COUPLED FIXED POINT THEOREM FOR WEAK COMPATIBLE MAPPINGS IN MENGER SPACES

MANISH JAIN ${ }^{1}$, NARESH KUMAR ${ }^{2}$, SANJAY KUMAR ${ }^{2, *}$ AND NEETU GUPTA ${ }^{3}$
${ }^{1}$ Department of Mathematics, Ahir College, Rewari 123401, India
${ }^{2}$ Department of Mathematics, DCRUST, Murthal, Sonepat, India
${ }^{3}$ HAS Department, YMCAUST, Faridabad, India

Abstract

In this paper, we prove coupled fixed point theorems for a pair of weakly compatible mappings under ϕ-contractive conditions in Menger spaces without appeal to continuity of mappings. We support our result by providing a suitable example. At the end, we give an application of our result.

Keywords: Weakly compatible maps; Menger space, t-norm of H-type.
2000 AMS Subject Classification: 47H10; 54H25

1. Introduction

In 1942 Menger [7] introduced the notion of a probabilistic metric space (PMspace) which is in fact, a generalization of metric space. The idea in probabilistic metric space is to associate a distribution function with a point pair, say (p, q), denoted by $\mathrm{F}(\mathrm{p}, \mathrm{q}, \mathrm{t})$ where $\mathrm{t}>0$ and interpret this function as the probability that distance between p and q is less than t , whereas in the metric space the distance function is a single positive number. Sehgal [9] initiated the study of fixed points in probabilistic metric spaces. The study of these spaces was expanded rapidly with the pioneering works of Schweizer-Sklar [11].

In 1991, Mishra[8] introduced the notion of compatible mappings in the

[^0]Received July 2, 2012
setting of probabilistic metric space. In 1996, Jungck [5] introduce the notion of weakly compatible mappings as follows:

Two self mappings S and T are said to be weakly compatible if they commute at their coincide points, i.e., $\mathrm{Tu}=\mathrm{Su}$ for some $\mathrm{u} \in \mathrm{X}$, then $\mathrm{TSu}=\mathrm{STu}$.

Further, Singh and Jain [10] proved some results for weakly compatible in Menger spaces.

Fang [3] defined ϕ-contractive conditions and proved some fixed point theorems under ϕ-contractions for compatible and weakly compatible maps in Menger PMspaces using t-norm of H-type, introduced by Hadžíc [4].

Recently, Bhaskar and Lakshmikantham [2], Lakshmikantham and Ćirić [6] gave some coupled fixed point theorems in partially ordered metric spaces.

Now, we prove a coupled fixed point theorem for a pair of weakly compatible maps satisfying ϕ-contractive conditions in Menger PM-space with a continuous tnorm of H-type. We support our result by an example. At the end, we give an application of our result.

2. Preliminaries

First, recall that a real valued function f defined on the set of real numbers is known as a distribution function if it is non-decreasing, continuous and inf. $\mathrm{f}(\mathrm{x})=0$, sup. $\mathrm{f}(\mathrm{x})$ $=1$. In what follows $\mathrm{H}(\mathrm{x})$ denotes the distribution function defined as follows:

$$
\mathrm{H}(\mathrm{x})= \begin{cases}0 & \text { if } x \leq 0 \\ 1 & \text { if } x>0\end{cases}
$$

Definition 2.1. A probabilistic metric space (PM-space) is a pair (X, F) where X is a set and F is a function defined on $\mathrm{X} \times \mathrm{X}$ into the set of distribution functions such that if x, y and z are points of X, then
$(F-1) F(x, y ; 0)=0$,
$(F-2) F(x, y ; t)=H(t)$ iff $x=y$,
(F-3) $\mathrm{F}(\mathrm{x}, \mathrm{y} ; \mathrm{t})=\mathrm{F}(\mathrm{y}, \mathrm{x} ; \mathrm{t})$,
(F-4) if $\mathrm{F}(\mathrm{x}, \mathrm{y} ; \mathrm{s})=1$ and $\mathrm{F}(\mathrm{y}, \mathrm{z} ; \mathrm{t})=1$, then $\mathrm{F}(\mathrm{x}, \mathrm{z} ; \mathrm{s}+\mathrm{t})=1$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and s, t ≥ 0.

For each x and y in X and for each real number $\mathrm{t} \geq 0, F(\mathrm{x}, \mathrm{y} ; \mathrm{t})$ is to be thought
of as the probability that the distance between x and y is less than t .
It is interesting to note that, if (X, d) is a metric space, then the distribution function $F(x, y ; t)$ defined by the relation $F(x, y ; t)=H(t-d(x, y))$ induces a PMspace.

