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1. INTRODUCTION AND PRELIMINARIES

Fixed point theorems are very important for proving the existence of solutions for some

nonlinear differential and integral equations. The mixed arguments from various branches of

mathematics utilized for the examination of fixed point theory. The fixed point problem of

contractive mappings in partially ordered metric spaces has been considered recently by Ran

and Reurings [13], Bhaskar and Lakshmikantham [6], Nieto and Rodriguez-Lopez [11], Dhage

[7], Shrivastava et.al. [14], and Bedre et.al. [2, 3].
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In [5, 4], Berinde and Borcut began the analysis of a triple hybrid fixed-point theorem for

nonlinear mapping in partially ordered metric spaces and obtained its existence results which

Afshari et.al.[1] further generalized with a slightly different method. The tripled fixed point

theorems are well known to have nice applications to dynamic systems based on nonlinear

tripled functional differential, integral and integro-differential equations to prove the existence

of tripled solutions.

Throughout this study, we present a new method focused on the combination of the noncom-

pactness measure with a new tripled fixed point theorem of partially condensing mapping F in

X3.

First we are reminding ourselves of some history and gathering some valuable results that

are important for our further research.

Definition 1.1. X is regular if {xn} is a nondecreasing (resp. nonincreasing) sequence in X and

xn→ x∗ as n→ ∞, then xn ≤ x∗ (resp. xn ≥ x∗.) for all n ∈ N.

The regularity of X can be found in and the references in Guo and Lakshmikantham [10].

Definition 1.2. A mapping T : X → X is called monotone non-decreasing if x ≤ y implies

T x≤T y for all x,y ∈ X .

Definition 1.3. A mapping T : X → X is called monotone non-increasing if x ≤ y implies

T x≥T y for all x,y ∈ X .

Definition 1.4. A mapping T : X → X is called monotone if it is either monotone non-

increasing or monotone non-decreasing.

Defnition 1.5.[14] A mapping ϕ : R+→ R+ is called a monotone dominating function or, in

short, an M-function if it is an upper or lower semi-continuous and monotonic non-decreasing

or non-increasing function satisfying the condition: ϕ(0) = 0.
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Defnition 1.6.[14] Given a partially-ordered normed linear space E, a mapping T : E → E

is called partially M-Lipschitz or partially nonlinear M-Lipschitz if there is an M-function ϕ :

R+→ R+ satisfying

‖T x−T y‖ � ϕ(‖x− y‖)

for all comparable elements x,y ∈ E. The function is called an M-function of T on E. If

ϕ(r) = kr (k > 0), then T is called partially M-Lipschitz with the Lipschitz constant k.

In particular, if k < 1, then T is called a partially M-contraction on X with the contraction

constant k. Further, if ϕ(r)< r, for r > 0, then T is called a partially nonlinear M-contraction

with an M-function ϕ of T on X .

Definition 1.7. A nondecreasing mapping T : E→E is called nonlinear partial M-set-Lipschitz

if there exists a M-function ϕ such that

µp(T (C))≤ ϕ(µp(C))

for all bounded chain C in E. T is called partial k-set-Lipschitz if ϕ(r) = kr, k > 0. T is called

partial k-set-contraction if it is a partial k-set-Lipschitz with k < 1. Finally, T is called a nonlin-

ear partial M-set-contraction in E if it is a nonlinear partial M-Lipschitz with ϕ(r)< r for r > 0.

Defnition 1.8. An operator T on a normed linear space E into itself is called compact if T (E)

is a relatively compact subset of E. T is called totally bounded if, for any bounded subset S of

E, T (S) is a relatively compact subset of E. If T is continuous and totally bounded, then it is

called completely continuous on E.

Defnition 1.9. An operator T on a normed linear space E into itself is called partially compact

if T (C) is a relatively compact subset of E for all totally ordered set or chain C in E. The

operator T is called partially totally bounded if, for any totally ordered and bounded subset C

of E, T (C) is a relatively compact subset of E. If the operator T is continuous and partially

totally bounded, then it is called partially completely continuous on E.
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In comparison, Dhage[8] introduced the compatiblity principle as follows.

Definition 1.10.[8] The order relation ≤ and the norm ‖.‖ in a non-empty set X are said

to be compatible if {xn} is a monotone sequence in X and if a subsequence {xnk} of {xn}

converges to x0 implying that the whole sequence {xn} converges to x0. Similarly, given a

partially-ordered normed linear space (X ,≤,‖ · ‖), the ordered relation ≤ and the norm ‖.‖ are

said to be compatible if ≤ and the metric d define through the norm are compatible.

