the differential-differential equation having right boundary layer: 

𝜀𝑦′′(𝑥) − 𝑦′(𝑥) + 𝑦(𝑥) − 2𝑦(𝑥 + 𝜂) = 0, 0 ≤ 𝑥 ≤ 1; with 𝑦(0) = 1 and  𝑦(1) = −1. 

The exact solution is given by equation (59) and computational results are shown in table-11 & 

12, the layer behaviour in fig. 11 & 12 for different values of parameters. 
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4. DISCUSSION AND CONCLUSIONS 

An exponentially fitted numerical method is described to solve the singularly perturbed 

differential-difference equations having boundary layers at one end of the domain. To develop 

this method deviating argument and Newton’s interpolation concepts are used. Discrete 

approximation is taken on equidistant mesh for the differential-difference equations. Moreover, 

the method is very simple and easy to implement on considered problems. Efficiency of the 

method is proved by numerical experiment and also by comparing the results with the available 

exact solution of the problem.  Method is implemented on six standard test examples and it is 

observed that the numerical solutions approximate the exact solution very well. Computational 

results and layer behaviour are presented in the tables and figures and for different values of the 

parameters.  The applicability of this method is demonstrated by solving popular model problems 

and the numerical results are well compared with exact solution. It is observed from the tables 

and figures that present method agrees with exact solution very well,  

 

Table-1: Results for Example-1 with  ℎ = 0.01, 𝜀 = 0.01 and 𝛿 = 0.001 

𝑥 Present Solution/ 

Numerical Solution 

𝑦(𝑥) 

 Exact Solution 

𝑦1(𝑥) 

Result by [7] 

𝑦𝑐(𝑥) 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.38039196 0.42885272 0.37530590 

0.04 0.38328086 0.38987298 0.38287105 

0.06 0.39098031 0.39385789 0.39060602 

0.08 0.39887072 0.40144299 0.39849726 

0.1 0.40692064 0.40946339 0.40654792 

0.2 0.44967374 0.45216849 0.44930761 

0.3 0.49691869 0.49933011 0.49656465 

0.4 0.54912744 0.55141074 0.54879207 

0.5 0.60682149 0.60892343 0.60651264 

0.6 0.67057717 0.67243474 0.67030411 

0.7 0.74103133 0.74257036 0.74080501 

0.8 0.81888776 0.82002118 0.81872102 

0.9 0.90492417 0.90555021 0.90483204 

1.0 1.00000000 1.00000000 1.00000000 
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Figure-1: Example-1 with  ℎ = 0.01, 𝜀 = 0.01 and 𝛿 = 0.001 

    

 Table-2: Results for Example-1 with  ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0001 

𝑥 Present Solution Exact Solution Result by [7] 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.37596249 0.37560498 0.37562175 

0.04 0.38300913 0.38318659 0.38296304 

0.06 0.39074350 0.39092122 0.39069782 

0.08 0.39863453 0.39881199 0.39858892 

0.1 0.40668492 0.40686202 0.40663940 

0.2 0.44944219 0.44961616 0.44939748 

0.3 0.49669480 0.49686302 0.49665156 

0.4 0.54891536 0.54907470 0.54887440 

0.5 0.60662618 0.60677293 0.60658846 

0.6 0.67040450 0.67053424 0.67037115 

0.7 0.74088822 0.74099575 0.74086058 

0.8 0.81878233 0.81886155 0.81876196 

0.9 0.90486591 0.90490969 0.90485466 

1.0 1.00000000 1.00000000 1.00000000 
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Figure-2: Example-1 with  ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0001 

 

Table-3: Results for Example 2 with ℎ = 0.01, 𝜀 = 0.01, 𝛿 = 0.001 and η = 0.005 

𝑥 Present Solution Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.01080579 0.12303611 0.12573638 

0.04 0.00345099 0.01867136 0.01924308 

0.06 0.00381696 0.00667501 0.00668484 

0.08 0.00429653 0.00577240 0.00566896 

0.1 0.00483695 0.00625879 0.00612688 

0.2 0.00874664 0.01096036 0.01074933 

0.3 0.01581654 0.01926844 0.01894343 

0.4 0.02860100 0.03387416 0.03338381 

0.5 0.05171911 0.05955119 0.05883196 

0.6 0.09352352 0.10469173 0.10367897 

0.7 0.16911831 0.18404935 0.18271239 

0.8 0.30581616 0.32356102 0.32199219 

0.9 0.55300647 0.56882424 0.56744355 

1.0 1.00000000 1.00000000 1.00000000 
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Figure-3: Example 2 with ℎ = 0.01, 𝜀 = 0.01, 𝛿 = 0.001 and η = 0.005 

 

Table-4: Results for Example-2 with ℎ = 0.01, 𝜀 = 0.001, 𝛿 = 0.0001 and η = 0.0005 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.00374013 0.00290566 0.00427314 