Definition 2.2. A t-norm t is a 2-place function, $t:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying the following:
(i) $\mathrm{t}(0,0)=0$,
(ii) $\mathrm{t}(0,1)=1$,
(iii) $\mathfrak{t}(\mathrm{a}, \mathrm{b})=\mathrm{t}(\mathrm{b}, \mathrm{a})$,
(iv) if $\mathrm{a} \leq \mathrm{c}, \mathrm{b} \leq \mathrm{d}$, then $\mathrm{t}(\mathrm{a}, \mathrm{b}) \leq \mathrm{t}(\mathrm{c}, \mathrm{d})$,
(v) $\mathrm{t}(\mathrm{t}(\mathrm{a}, \mathrm{b}), \mathrm{c})=\mathrm{t}(\mathrm{a}, \mathrm{t}(\mathrm{b}, \mathrm{c}))$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in $[0,1]$.

Definition 2.3. A Menger PM-space is a triplet ($\mathrm{X}, \mathrm{F}, \mathrm{t}$) where (X, F) is a PM-space and t is a t -norm with the following condition:
(F-5) $F(x, z ; s+t) \geq t(F(x, y ; s), F(y, z ; t))$, for all x, y, z in X and $s, t \geq 0$.
This inequality is known as Menger's triangle inequality.
In our theory, we consider ($\mathrm{X}, \mathrm{F}, \mathrm{t}$) to be a Menger PM-space along with the following condition:
(F-6) $\lim _{t \rightarrow \infty} F(x, y, t)=1$, for all x, y in X .
Definition 2.4[4]. Let $\begin{gathered}\sup . \\ 0<t<1\end{gathered} \Delta(\mathrm{t}, \mathrm{t})=1$. A t-norm Δ is said to be of H-type if the family of functions $\left\{\Delta^{m}(t)\right\}_{m=1}^{\infty}$ is equicontinuous at $t=1$, where

$$
\Delta^{1}(t)=\mathrm{t}, \Delta^{m+1}(t)=\mathrm{t} \Delta\left(\Delta^{m}(t)\right), \mathrm{m}=1,2 \ldots, \mathrm{t} \in[0,1] .
$$

The t -norm $\Delta_{M}=\mathrm{min}$. is an example of t-norm of H-type.
Remark 2.1. Δ is a H-type t-norm iff for any $\lambda \in(0,1)$, there exists $\delta(\lambda) \in(0,1)$ such that $\Delta^{m}(t)>(1-\lambda)$ for all $m \in \mathrm{~N}$, when $\mathrm{t}>(1-\delta)$.

Definition 2.5. A sequence $\left\{x_{n}\right\}$ in a Menger PM space (X, F, t) is said
(i) to converge to a point x in X if for every $\epsilon>0$ and $\lambda>0$, there is an integer n_{0} such that $\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \epsilon\right)>1-\lambda$, for all $\mathrm{n} \geq \mathrm{n}_{0}$.
(ii) to be Cauchy if for each $\epsilon>0$ and $\lambda>0$, there is an integer n_{0} such that $\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \epsilon\right)>1-\lambda$, for all $\mathrm{n}, \mathrm{m} \geq \mathrm{n}_{0}$.
(iii) to be complete if every Cauchy sequence in it converges to a point of it.

Definition 2.6[3]. Define $\boldsymbol{\Phi}=\left\{\phi: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}\right\}$, where $\mathrm{R}^{+}=[0,+\infty)$ and each $\phi \in \boldsymbol{\Phi}$ satisfies the following conditions:
($\phi-1$) ϕ is non-decreasing;
($\phi-2$) ϕ is upper semicontinuous from the right;
$(\phi-3) \sum_{n=0}^{\infty} \phi^{n}(t)<+\infty$ for all $t>0$, where $\phi^{n+1}(t)=\phi\left(\phi^{n}(t)\right), \mathrm{n} \in \mathrm{N}$.
Clearly, if $\phi \in \boldsymbol{\Phi}$, then $\phi(\mathrm{t})<\mathrm{t}$ for all $\mathrm{t}>0$.
Definition 2.7[3]. An element $x \in X$ is called a common fixed point of the mappings
f: $\mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ if

$$
\mathrm{x}=\mathrm{f}(\mathrm{x}, \mathrm{x})=\mathrm{g}(\mathrm{x}) .
$$

Definition 2.8[6]. An element $(x, y) \in X \times X$ is called a
(i) coupled fixed point of the mapping $\mathrm{f}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ if

$$
f(x, y)=x, \quad f(y, x)=y
$$

(ii) coupled coincidence point of the mappings $f: X \times X \rightarrow X$ and $g: X \rightarrow X$ if

$$
f(x, y)=g(x), \quad f(y, x)=g(y)
$$

(iii) common coupled fixed point of the mappings $f: X \times X \rightarrow X$ and $g: X \rightarrow$ X if

$$
x=f(x, y)=g(x), \quad y=f(y, x)=g(y) .
$$

Definition 2.9[3]. The mappings f: $\mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ are called commutative if

$$
\operatorname{gf}(x, y)=f(g x, g y) \text {,for all } x, y \in X
$$

Abbas, Khan and Redenović [1] introduced the notion of w-compatible mappings as follows:

The mappings $\mathrm{f}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ are called w-compatible if $g(f(x, y))=f(g x, g y)$ whenever $g(x)=f(x, y)$ and $g(y)=f(y, x)$.

