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Abstract. We define GF-structure on the semi-cotangent bundle and establish its existence. We find basic results

for complete lifts of tensor field of type (1,1) and of type (1,2) on the semi-cotangent bundle. We also investigate

the integrability conditions for GF-structure on the semi-cotangent bundle.
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1. INTRODUCTION

Let Mn be an n-dimensional differentiable manifold and T ∗p (Mn) be the cotangent space at

a point p ∈ Mn , that is, the dual space to tangent space Tp(Mn) at p. Any element of T ∗p Mn

is called a covector at p ∈ Mn. Then the set T ∗p (Mn) = ∪p∈MnT ∗p is, the by definition, the

cotangent bundle over the manifold Mn [8]. The semi-cotangent bundle is a pull-back bundle

of the cotangent bundle. Yildirim [6] studied the semi-cotangent bundles by considering the

complete lift of the vector and tensor field of type (1,1). Yildirim and Solimov [7] studied the

semi-cotangent bundles and some of their lift problems. Integrability conditions of an almost

complex structure on semi-cotangent bundle are established by Cayer [1]. In the present paper
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we consider methods by which the GF-structure in tangent bundle T Mn can be extended to

semi-cotangent bundle t∗(Mn). These methods enable us to examine GF-structure of t∗(Mn) in

relation to those of T Mn.

Let Mn be an n-dimensional differentiable manifold and T Mn its tangent bundle. The projec-

tion bundle π1 : T Mn→Mn which denotes the natural bundle structure of T Mn over Mn [4]. Let

(xi) = (xᾱ ,xα) be a system of local coordinates where xα are coordinates in Mn and xᾱ are fibre

coordinates of tangent bundle T Mn. The indices α,β , ..... = 1, ...,n, ᾱ, β̄ , ..... = n = 1, .....2n

and i, j, ....= 1, ....,2n. If (xi′) = (xᾱ ′,xα ′) is another system of local adapted coordinates in the

tangent bundle T Mn, where

xᾱ ′ =
∂xα ′

∂xβ
yβ

xα ′ = xα ′(xβ )(1.1)

The Jacobian of (1.1) is given by the matrix

(1.2) Ai′
j =

(
∂xi′

∂x j

)
=


∂xα ′

∂xβ

∂ 2xα ′

∂xβ ∂xδ
yδ

0 ∂xα ′

∂xβ
yβ

 .

Let T ∗x (Mn) be the cotangent space at a point x ∈ Mn and element of T ∗x (Mn) is called cov-

ector at x ∈ Mn. If a covector p∗x(Mn) whose components are given by pα with respect to

the natural coframe {dxα} that is p = pidxi, then by definition the set t∗(Mn) of all points

(xK) = (xᾱ ,xα ,x ¯̄α), where x ¯̄α = pα ;K,L, ....= 1, ....,3n with projection π2 : t∗(Mn)→ T ∗(Mn)

that is π2 : (xᾱ ,xα ,x ¯̄α)→ (xᾱ ,xα) is a semi-cotangent (pull back) bundle of the cotangent bun-

dle by submersion π1 : T ∗(Mn)→Mn [3].

The pull back bundle t∗(Mn) of the cotangent bundle T ∗(Mn) also has the natural bundle

structure over Mn. Its projection bundle π : t∗(Mn)→ Mn which denotes the natural bundle

structure of t∗(Mn) over Mn and defined by π : (xᾱ ,xα ,x ¯̄α)→ (xα), and it is easily verified that

π = π1 ◦π2. Hence, (t∗(Mn),π1 ◦π2) is the composite bundle [5] or step like bundle.
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2. COMPLETE LIFTS OF VECTOR FIELDS

If (xᾱ ′,xα ′,x ¯̄α ′) is system of local adapted coordinates in the t∗(Mn), then we have

xᾱ ′ =
∂xα ′

∂xβ
yβ

xα ′ = xα ′(xβ )

x ¯̄α ′ =
∂xβ

∂xα ′
pβ(2.1)

The Jacobian of equation (2.1) is given by the matrix

Ā =
(

AK′
L

)
=



∂xα ′

∂xβ

∂ 2xα ′

∂xβ ∂xδ
yδ 0

0 ∂xα ′

∂xβ
yβ 0

0 pα
∂xβ ′

∂xβ

∂ 2xα

∂xβ ′∂xα ′
∂xβ

∂xα ′


(2.2)

it is obvious that the condition DetĀ 6= 0 is to the condition Det
(

∂xα ′

∂xβ

)
6= 0.