Now, we present some preliminary findings about non-compact measurements in Banach

spaces that we will use in the sequel. We emphasize that non-compact measurements are very

useful tools in the theory of operator equations in Banach spaces. Quite frequently, they are

used in functional equation analysis, including ordinary differential equations, partial derivative

equations, etc.

Definition 1.11. A mapping µp : Pbd,cn(E)→ R+ = [0,∞) is said to be a partial measure of

noncompactness in E if it satisfies the following conditions:

(P1) φ 6= (µp)
−1(0)⊆ Prcp,cn(E). (kernel compactivity)

(P2) µp(C) = µp(C). (closure property)

(P3) µp is nondecreasing, i.e., if C1 ⊆C2⇒ µp(C1)≤ µp(C2). (monotonicity)

(P4) If {Cn} is a sequence of closed chains from Pbd,cn(E) such that Cn+1 ⊆Cn (n = 1, 2, ...)

and if limn→∞ µp(Cn) = 0, then the set C∞ = ∩∞
n=1Cn is nonempty. (limit intersection

property)

The family of sets described in (P1) is said to be the kernel of the partial measure of noncom-

pactness µp and is defined as

kerµp = {C ∈ Pbd,cn(E)|µp(C) = 0}

Clearly, kerµp ⊂ Prcp,cn(E). Observe that the intersection set C∞ from condition (P4) is a mem-

ber of the family kerµp. In fact, since µp(C∞) ⊆ µp(Cn) for any n, we infer that µp(C∞) = 0.
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This yields that C∞ ∈ kerµp. This simple observation will be essential in our further investiga-

tions. The partial measure µp of noncompactness is called full if it satisfies

(P5) kerµp = Prcp,cn(E). Finally, µp is said to satisfy maximum property if

(P6) µp(C1∪C2) = max{µp(C1),µp(C2)}.

By Pcl(E), Pbd(E), Prcp(E), Pcn(E), Pbd,cn(E), Prcp,cn(E) respectively, we denote the family of

all non-empty and closed, bounded, relatively compact chains, bounded chains and relatively

compact chains of E.

The following lemma is frequently used in the analytical fixed point theory of metric spaces.

Lemma 1.1. If ϕ is a M-function with ϕ(r) < r for r > 0, then limn→∞ ϕn(t) = 0 for all

t ∈ [0,∞) and vice versa.

2. MAIN RESULTS

In this section, we develop a new triple fixed point theorems in partially ordered metric

spaces for mapping having mixed monotone properties. These fixed point results are very

interesting and may have a number of applications. It’s going to serve as a key tool for

developing our future theory of existence. We need to recall the following more or less

well-known results and prove some lemmas before we make a formal statement of our fixed

point result.

Let (X ,≤) be a partially ordered set and d be a metric on X such that (X ,d) is a complete

metric space. Consider on the product space X × X × X the following partial order: for

(x,y,z),(u,v,w)≤ X×X×X , (u,v,w)≤ (x,y,z)⇔ x≥ u,y≤ v,z≥ w.

Definition 2.1.[4] An element (x,y,z) ∈ X . is called a tripled fixed point of a given mapping

F : X×X×X → X if F (x,y,z) = x, F (y,x,y) = y, and F (z,y,x) = z.

Definition 2.2.[4]. Let (X ,�) be a partially ordered set and F : X×X×X → X . The mapping

F is said to have the mixed monotone property if for any x,y,z ∈ X ,
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x1,x2 ∈ X , x1 ≤ x2⇒F (x1,y,z)≤ F(x2,y,z),

y1,y2 ∈ X , y1 ≤ y2⇒F (x,y1,z)≥ F(x,y2,z),

z1,z2 ∈ X , z1 ≤ z2⇒F (x,y,z1)≤ F(x,y,z2).

(2.1)

Lemma 2.1. If (X, d) be a partially ordered metric space and The mapping d2 : X×X×X→

X is given by d2[(x,y,z),(u,v,w)] = 1
3 [d(x,u)+d(y,v)+d(z,w)] then (X3,≤,d2) is a partially

ordered metric space. Moreover, if X is complete, then (X3,d2) is also a complete metric space.