Definition 2.10.The maps f: $X \times X \rightarrow X$ and $g: X \rightarrow X$ are called weakly compatible if $f(x, y)=g(x), f(y, x)=g(y)$ implies $g f(x, y)=f(g x, g y), g f(y, x)=f(g y, g x)$, for all x, y in X .

3. Main results

For convenience, we denote

$$
\begin{equation*}
[\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{t})]^{n}=\underbrace{F(x, y, t) * F(x, y, t) * \ldots * F(x, y, t)}_{n} \text {, for all } \mathrm{n} \in \mathrm{~N} . \tag{3.1}
\end{equation*}
$$

Now we prove our main result.
Theorem 3.1. Let (X, F, *) be Menger PM-Space, * being continuous t - norm of H type. Let $\mathrm{f}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings and there exists $\phi \in \Phi$ such that
(3.2) $\mathrm{F}(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{f}(\mathrm{u}, \mathrm{v}), \phi(\mathrm{t})) \geq \psi[\mathrm{F}(\mathrm{gx}, \mathrm{gu}, \mathrm{t}) * \mathrm{~F}(\mathrm{gy}, \mathrm{gv}, \mathrm{t})]$, for all $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}$ in X and $\mathrm{t}>0$, where $\psi:[0,1] \rightarrow[0,1]$ is a continuous function such that $\psi(\mathrm{t}) \geq \mathrm{t}$ for all $t \in[0,1]$.

Suppose that $f(X \times X) \subseteq g(X)$, f and g are weakly compatible, range space of one of the maps f or g is complete. Then f and g have a coupled coincidence point.

Moreover, there exists a unique point x in X such that $\mathrm{x}=\mathrm{f}(\mathrm{x}, \mathrm{x})=\mathrm{g}(\mathrm{x})$.

Proof.

Let x_{0}, y_{0} be two arbitrary points in X. Since $f(X \times X) \subseteq g(X)$, we can choose x_{1}, y_{1} in X such that $g\left(x_{1}\right)=f\left(x_{0}, y_{0}\right), g\left(y_{1}\right)=f\left(y_{0}, x_{0}\right)$.

Continuing in this way we can construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $g\left(x_{n+1}\right)=f\left(x_{n}, y_{n}\right)$ and $g\left(y_{n+1}\right)=f\left(y_{n}, x_{n}\right)$, for al $n \geq 0$.

Step 1. We first show that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences.
Since $*$ is a t -norm of H-type, for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
\underbrace{(1-\delta) *(1-\delta) * \ldots *(1-\delta)}_{p} \geq(1-\epsilon), \text { for all } \mathrm{p} \in \mathrm{~N} \tag{3.3}
\end{equation*}
$$

Since $\lim _{t \rightarrow \infty} F(x, y, t)=1$, for all x , y in X , there exists $\mathrm{t}_{0}>0$ such that
$\mathrm{F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right) \geq(1-\delta)$ and $\mathrm{F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right) \geq(1-\delta)$.
Also, since $\phi \in \Phi$, using condition ($\phi-3$), we have $\sum_{n=1}^{\infty} \phi^{n}\left(t_{0}\right)<\infty$. Then for any t $>$ 0 , there exists $\mathrm{n}_{0} \in \mathrm{~N}$ such that

$$
\begin{equation*}
\mathrm{t}>\sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right) \tag{3.4}
\end{equation*}
$$

Using condition (3.2), we have
$\mathrm{F}\left(\mathrm{gx}_{1}, \mathrm{gx}_{2}, \phi\left(\mathrm{t}_{0}\right)\right)=\mathrm{F}\left(\mathrm{f}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \phi\left(\mathrm{t}_{0}\right)\right)$

$$
\geq \psi\left[\mathrm{F}\left(\mathrm{~g} x_{0}, \mathrm{~g} x_{1}, t_{0}\right) * \mathrm{~F}\left(\mathrm{~g} y_{0}, \mathrm{~g} y_{1}, t_{0}\right)\right]
$$

$$
\geq F\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right) * \mathrm{~F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right) .
$$

$\mathrm{F}\left(\mathrm{gy}_{1}, \mathrm{gy}_{2}, \phi\left(\mathrm{t}_{0}\right)\right)=\mathrm{F}\left(\mathrm{f}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right), \mathrm{f}\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right), \phi\left(\mathrm{t}_{0}\right)\right)$

$$
\begin{aligned}
& \geq \psi\left[\mathrm{F}\left(\mathrm{~g} y_{0}, \mathrm{~g} y_{1}, t_{0}\right) * \mathrm{~F}\left(\mathrm{~g} x_{0}, \mathrm{~g} x_{1}, t_{0}\right)\right] \\
& \geq \mathrm{F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right) * \mathrm{~F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right) .
\end{aligned}
$$