Suppose that X ∈ ℑ1
0(Mn) and Xα are components of X then we have X = Xα∂α . The com-

plete lift CX of X to tangent bundle T (Mn) is defined by CX = Xα∂α +(yβ ∂β Xα)∂ ᾱ [8]. On

putting

CCX = (CCXα) =


yδ ∂δ Xα

Xα

−pδ (∂αXδ )

(2.3)

by the virtue of equation (2.2), we have CCX ′ = Ā(CCX). The vector field CCX is called the

complete lift of CX to the semi-cotangent byndle t∗(Mn).

Suppose that ω ∈ ℑ0
1(Mn),F ∈ ℑ1

1(T (Mn)) and T ∈ ℑ1
2(Mn). The vertical lift VV ω of the

V ω , γF ∈ℑ1
0(t
∗(Mn)) and γT ∈ℑ1

1(t
∗(Mn)) have the components on the semi-cotangent bundle

t∗(Mn)

VV
ω =


0

0

ωα

 ,γF = (γFK) =


0

0

pβ Fβ

α

(2.4)
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γT =
(
γT K

L
)
=



0 0 0

0 0 0

0 pδ T δ

βα
0


(2.5)

with respect to the coordinates (xᾱ ,xα ,x ¯̄α) where ωα ,F
β

α and T δ

βα
are local components of ω,F

and T respectively.

If f is a function in Mn, we have write VV f the vertical lift of the function f on t∗(Mn) is

(2.6) VV f =V f ◦π2 = f ◦π1 ◦π2 = f ◦π.

Let X ,Y ∈ ℑ1
0(T (Mn)), f ∈ ℑ0

0(Mn),ω ∈ ℑ0
1(Mn) and F ∈ ℑ1

1(T (Mn)), we have

(i) CC(X +Y ) = CCX +CC Y,(2.7)

(ii) CCXVV f = CC(X f ),(2.8)

(iii) [CCX ,CC Y ] = CC[X ,Y ]

⇒ £CCX(
CCY ) = CC(£XY )(2.9)

(iv) [CCX ,VV
ω] = VV (£X ω)(2.10)

(v) [CCX ,γF ] = γ(£X F)(2.11)

where £X the operator of Lie derivation with respect to X .

3. COMPLETE LIFT OF TENSOR FIELDS OF TYPE (1,1) AND OF TYPE (1,2)

Let F ∈ ℑ1
1(T (Mn)) and Fα

β
local components of F . Then we have F = Fα

β
∂α ⊗ dxβ [8].

Making use (2.2), we define FCC for tensor field of type (1,1) on t∗(Mn) whose components are
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given by

CCF =
(

CCFK
L

)
=



Fα

β
yδ ∂δ Fα

β
0

0 Fα

β
0

0 pσ (∂β Fσ
α −∂αFσ

β
) Fβ

α


(3.1)

with respect to the coordinates ((xᾱ ,xα ,x ¯̄α) on t∗(Mn), where Fα

β
Fβ

θ
= a2δ

β

θ
. The tensor field

of type (1,1) CCF is called the complete lift of CF to the semi-cotangent bundle t∗(Mn).

We now have the following propositions [6]:

Proposition 3.1. Let X ∈ ℑ1
0(T (Mn)),ω ∈ ℑ0

1(Mn) and F ∈ ℑ1
1(T (Mn)) then

CCFCCX =CC (FX)+ γ(£X F)(3.2)

CCFVV
ω =VV (ω ◦F)(3.3)

£CCX
CCF = 0 i f £X F = 0(3.4)

where £X the operator of Lie derivation with respect to X.

Proposition 3.2. Let X ∈ ℑ1
0(T (Mn)),ω ∈ ℑ0

1(Mn),F ∈ ℑ1
1(T (Mn)) and S,T ∈ ℑ1

2(Mn), then

(γS)CCX = γ(SX)(3.5)

(γS)(γF) = 0(3.6)

CCF(γG) = γ(G◦F)(3.7)

(γ̃S)γ(£X F) =



0 yδ Sα

δβ
0

0 0 0

0 −pσ Sσ

βα
0





0

0

pσ (£X F)σ
α)


=



0

0

0


(3.8)

where £X the operator of Lie derivation with respect to X.