Lemma 2.2. If (X ,≤,d) is a regular, then (X3,≤,d2) is also a regular partially ordered

metric space.

Proof. Let (X ,≤,d) is a regular partially ordered metric space. Then, by definition, if {xn} is

a monotone nondecreasing sequence of points in X and limn→∞ xn = x∗, then xn ≤ x∗ for all

n ∈ N. Assume that {wn}= {(xn,yn,zn)} be a sequence of points in X3 such that

w1 ≤ w2 ≤ ...≤ wn ≤ ...

where {xn} and {zn} are monotone nondecreasing, and {yn} is monotone non-increasing in X .

Now, let limn→∞ wn = w∗. Then d2(wn,w∗) = 0 as n→ ∞ which by definition of the metric d2

implies that

lim
n→∞

1
3
[d(xn,x∗)+d(yn,y∗)+d(zn,z∗)] = 0

. Consequently, xn→ x∗, yn→ y∗ and zn→ z∗. Since X is regular, one has xn ≤ x∗,yn ≥ y∗ and

zn ≤ z∗, for each n ∈ N. By definition of the order relation ≤ we obtain

wn = (xn,yn,zn)≤ (x∗,y∗,z∗) = w∗

for all n ∈ N. Hence, (X3,≤,d2) is a regular partially ordered metric space. �

Lemma 2.3. If the order relation≤ and the metric d are M-compatible in metric space (X ,≤

,d), then the order relation ≤ and the metric d2 are M-compatible in metric space (X3,≤,d2).

Proof. Let {wn}= {(xn,yn,zn)} be a monotone nondecreasing sequence of points in X3, where

{xn},{yn} are monotone nondecreasing and {zn} is monotone nonincreasing sequences of
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points in X , respectively. Suppose that {wn} has a convergent subsequence {wkn} converging

to the point w∗ = (x∗,y∗,z∗). Then, we have

d2(wkn ,w
∗) = d2((xkn,ykn,zkn),(x

∗,y∗,z∗))

=
1
3
[d(xkn,x

∗)+d(ykn,y
∗)+d(zkn,z

∗)]

→ 0 as n→ ∞

Therefore, {xkn}, {ykn} and {zkn} are convergent subsequences of the sequences {xn}, {yn} and

{zn} converging, respectively, to the points x∗, y∗ and z∗ in X . Since the order relation ≤ and

the metric d are M-compatible in (X ,≤,d), As a result, the original sequences {xn}, {yn} and

{zn} converge to x∗, y∗ and z∗, respectively. Therefore, we have

d2(wn,w∗) = d2((xn,yn,zn),(x∗,y∗,z∗))

=
1
3
[d(xn,x∗)+d(yn,y∗)+d(zn,z∗)]

→ 0 as n→ ∞

(2.2)

This shows that wn→w∗. Consequently, the order relation≤ and the metric d are M-compatible

in (X3,≤,d2) and the proof of the lemma is complete. �

Lemma 2.4. If µp is a partial measure of noncompactness in a partially ordered metric space

X, then the function µ̃p : Pbd,cn(X3)→ R+ defined by

µ̃p(B×C×D) = µp(B)+µp(C)+µp(D) (2.3)

where (B×C×D) ∈Pbd,cn(X)×Pbd,cn(X)×Pbd,cn(X) is a partial measure of noncompact-

ness in X3.

Proof. We shall prove that µ̃p satisfies all the conditions (P1) through (P4) of the partial measure

of noncompactness in X3. First we prove the kernel compactivity of µ̃p. Let C = B×C×D

a chain in X3 for some B,C,D ∈Pbd,cn(X) such that µ̃C = 0. Then µ(B) = 0,µ(C) = 0 and

µ(D) = 0. As a result φ 6= B ∈Prcp,cn(X),φ 6= C ∈Prcp,cn(X) and φ 6= D ∈Prcp,cn(X).

Therefore, φ 6= B×C×D ∈Prcp,cn(X)×Prcp,cn(X)×Prcp,cn(X). Consequently, φ 6= C =

B×C×D ∈ (µ̃p)
−1({0})⊂Prcp,cn(X3).
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Now, by closure property of the partial measure of noncompactness, we get

µ̃p(C ) = µ̃p(B×C×D)

= µp(B)+µp(C)+µp(D)

= µp(B)+µp(C)+µp(D)

= µ̃p(B×C×D)

= µ̃p(B×C×D)

= µ̃p(C )

and so, µ̃p satisfies the closure property.