Similarly, we can also get
$\mathrm{F}\left(\mathrm{gx}_{2}, \mathrm{gx}_{3}, \phi^{2}\left(\mathrm{t}_{0}\right)\right)=\mathrm{F}\left(\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{f}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \phi^{2}\left(\mathrm{t}_{0}\right)\right)$

$$
\begin{aligned}
& \geq \psi\left[\mathrm{F}\left(\mathrm{gx}_{1}, \mathrm{~g} x_{2}, \phi\left(t_{0}\right)\right) * \mathrm{~F}\left(\mathrm{~g} y_{1}, \mathrm{~g} y_{2}, \phi\left(t_{0}\right)\right)\right] \\
& \geq \mathrm{F}\left(\mathrm{gx}_{1}, \mathrm{gx}_{2}, \phi\left(\mathrm{t}_{0}\right)\right) * \mathrm{~F}\left(\mathrm{gy}_{1}, \mathrm{gy}_{2}, \phi\left(\mathrm{t}_{0}\right)\right) \\
& \geq\left[\mathrm{F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2} *\left[\mathrm{~F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2} .
\end{aligned}
$$

$\mathrm{F}\left(\mathrm{gy}_{2}, \mathrm{gy}_{3}, \phi^{2}\left(\mathrm{t}_{0}\right)\right)=\mathrm{F}\left(\mathrm{f}\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right), \mathrm{f}\left(\mathrm{y}_{2}, \mathrm{x}_{2}\right), \phi^{2}\left(\mathrm{t}_{0}\right)\right)$

$$
\geq\left[\mathrm{F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2} *\left[\mathrm{~F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2} .
$$

Continuing in this way, we can get
$\mathrm{F}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}, \phi^{n}\left(\mathrm{t}_{0}\right)\right) \geq\left[\mathrm{F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}} *\left[\mathrm{~F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}}$.
$\mathrm{F}\left(\mathrm{gy}_{\mathrm{n}}, \mathrm{gy}_{\mathrm{n}+1}, \phi^{n}\left(\mathrm{t}_{0}\right)\right) \geq\left[\mathrm{F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}} *\left[\mathrm{~F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}}$.
So, from (3.3) and (3.4), for $m>n \geq n_{0}$, we have
$\mathrm{F}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{m}}, \mathrm{t}\right)$
$\geq \mathrm{F}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{m}}, \sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right)\right)$
$\geq \mathrm{F}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{m}}, \sum_{k=n}^{m-1} \phi^{k}\left(t_{0}\right)\right)$
$\geq \mathrm{F}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}+1}, \phi^{n}\left(\mathrm{t}_{0}\right)\right) * \mathrm{~F}\left(\mathrm{gx}_{\mathrm{n}+1}, \mathrm{gx}_{\mathrm{n}+2}, \phi^{n+1}\left(\mathrm{t}_{0}\right)\right) * \ldots * \mathrm{~F}\left(\mathrm{gx}_{\mathrm{m}-1}, \mathrm{gx}_{\mathrm{m}}, \phi^{m-1}\left(\mathrm{t}_{0}\right)\right)$
$\geq\left\{\left[\mathrm{F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}} *\left[\mathrm{~F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}}\right\} *$
$*\left\{\left[\mathrm{~F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n}} *\left[\mathrm{~F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n}}\right\} *$
$*\left\{\left[\mathrm{~F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2^{m-2}} *\left[\mathrm{~F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2^{m-2}}\right\}$
$=\left[\mathrm{F}\left(\mathrm{gx}_{0}, \mathrm{gx}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}\left(2^{m-n}-1\right)} *\left[\mathrm{~F}\left(\mathrm{gy}_{0}, \mathrm{gy}_{1}, \mathrm{t}_{0}\right)\right]^{2^{n-1}\left(2^{m-n}-1\right)}$
$\geq \underbrace{(1-\delta) *(1-\delta) * \ldots *(1-\delta)}_{2^{n}\left(2^{m-n}-1\right)} \geq(1-\epsilon)$, which implies that
$\mathrm{F}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{m}}, \mathrm{t}\right) \geq(1-\epsilon)$, for all $\mathrm{m}, \mathrm{n} \in \mathrm{N}$ with $\mathrm{m}>\mathrm{n} \geq \mathrm{n}_{0}$ and $\mathrm{t}>0$.
Therefore, $\left\{\mathrm{gx}_{\mathrm{n}}\right\}$ is a Cauchy sequence. Similarly, we can get that $\left\{\mathrm{gy}_{\mathrm{n}}\right\}$ is a Cauchy
sequence.
Step 2. To show that f and g have a coupled coincidence point.
Without loss of generality, one can assume that $g(X)$ is complete, then there exists points x, y in $\mathrm{g}(\mathrm{X})$ so that $\lim _{n \rightarrow \infty} g\left(x_{n+1}\right)=\mathrm{x}, \lim _{n \rightarrow \infty} g\left(y_{n+1}\right)=\mathrm{y}$.