2774 MOHAMMAD NAZRUL ISLAM KHAN

Theorem 3.1. If F ∈ ℑ1
1(T (Mn)) and S ∈ ℑ1

2(Mn) then

(3.9) CCF(γ̃S) = γ̃(SF),

where S ∈ ℑ1
2(Mn) is defined by (SF)(X ,Y ) = S(X ,FY ) for any X ,Y ∈ ℑ1

0(T (Mn)) then

Proof: If Z ∈ ℑ1
0(T (Mn)), then from equations (3.5) and (3.7), we find

(3.10) CCF(γ̃S)CCZ =CC F(γ̃S)CCZ =CC F(γ̃SZ) = γ̃(SZF)

But we have by equation (3.5),

(γ̃SF)CCZ = γ̃(SF)Z

Since (SF)ZY = (SF)(Z,Y ) = S(Z,FY ) = (SZF)Y , for all Y ∈ℑ1
0(T (Mn)). again from equation

(3.5),

(3.11) γ̃(SZF) = γ̃(SF)Z = γ̃(SF)CCZ,

From equations (3.10) and (3.11), we get

(CCF(γ̃S))CCZ = γ̃(SF)CCZ⇒CC F(γ̃S) = γ̃(SF).

Hence, the proof is completed.

Theorem 3.2. Let F ∈ ℑ1
1(T (Mn)) and S ∈ ℑ1

2(Mn), then (γ̃S)CCF = γ̃(SF) if and only if

S(X ,FY ) = S(FX ,Y )

for any X ,Y ∈ ℑ1
0(Mn).

Proof: Let X ∈ ℑ1
0(Mn). Then by virtue of equation (3.5), we get

γ̃(SF)CCX = γ̃(SF)X

On other hand, by equations (3.2), (3.5) and (3.6), we obtain

((γ̃S)CCF)CCX = (γ̃S)(CCFCCX)

= (γ̃S)(CC(FX)+ γ(£X F))

= γ̃SFX , as γ̃Sγ(£X F) = 0.
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Now, SFX = (SF)X if and only if SFXY = (SF)XY that is if and only if

S(FX ,Y ) = S(X ,FY ), ∀X ,Y ∈ ℑ
1
0(T (Mn)).

Next, using equatin (3.5), we get

γ̃SFX = γ̃(SF)X

i.e.

(γ̃S)CCF)CCX = (γ̃(SF))CCX

if and only if

SFX = (SF)X .

Hence the proof is completed.

4. GF-STRUCTURE IN THE SEMI-COTANGENT BUNDLE

Let Mn be n-dimensional differentiable manifold of class C∞ and T (Mn) its tangent bundle.

Suppose there exists a tensor field F of type (1,1) in T (Mn) satisfying

(4.1) F2 = a2I

where a is any real or complex number. Then manifold T (Mn) is said to posses a GF-structure

[2].

Let F and G ∈ ℑ1
1(T (Mn)), then the torsion NF,G of the tensor field F and G of type (1,1) is

the tensor field NF,G of type (1,1) defined by [8]

2NF,G(X ,Y ) = [FX ,GY ]+ [GX ,FY ]−F [GX ,Y ]−G[FX ,Y ]

− F [X ,GY ]−G[FX ,Y ]+ (FG+GF)[X ,Y ](4.2)

where X ,Y ∈ ℑ1
0(T (Mn)).

If we put F = G, then we have

(4.3) NF = NF,F(X ,Y ) = [FX ,FY ]−F [FX ,Y ]−F [X ,FY ]+F2[X ,Y ]

which is the Nijenhuis tensor of F .
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Theorem 4.1. If F ∈ ℑ1
1(T (Mn)) is GF-structure in ℑ1

1(t
∗(Mn)) and N = NF then

(γ̃N)CCF = γ̃(NF)

Proof: By Theorem (3.2), It is sufficient to show that

N(FX ,Y ) = N(X ,FY ), ∀ ∈ ℑ
1
0(T Mn).