0.04 0.00320002 0.00327352 0.00209563 

0.06 0.00360595 0.00368796 0.00237638 

0.08 0.00406442 0.00415486 0.00270237 

0.1 0.00458117 0.00468088 0.00307310 

0.2 0.00833428 0.00849532 0.00584433 

0.3 0.01516212 0.01541816 0.01111458 

0.4 0.02758363 0.02798241 0.02113738 

0.5 0.05018141 0.05078525 0.04019845 

0.6 0.09692223 0.09217010 0.07644823 

0.7 0.16608320 0.16727944 0.14538701 

0.8 0.30214620 0.30359530 0.27649274 

0.9 0.54967827 0.55099482 0.52582577 

1.0 1.00000000 1.00000000 1.00000000 
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Figure-4: Example-2 with ℎ = 0.01, 𝜀 = 0.001, 𝛿 = 0.0001 and η = 0.0005 

 

Table-5: Results for Example-3 with ℎ = 0.01, 𝜀 = 0.01, and η = 0.005 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.38442760 0.46422815 0.46428771 

0.04 0.38695520 0.40078807 0.40057622 

0.06 0.39464452 0.39922966 0.39894603 

0.08 0.40252891 0.40589482 0.40559750 

0.1 0.41057116 0.41377113 0.41347202 

0.2 0.45325780 0.45637318 0.45607943 

0.3 0.50038251 0.50339060 0.50310708 

0.4 0.55240673 0.55525194 0.55498387 

0.5 0.60983985 0.61245625 0.61220984 

0.6 0.67324423 0.67555398 0.67533653 

0.7 0.74324069 0.74515229 0.74497240 

0.8 0.82051461 0.82192091 0.82178862 

0.9 0.90582261 0.90659853 0.90652557 

1.0 1.00000000 1.00000000 1.00000000 
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Figure-5: Example-3 with  ℎ = 0.01, 𝜀 = 0.01, and η = 0.005                          

Table-6:  Results for Example-3 with ℎ = 0.01, 𝜀 = 0.001, and η = 0.0005 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.02 0.37639205 0.37604531 0.37143446 

0.04 0.38338231 0.38362663 0.37897379 

0.06 0.39111619 0.39136079 0.38671244 

0.08 0.39900665 0.39925088 0.39460912 

0.1 0.40705630 0.40730004 0.40266706 

0.2 0.44980699 0.45004640 0.44549309 

0.3 0.49704754 0.49727901 0.49287394 

0.4 0.54924948 0.54946871 0.54529402 

0.5 0.60693387 0.60713575 0.60328928 

0.6 0.67067652 0.67085497 0.66745269 

0.7 0.74111367 0.74126157 0.73844026 

0.8 0.81894842 0.81905737 0.81697778 

0.9 0.90495769 0.90501788 0.90386823 

1.0 1.00000000 1.00000000 1.00000000 
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Figure-6: Example-3 with ℎ = 0.01, 𝜀 = 0.001, and η = 0.0005 

 

              Table-7: Results for Example-4 with  ℎ = 0.01, 𝜀 = 0.01 and 𝛿 = 0.001 

𝑥 Present Solution  Exact Solution Result by [7] 

0.0 1.00000000 1.00000000 1.00000000 

0.1      0.90493315 0.90589854 0.90413410 

0.2 0.81890401 0.82065216 0.81745848 

0.3 0.74105339 0.74342760 0.73909209 

0.4 0.67060378 0.67346998 0.66823837 

0.5 0.60685160 0.61009547 0.60417710 

0.6 0.54916013 0.55268459 0.54625713 

0.7 0.49695321 0.50067617 0.49388970 

0.8 0.44970944 0.45356174 0.44654252 

0.9 0.40695698 0.41058218 0.40373430 

0.92 0.39890712 0.40122583 0.39567734 

0.94 0.39101552 0.38624162 0.38774960 

0.96 0.38317166 0.34017030 0.37889378 

0.98 0.36341417 0.12554105 0.33281495 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Figure-7: Example-4 with  ℎ = 0.01, 𝜀 = 0.01 and 𝛿 = 0.001 

 

              Table-8: Results for Example-4 with  ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0005 

𝑥 Present Solution  Exact Solution Result by [7] 