For $\mathrm{x}, \mathrm{y} \in \mathrm{g}(\mathrm{X})$ implies the existence of p, q in X such that $\mathrm{g}(\mathrm{p})=\mathrm{x}, \mathrm{g}(\mathrm{q})=\mathrm{y}$ and hence $\lim _{n \rightarrow \infty} g\left(x_{n+1}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)=\mathrm{g}(\mathrm{p})=\mathrm{x}$,
$\lim _{n \rightarrow \infty} g\left(y_{n+1}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}, x_{n}\right)=\mathrm{g}(\mathrm{q})=\mathrm{y}$.
From (3.2),we have

$$
\begin{aligned}
\mathrm{F}\left(f\left(x_{n}, y_{n}\right), \mathrm{f}(\mathrm{p}, \mathrm{q}), \phi(\mathrm{t})\right) & \geq \psi\left[\mathrm{F}\left(\mathrm{~g} x_{n}, \mathrm{~g}(\mathrm{p}), \mathrm{t}\right) * \mathrm{~F}\left(\mathrm{~g} y_{n}, \mathrm{~g}(\mathrm{q}), \mathrm{t}\right)\right] \\
& \geq \mathrm{F}\left(\mathrm{gx} x_{\mathrm{n}}, \mathrm{~g}(\mathrm{p}), \mathrm{t}\right) * \mathrm{~F}\left(\mathrm{~g} y_{\mathrm{n}}, \mathrm{~g}(\mathrm{q}), \mathrm{t}\right)
\end{aligned}
$$

Taking limit as $\mathrm{n} \rightarrow \infty$, we get
$\mathrm{F}(\mathrm{g}(\mathrm{p}), \mathrm{f}(\mathrm{p}, \mathrm{q}), \phi(\mathrm{t}))=1$ that is, $\mathrm{f}(\mathrm{p}, \mathrm{q})=\mathrm{g}(\mathrm{p})=\mathrm{x}$.
Similarly, $f(q, p)=g(q)=y$.
But f and g are weakly compatible, so that $f(p, q)=g(p)=x$ and $f(q, p)=g(q)=y$ implies $\operatorname{gf}(p, q)=f(g(p), g(q))$ and $g f(q, p)=f(g(q), g(p))$, that is $g(x)=f(x, y)$ and $g(y)$ $=f(y, x)$.

Hence f and g have a coupled coincidence point.
Step 3. To show that $g(x)=x$ and $g(y)=y$.
Since $*$ is a t-norm of H-type, for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\underbrace{(1-\delta) *(1-\delta) * \ldots *(1-\delta)}_{p} \geq(1-\epsilon), \text { for all } \mathrm{p} \in \mathrm{~N} \text {. }
$$

Since $\lim _{t \rightarrow \infty} F(x, y, t)=1$, for all x , y in X , there exists $\mathrm{t}_{0}>0$ such that
$\mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \mathrm{t}_{0}\right) \geq(1-\delta)$ and $\mathrm{F}\left(\mathrm{gy}, \mathrm{y}, \mathrm{t}_{0}\right) \geq(1-\delta)$.
Also, since $\phi \in \Phi$, using condition ($\phi-3$), we have $\sum_{n=1}^{\infty} \phi^{n}\left(t_{0}\right)<\infty$.
Then for any $\mathrm{t}>0$, there exists $\mathrm{n}_{0} \in \mathrm{~N}$ such that

$$
\mathrm{t}>\sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right)
$$

From (3.2), we have
$\mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \phi\left(\mathrm{t}_{0}\right)\right)=\mathrm{F}\left(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{f}(\mathrm{p}, \mathrm{q}), \phi\left(\mathrm{t}_{0}\right)\right)$

$$
\begin{aligned}
& \geq \psi\left[\mathrm{F}\left(\mathrm{~g} x, \mathrm{gp}, t_{0}\right) * \mathrm{~F}\left(\mathrm{gy}, \mathrm{gq}, t_{0}\right)\right] \\
& \geq \mathrm{F}\left(\mathrm{gx}, \mathrm{gp}, \mathrm{t}_{0}\right) * \mathrm{~F}\left(\mathrm{gy}, \mathrm{gq}, \mathrm{t}_{0}\right)
\end{aligned}
$$

$$
=\mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \mathrm{t}_{0}\right) * \mathrm{~F}\left(\mathrm{gy}, \mathrm{y}, \mathrm{t}_{0}\right) .
$$