This can be verified as follows

N[FX ,Y ] = [F2X ,FY ]−F [F2X ,Y ]−F [FX ,FY ]+F2[FX ,Y ]

since F2 = a2I, we get

N[FX ,Y ] = a2[X ,FY ]−a2F [X ,Y ]−F [FX ,FY ]+a2[FX ,Y ]

and

N[FX ,Y ] = [FX ,F2Y ]−F [FX ,FY ]−F [X ,F2Y ]+F2[X ,FY ]

N[FX ,Y ] = a2[FX ,Y ]−F [FX ,FY ]−a2F [X ,Y ]+a2[X ,FY ]

Thus, we have

N[FX ,Y ] = N[FX ,Y ].

The proof is completed.

Theorem 4.2. If F ∈ ℑ1
1(T (Mn)), F2 = a2I then

(4.4) (CCF)2 = a2I− γ(NF).



GF-STRUCTURE ON THE SEMI COTANGENT BUNDLE 2777

Proof: By the virtue of equations (2.5) and (3.1), we have

(CCF)2 =



Fα

β
yδ ∂δ Fα

β
0

0 Fα

β
0

0 pσ (∂β Fσ
α −∂αFσ

β
) Fβ

α





Fβ

θ
yδ ∂δ Fβ

θ
0

0 Fβ

θ
0

0 pσ (∂θ Fσ

β
−∂β Fσ

θ
) Fθ

β



=



a2δ
β

θ
0 0

0 a2δ
β

θ
0

0 0 a2δ θ

β


+



0 0 0

0 0 0

0 −pσ (NF)
σ
θα

0


= a2I− γ(NF)(4.5)

where Fα

β
Fβ

θ
= a2δ

β

θ
.

Theorem 4.3. Let CCF be GF-structure in t∗(Mn) and NCCF be the Nijenhuis tensor of CCF.

then

NCCF = N(CCX ,CC Y ) = 0

if and only if NF = 0, where X ,Y ∈ ℑ1
0(T (Mn)) and NF be Nijenhuis tensor of F ∈ ℑ1

1(T (Mn)).

Proof: By the definition of Nijenhuis tensor, we have

NCCF = N(CCX ,CC Y ) = [CCFCCX ,CC FCCY ]−CC F [CCFCCX ,CC Y ]

− CCF [CCX ,CC FCCY ]+CC F2[CCX ,CC Y ](4.6)

Ñ(CCX ,CC Y ) = [CCFCCX ,CC FCCY ]−CC F [CCFCCX ,CC Y ]

− CCF [CCX ,CC FCCY ]+a2[CCX ,CC Y ]
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=
[

CC(FX)+ γ£X F,CC (FY )+ γ£Y F
]

− CCF
[

CC(FX)+ γ£X F,CC Y
]

− CCF
[

CC−X ,CC (FY )+ γ£Y F
]

+ a2CC[X ,Y ]

= CC{[FX ,FY ]−F [FX ,Y ]−F [X ,FY ]+a2[X ,Y ]}

− γ{£X(£FY F−F£Y F)−£Y (£FX F−F£X F)

− £F [X ,Y ]F +F£[X ,Y ]F}

where we used the relation

£X £Y F−£Y £X F = £[X ,Y ]F.

Thus, we have

(4.7) Ñ(CCX ,CC Y ) =CC (N(X ,Y ))+ γP

where P is tensor field of type (1,1) in T (Mn) given by

P = £Y £FX F−£X £FY F +(£X F)(£Y F)− (£X F)(£Y F)− (£[X ,Y ]F)F

Since ÑCC = 0, then from (4.7), we have

CC(N(X ,Y ))+ γP = 0

This shows that N(X ,Y ) = 0 for all X ,Y ∈ ℑ1
0(T (Mn)). Thus, F is integrable. Hence the proof

is completed.

Theorem 4.4. Let F be a GF-structure on T (Mn), then the complete lift of CCF of F on t∗(Mn)

is a GF-structure on t∗(Mn) iff F is integrable.

Proof: In the view of Theorem (4.2), we have

(CCF)2 = F2− γ(NF)

since F is a GF-structure i.e. F2 = a2I, then
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(CCF)2 = a2I− γ(NF)

So, (CCF)2 = a2I if and only if NF = 0 Hence, (CCF)2 gives GF-structure on on t∗(Mn) iff F is

integrable.

Theorem 4.5. Let Mn be a differentiable manifold and its tangent bundle T (Mn) admiiting with

the Nijenhuis tensor NF . Then

(4.8) CCF +
1

2a2 γ(NF)

defines GF-structure on t∗(Mn).