0.0 1.00000000 1.00000000 1.00000000 

0.1      0.90487376 0.90501768 0.90361600 

0.2 0.81879653 0.81905700 0.81652188 

0.3 0.74090750 0.74126107 0.73782223 

0.4 0.67042776 0.67085438 0.66670798 

0.5 0.60665249 0.60713507 0.60244800 

0.6 0.54894393 0.54946798 0.54438165 

0.7 0.49672496 0.49727823 0.49191197 

0.8 0.44947338 0.45004559 0.44449953 

0.9 0.40671667 0.40729922 0.40165688 

0.92 0.39866635 0.39925006 0.39359720 

0.94 0.39077536 0.39135997 0.38569882 

0.96 0.38303793 0.38362581 0.37789776 

0.98 0.37355981 0.37598358 0.36118295 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Figure-8: Example-4 with  ℎ = 0.01, 𝜀 = 0.001 and 𝛿 = 0.0005 

 

Table-9: Results for Example-5 with  ℎ = 0.01, 𝜀 = 0.01, 𝛿 = 0.001 and η = 0.005 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1        0.74323362 0.74876089 0.74825389 

0.2 0.55239621 0.56064288 0.55988388 

0.3 0.41055943 0.41978746 0.41893529 

0.4 0.30514157 0.31432044 0.31346996 

0.5 0.22679147 0.23535085 0.23455512 

0.6 0.16855905 0.17622151 0.17550678 

0.7 0.12527875 0.13194778 0.13132363 

0.8 0.09311138 0.09879733 0.09826341 

0.9 0.06920350 0.07394332 0.07349177 

0.92 0.06521585 0.06955834 0.06911225 

0.94 0.06145744 0.06382765 0.06333588 

0.96 0.05784989 0.04568524 0.04489425 

0.98 0.04620247 -0.07327602 -0.07518285 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Figure-9: Example-5 with  ℎ = 0.01, 𝜀 = 0.01, 𝛿 = 0.001 and η = 0.005 

 

Table-10: Results for Example-5 with  ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.0002 and η = 0.0006 

𝑥 Present Solution  Exact Solution Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1        0.74129930 0.74231169 0.73886435 

0.2 0.54952466 0.55102664 0.54592053 

0.3 0.40736225 0.40903352 0.40336121 

0.4 0.30197735 0.30363036 0.29802922 

0.5 0.22385560 0.22538837 0.22020317 

0.6 0.16594400 0.16730842 0.16270027 

0.7 0.12301417 0.12419499 0.12021343 

0.8 0.09119032 0.09219140 0.08882141 

0.9 0.06759932 0.06843475 0.06562698 

0.92 0.06367091 0.06447538 0.06177252 

0.94 0.05997078 0.06074509 0.05814445 

0.96 0.05648230 0.05723062 0.05472934 

0.98 0.05131385 0.05387498 0.05114502 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Figure-10: Example-5 with  ℎ = 0.01, 𝜀 = 0.002, 𝛿 = 0.0002 and η = 0.0006 

 

Table-11: Results for Example-6 with  ℎ = 0.01, 𝜀 = 0.01, and η = 0.005 

 

 

 

 

 

 

 

 

𝑥 Present Solution  Exact Solution        Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1        0.90582240 0.90659430 0.90652095 

0.2 0.82051422 0.82191323 0.82178023 

0.3 0.74324016 0.74514185 0.74496100 

0.4 0.67324358 0.67554136 0.67532275 

0.5 0.60983912 0.61244195 0.61219422 

0.6 0.55240594 0.55523639 0.55496689 

0.7 0.50038167 0.50337415 0.50308911 

0.8 0.45325693 0.45635613 0.45606082 

0.9 0.41057028 0.41367994 0.41337777 

0.92 0.40252801 0.40530903 0.40500104 

0.94 0.39464257 0.39483488 0.39449733 

0.96 0.38682364 0.36705702 0.36657544 

0.98 0.36826127 0.20454728 0.20357484 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Figure-11: Example-6 with  ℎ = 0.01, 𝜀 = 0.01, and η = 0.005 

Table-12: Results for Example-6 with  ℎ = 0.01, 𝜀 = 0.002, and η = 0.0007 

𝑥 Present Solution  Exact Solution        Result by [11] 

0.0 1.00000000 1.00000000 1.00000000 

0.1        0.90500548 0.90514342 0.90467003 

0.2 0.81903493 0.81928461 0.81842787 

0.3 0.74123110 0.74157007 0.74040717 

0.4 0.67081822 0.67122727 0.66982417 

0.5 0.60709417 0.60755695 0.60596986 

0.6 0.54942355 0.54992617 0.54820277 

0.7 0.49723133 0.49776206 0.49594262 

0.8 0.44999708 0.45054605 0.44866443 

0.9 0.40724983 0.40780879 0.40589326 

0.92 0.39920057 0.39976067 0.39784132 

0.94 0.39131040 0.39187138 0.38994910 

0.96 0.38357163 0.38413778 0.38221343 

0.98 0.37349850 0.37649687 0.37447299 

1.0 -1.00000000 -1.00000000 -1.00000000 
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Figure-12: Example-6 with  ℎ = 0.01, 𝜀 = 0.002, and η = 0.0007 
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