Similarly, $\mathrm{F}\left(\mathrm{gy}, \mathrm{y}, \phi\left(\mathrm{t}_{0}\right)\right) \geq \mathrm{F}\left(\mathrm{gy}, \mathrm{y}, \mathrm{t}_{0}\right) * \mathrm{~F}\left(\mathrm{gx}, \mathrm{x}, \mathrm{t}_{0}\right)$.
Continuing in a same way, we have for all $\mathrm{n} \in \mathrm{N}$,
$\mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \phi^{n}\left(\mathrm{t}_{0}\right)\right) \geq\left[\mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \mathrm{t}_{0}\right)\right]^{2^{n-1}} *\left[\mathrm{~F}\left(\mathrm{gy}, \mathrm{y}, \mathrm{t}_{0}\right)\right]^{2^{n-1}}$.
Thus, we have
$\mathrm{F}(\mathrm{gx}, \mathrm{x}, \mathrm{t}) \geq \mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right)\right)$

$$
\begin{aligned}
& \geq \mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \phi^{n_{0}}\left(t_{0}\right)\right) \\
& \geq\left[\mathrm{F}\left(\mathrm{gx}, \mathrm{x}, \mathrm{t}_{0}\right)\right]^{2^{n_{0}-1}} *\left[\mathrm{~F}\left(\mathrm{gy}, \mathrm{y}, \mathrm{t}_{0}\right)\right]^{2^{n_{0}-1}} \\
& \geq \underbrace{(1-\delta) *(1-\delta) * \ldots(1-\delta)}_{2^{n_{0}}} \geq(1-\epsilon) .
\end{aligned}
$$

So, for any $\epsilon>0$, we have $F(g x, y, t) \geq(1-\epsilon)$, for all $t>0$.
This implies $g(x)=x$. Similarly, $g(y)=y$.
Step 4. Next we shall show that $x=y$.
Since * is a t-norm of H-type, for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\underbrace{(1-\delta) *(1-\delta) * \ldots *(1-\delta)}_{p} \geq(1-\epsilon), \text { for all } \mathrm{p} \in \mathrm{~N} \text {. }
$$

Since $\lim _{t \rightarrow \infty} F(x, y, t)=1$, for all x , y in X , there exists $\mathrm{t}_{0}>0$ such that

$$
\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{t}_{0}\right) \geq(1-\delta)
$$

Since $\phi \in \Phi$, using condition $(\phi-3)$, we have $\sum_{n=1}^{\infty} \phi^{n}\left(t_{0}\right)<\infty$. Then for any $\mathrm{t}>0$, there exists $\mathrm{n}_{0} \in \mathrm{~N}$ such that

$$
\mathrm{t}>\sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right)
$$

From (3.2), we have

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \phi\left(\mathrm{t}_{0}\right)\right) & =\mathrm{F}\left(\mathrm{f}(\mathrm{p}, \mathrm{q}), \mathrm{f}(\mathrm{q}, \mathrm{p}), \phi\left(\mathrm{t}_{0}\right)\right) \\
& \geq \psi\left[\mathrm{F}\left(\mathrm{gp}, \mathrm{gq}, t_{0}\right) * \mathrm{~F}\left(\mathrm{gq}, \mathrm{gp}, t_{0}\right)\right] \\
& \geq \mathrm{F}\left(\mathrm{gp}, \mathrm{gq}, \mathrm{t}_{0}\right) * \mathrm{~F}\left(\mathrm{gq}, \mathrm{gp}, \mathrm{t}_{0}\right) \\
& =\left[\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{t}_{0}\right)\right]^{2} .
\end{aligned}
$$

Continuing likewise, we have for all $\mathrm{n} \in \mathrm{N}$, that
$\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \phi^{n_{0}}\left(t_{0}\right)\right) \geq\left[\mathrm{F}\left(x, y, t_{0}\right)\right]^{2^{n_{0}}}$.
Thus, we have
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{t}) \geq \mathrm{F}\left(\mathrm{x}, \mathrm{y}, \sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right)\right)$

$$
\begin{aligned}
& \geq \mathrm{F}\left(\mathrm{x}, \mathrm{y}, \phi^{n_{0}}\left(t_{0}\right)\right) \\
& \geq\left[\mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{t}_{0}\right)\right]^{2^{n_{0}}} \\
& \geq \underbrace{(1-\delta) *(1-\delta) * \ldots *(1-\delta)}_{2^{n_{0}}} \geq(1-\epsilon), \text { which implies that } \mathrm{x}=\mathrm{y}
\end{aligned}
$$

Thus, we have proved that f and g have a common fixed point x in X .
Step 5. We now prove the uniqueness of x.
Let z be any point in X such that $\mathrm{z} \neq \mathrm{x}$ with $\mathrm{g}(\mathrm{z})=\mathrm{z}=\mathrm{f}(\mathrm{z}, \mathrm{z})$.
Since $*$ is a t-norm of H-type, for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\underbrace{(1-\delta) *(1-\delta) * \ldots *(1-\delta)}_{p} \geq(1-\epsilon), \text { for all } \mathrm{p} \in \mathrm{~N} \text {. }
$$

Since $\lim _{t \rightarrow \infty} F(x, y, t)=1$, for all x , y in X , there exists $\mathrm{t}_{0}>0$ such that

$$
\mathrm{F}\left(\mathrm{x}, \mathrm{z}, \mathrm{t}_{0}\right) \geq(1-\delta)
$$