Proof: (
CCF +

1
2a2 γ(NF)

)2

=

(
CCF +

1
2a2 γ(NF)

)(
CCF +

1
2a2 γ(NF)

)
= (CCF)2 +

1
2a2

CC
Fγ(NF)+

1
2a2 γ(NF)CCF

= (CCF)2 +
1

2a2 γ(NF2)+
1

2a2 γ(NF2)

= (CCF)2 +
1
a2 γ(NF2)

using (4.1) and (4.4), we have(
CCF +

1
2a2 γ(NF)

)2

= a2I− γN +
1
a2 γ(NF2)(

CCF +
1

2a2 γ(NF)

)2

= a2I

which proves the theorem.

Theorem 4.6. The GF-structure CCF + 1
2a2 γ(NF) in t∗(Mn) is integrable iff the GF-structure F

in T (Mn)is integrable.

Proof: Let us suppose that F is integrale, then N = 0. Hence

CCF +
1

2a2 γ(NF) =CC F

and Theorem 4.4 implies CCF is also integrable.
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Conversely, we suppose that CCF + 1
2a2 γ(NF) is integrable, then the Nijenhuis tensor Ñ of

CCF + 1
2a2 γ(NF) is zero in t∗(Mn). Taking account of the definition of the Nijenhuis tensor and

theorem 4.5, we have

Ñ(CCX ,CC Y ) =

[(
CCF +

1
2a2 γ(NF)

)CC

X ,

(
CCF +

1
2a2 γ(NF)

)CC

Y

]

−
(

CCF +
1

2a2 γ(NF)

)[(
CCF +

1
2a2 γ(NF)

)CC

X ,CC Y

]

−
(

CCF +
1

2a2 γ(NF)

)[
CCX ,

(
CCF +

1
2a2 γ(NF)

)CC

Y

]
+ a2[CCX ,CC Y ]

=

[
CC(FX)+ γ

(
£X F +

1
2a2 γ(NF)X

)
,CC (FY )+ γ

(
£Y F +

1
2a2 γ(NF)Y

)]
−

(
CCF +

1
2a2 γ(NF)

)[
CC(FX)+ γ

(
£X F +

1
2a2 γ(NF)X

)
,CC Y

]
−

(
CCF +

1
2a2 γ(NF)

)[
CCX ,CC (FY )+ γ

(
£Y F +

1
2a2 γ(NF)Y

)]
+ a2CC[X ,Y ]

= CC{[FX ,FY ]−F [FX ,Y ]−F [X ,FY ]+a2[X ,Y ]}

+ γ{£Y £FX F +
1

2a2 £FX(NF)Y −£X £FY F− 1
2a2 £FX(NF)X

+

(
£X F +

1
2a2 (NF)X

)(
£Y F +

1
2a2 (NF)Y

)
−

(
£Y F +

1
2a2 (NF)Y

)(
£X F +

1
2a2 (NF)X

)
}

− (£[X ,Y ]F)F +
1

2a2 (£Y (NF)X)F−
1

2a2 (£X(NF)Y )F

− 1
2a2 (NF)[FX ,Y ]−

1
2a2 (NF)[X ,FY ]

where

(4.9) £X £Y F−£Y £X F = £[X ,Y ]F.
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Thus, we have

(4.10) Ñ(CCX ,CC Y ) =CC (N(X ,Y ))+ γP

where P is tensor field of type (1,1) in T (Mn)) given by

P = £Y £FX F +
1

2a2 £FX(NF)Y −£X £FY F− 1
2a2 £FX(NF)X

+ (£X F)(£Y F)+
1

2a2 (£Y F)(NF)X)+
1

2a2 (£X F)(NF)Y

+
1

4a4 (NF)X(NF)Y − (£X F)(£Y F)− 1
2a2 (£Y F)(NF)X

− 1
2a2 (£X F)(NF)Y −

1
4a4 (NF)X(NF)Y − (£[X ,Y ]F)F

+
1

2a2 (£Y (NF)X)F−
1

2a2 (£X(NF)Y )F

− 1
2a2 (NF)[FX ,Y ]−

1
2a2 (NF)[X ,FY ]

Since CCÑ = 0, then from (4.10), we have

CC(N(X ,Y ))+ γP = 0

This shows that N(X ,Y ) = 0 for all X ,Y ∈ ℑ1
0(T (Mn)). Thus, F is integrable. Hence the proof

is completed.
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