Also, since $\phi \in \Phi$, using condition ($\phi-3$), we have $\sum_{n=1}^{\infty} \phi^{n}\left(t_{0}\right)<\infty$. Then for any t $>$ 0 , there exists $\mathrm{n}_{0} \in \mathrm{~N}$ such that

$$
\mathrm{t}>\sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right)
$$

Using condition (3.2), we have

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{x}, \mathrm{z}, \phi\left(\mathrm{t}_{0}\right)\right) & =\mathrm{F}\left(\mathrm{f}(\mathrm{x}, \mathrm{x}), \mathrm{f}(\mathrm{z}, \mathrm{z}), \phi\left(\mathrm{t}_{0}\right)\right) \\
& \geq \psi\left[\mathrm{F}\left(\mathrm{~g}(\mathrm{x}), \mathrm{g}(\mathrm{z}), t_{0}\right) * \mathrm{~F}\left(\mathrm{~g}(\mathrm{x}), \mathrm{g}(\mathrm{z}), t_{0}\right)\right] \\
& \geq \mathrm{F}\left(\mathrm{~g}(\mathrm{x}), \mathrm{g}(\mathrm{z}), t_{0}\right) * \mathrm{~F}\left(\mathrm{~g}(\mathrm{x}), \mathrm{g}(\mathrm{z}), t_{0}\right) \\
& =\mathrm{F}\left(\mathrm{x}, \mathrm{z}, t_{0}\right) * \mathrm{~F}\left(\mathrm{x}, \mathrm{z}, t_{0}\right) \\
& =\left[\mathrm{F}\left(\mathrm{x}, \mathrm{z}, t_{0}\right)\right]^{2} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\mathrm{F}(\mathrm{x}, \mathrm{z}, \mathrm{t}) & \geq \mathrm{F}\left(\mathrm{x}, \mathrm{z}, \sum_{k=n_{0}}^{\infty} \phi^{k}\left(t_{0}\right)\right) \\
& \geq \mathrm{F}\left(\mathrm{x}, \mathrm{z}, \phi^{n_{0}}\left(t_{0}\right)\right) \\
& \geq\left(\left[\mathrm{F}\left(\mathrm{x}, \mathrm{z}, \mathrm{t}_{0}\right)\right]^{2^{n_{0}-1}}\right)^{2} \\
& =\left(\mathrm{F}\left(\mathrm{x}, \mathrm{z}, \mathrm{t}_{0}\right)\right)^{2^{n_{0}}} \\
& \geq \underbrace{(1-\delta) *(1-\delta) * \ldots *(1-\delta)}_{2^{n_{0}}} \geq(1-\epsilon), \text { which implies that } \mathrm{x}=\mathrm{y} .
\end{aligned}
$$

Hence, f and g have a unique common fixed point in X .
Next, we give an example in support of the Theorem 3.1.
Example 3.1. Let $\mathrm{X}=[-2,2), \mathrm{a} * \mathrm{~b}=\mathrm{ab}$ for all $\mathrm{a}, \mathrm{b} \in[0,1]$ and $\varphi(\mathrm{t})=\frac{t}{t+1}$. Then $(\mathrm{X}, \mathrm{F}$,
*) is a Menger space, where

$$
\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{t})=[\varphi(\mathrm{t})]^{|x-y|} \text {, for all } \mathrm{x}, \mathrm{y} \text { in } \mathrm{X} \text { and } \mathrm{t}>0 .
$$

Let $\psi(\mathrm{t})=\mathrm{t}, \phi(\mathrm{t})=\frac{t}{2}, \mathrm{~g}(\mathrm{x})=\mathrm{x}$ and the mapping $\mathrm{f}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{f}(\mathrm{x}, \mathrm{y})$ $=\frac{x^{2}}{16}+\frac{y^{2}}{16}-2$.
It is easy to check that $f(X \times X) \subseteq X=g(X)$. Further, $f(X \times X)$ is complete and the pair (f, g) is weakly compatible. We now check the condition (3.2),
$\mathrm{F}(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{f}(\mathrm{u}, \mathrm{v}), \phi(\mathrm{t}))$
$=\mathrm{F}\left(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{f}(\mathrm{u}, \mathrm{v}), \frac{t}{2}\right)$
$=\left[\varphi\left(\frac{t}{2}\right)\right]^{|\mathrm{f}(\mathrm{x}, \mathrm{y})-\mathrm{f}(\mathrm{u}, \mathrm{v})|}$
$=\left[\frac{t}{t+2}\right]^{\left|x^{2}+y^{2}-u^{2}-v^{2}\right| / 16}$
$\geq\left[\frac{t}{t+2}\right]^{\left|x^{2}+y^{2}-u^{2}-v^{2}\right| / 8}$
$\geq\left[\frac{t}{t+1}\right]^{|x-u|+|y-v|}$
$=\left[\frac{t}{t+1}\right]^{|x-u|}\left[\frac{t}{t+1}\right]^{|y-v|}$
$=\psi[\mathrm{F}(\mathrm{gx}, \mathrm{gu}, \mathrm{t}) * \mathrm{~F}(\mathrm{gy}, \mathrm{gv}, \mathrm{t})]$, for every $\mathrm{t}>0$. Hence, all the conditions of Theorem 3.1, are satisfied. Thus f and g have a unique common coupled fixed point in X . Indeed, $x=4(1-\sqrt{2})$ is a unique common coupled fixed point of f and g.

Theorem 3.2. Let ($\mathrm{X}, \mathrm{F}, *$) be Menger PM - Space, * being continuous t - norm of H-type. Let $\mathrm{f}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings and there exists $\phi \in \Phi$ satisfying (3.2)

Suppose that $f(X \times X) \subseteq g(X), f$ and g are w-compatible, range space of one of the mappings f or g is complete. Then there exists a unique point x in X such that $\mathrm{x}=$ $f(x, x)=g(x)$.

Proof.

It follows immediately from Theorem 3.1.
Next we give an application of Theorem 3.1.

4. An Application

Theorem 4.1. Let (X, F, *) be a Menger PM - space, * being continuous t-norm defined by $\mathrm{a} * \mathrm{~b}=\min .\{\mathrm{a}, \mathrm{b}\}$ for all a, b in X . Let M, N be weakly compatible self maps on X satisfying the following conditions:
(4.1) $M(X) \subseteq N(X)$,
(4.2) there exists $\phi \in \Phi$ such that
$\mathrm{F}(\mathrm{Mx}, \mathrm{My}, \phi(\mathrm{t})) \geq \psi[\mathrm{F}(\mathrm{Nx}, \mathrm{Ny}, \mathrm{t})]$ for all x, y in X and $\mathrm{t}>0$, where $\psi:[0$, $1] \rightarrow[0,1]$ is continuous and $\psi(\mathrm{t}) \geq \mathrm{t}$ for all $\mathrm{t} \in[0,1]$.

If range space of any one of the maps M or N is complete, then M and N have a unique common fixed point in X .

Proof.

By taking $f(x, y)=M(x)$ and $g(x)=N(x)$ for all $x, y \in X$ in theorem (3.1), we get the desired result.

Taking $\phi(\mathrm{t})=\mathrm{kt}, \mathrm{k} \in(0,1)$ and $\psi(\mathrm{t})=\mathrm{t}$ we have the following:
Corollary 4.2. Let ($\mathrm{X}, \mathrm{F},{ }^{*}$) be a Menger PM - space, * being continuous t-norm defined by $a * b=\min .\{a, b\}$ for $a l l a, b$ in X. Let M, N be weakly compatible self maps on X satisfying (4.1) and the following condition:
(4.3) there exists $\mathrm{k} \in(0,1)$ such that

$$
F(M x, M y, k t) \geq F(N x, N y, t) \text { for all } x, y \text { in } X \text { and } t>0 .
$$

If range space of any one of the maps M or N is complete, then M and N have a unique common fixed point in X .

Taking $\mathrm{N}=\mathrm{I}_{\mathrm{X}}$ (the identity map on X) in Corollary 4.2, we have the following:
Corollary 4.3. Let $\left(\mathrm{X}, \mathrm{F},{ }^{*}\right)$ be a Menger PM - space, * being continuous t-norm defined by $\mathrm{a} * \mathrm{~b}=\min .\{\mathrm{a}, \mathrm{b}\}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in X . Let M, N be weakly compatible self maps on X satisfying (4.1) and the following condition:
(4.4) there exists $\mathrm{k} \in(0,1)$ such that

$$
F(M x, M y, k t) \geq F(x, y, t) \text { for all } x, y \text { in } X \text { and } t>0 \text {. }
$$

If range space of the map M is complete, then M and N have a unique common fixed
point in X .
Acknowledgement. Authors(Sanjay Kumar and Naresh Kumar) are highly thankful to University Grants Commission, New Delhi- 11016, INDIA for providing Major research Project under F. No. 39-41/2010(SR).

REFERENCES

[1] M. Abbas, M. Ali Khan and S. Redenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217(2010), 195-202,.
[2] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods and Applications, 65(7) (2006), 1379-1393.
[3] J. X. Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Analysis: Theory, Methods and Applications, 71 (5-6) (2009), 1833-1843.
[4] O. Hadz̆ić and E.Pap, Fixed Point Theory in Probabilistic Metric Spaces, of Mathematics and its Applications, Kluwer Academic, Dordrecht, The Netherlands,536 (2001).
[5] G. Jungck, Common fixed points for non-continuous non-self maps on non-metric spaces, Far East J. Math. Sci., 4(2) (1996), 199-215.
[6] V. Lakshmikantham and L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 70 (12) (2009), 4341-4349.
[7] K. Menger, Statistical Metrices, Proc. Nat. Acad. Sci., U.S.A., 28 (1942), 535-537.
[8] S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japonica, 36 (1991), 283-289.
[9] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Systems Theory, 6(1972), 97-102.
[10] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. math. Anal. Appl., 301(2005), 439-448.
[11] B. Schweizer and A.Sklar, Probabilistic Metric Spaces, North Holland Series in Probability and Applied Math., 5(1983).

[^0]: *Corresponding author