Let C1 = B1 ×C1 × D1 and C2 = B2 ×C2 × D2 be two chains in X3 for some chains

B1, B2, C1, C2 and D1, D2 in X . Assume that C1 ⊂ C2. Then By monotone property of

µ̃p, we obtain

µ̃p(C1) = µ̃p(B1×C1×D1)

= µp(B1)+µp(C1)+µp(D1)

≤ µp(B2)+µp(C2)+µp(D2)

= µ̃p(B2×C2×D2)

= µ̃p(C2)

and so, µ̃p satisfies the monotone property.

Let {Cn} be a sequence of closed chains from Pbd,cn(X3) such that Cn+1 ⊂ Cn (n = 1,2, ...)

and let limn→∞ µp(Cn) = 0. Then there exist nondecreasing sequences {Bn}, {Cn} and {Dn} of

chains in X such that Cn = Bn×Cn×Dn for each n = 1,2, .... Moreover, limn→∞ µp(Bn) = 0,

limn→∞ µp(Cn) = 0 and limn→∞ µp(Dn) = 0

As µp is a partial measure, by property (P4), we obtain

B = ∩∞
n=1Bn 6= φ 6=C = ∩∞

n=1Cn 6= φ 6= ∩∞
n=1Dn = D

Hence the chain

C = B×C×D = ∩∞
n=1(Bn×Cn×Dn) = ∩∞

n=1Cn
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is a nonempty chain in X3.

Thus, µ̃p satisfies all the properties of a partial measure of noncompactness and hence it is a

partial measure of noncompactness on X3. �

The following definition is crucial for our further work.

Definition 2.3. A mapping T : E3→ E3 is called nonlinear partial M-set-contraction if there

exist a M-function ϕ such that

µ̃p(T (C ))≤ ϕ(µ̃p(C )) (2.4)

for all bounded chains C of E3, where ϕ(r) < r for r > 0. In the special case when

ϕ(r) = kr, 0 < k < 1, T is called a partial k-set-contraction mapping on E3.

The following theorem is an important result in fixed point topology theory. It generalizes, in

some way, Nieto and Rodriguez-Lopez[11] fixed point theorem. The consequence is an analog

of Dhage[7] for a strong topology in triple metric space. In this relation, we are also referring

to the paper by Heikill’a and Lakshmikantham[9] for additional related information.

Theorem 2.1. Let (X ,≤,d) be a regular partially ordered complete metric space such that the

metric d and the order relation ≤ are compatible in every compact chain C of X. Suppose that

F : X3→ X is a partially continuous and partially bounded mixed monotone tripled mapping

satisfying

µp(F (B×C×D))+µp(F (C×B×C))+µp(F (D×C×B))

≤ ϕ(µp(B)+µp(C)+µp(D))
(2.5)

for all B,C,D ∈Pbd,cn(X), where ϕ is M-function satisfies ϕ(r) < r, r > 0. If there exists

an element (x0,y0,z0) ∈ X × X × X such that x0 ≤ F(x0,y0,z0), y0 ≥ F(y0,x0,y0) and z0 ≤

F(z0,y0,x0) or x0 ≥ F(x0,y0,z0), y0 ≤ F(y0,x0,y0) and z0 ≥ F(z0,y0,x0), then F has a tripled

fixed point (x∗,y∗,z∗) and the sequences {Fn(x0,y0,z0)}, {Fn(y0,x0,y0)} and {Fn(z0,y0,x0)}

of successive iterations converge monotonically to x∗, y∗ and z∗, respectively. Moreover, the set

of all comparable tripled fixed points is compact.
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Proof. Our main purpose in the immediate sequel is to prove the theorem in the event that

there exists (x0,y0,z0) ∈ X ×X ×X such that x0 ≤ F(x0,y0,z0), y0 ≥ F(y0,x0,y0) and z0 ≤

F(z0,y0,x0). The proof for the case x0 ≥ F(x0,y0,z0), y0 ≤ F(y0,x0,y0) and z0 ≥ F(z0,y0,x0)

is similar and can be gained by using equivalent arguments with suitable modification. We shall

built a mapping T : X3→ X3 by

T (Z ) = (F (x,y,z),F (y,x,y),F (z,y,x)) (2.6)

For all Z = (x,y,z) ∈ X×X×X = X3.

Obviously T defines a mapping T : X3→X3. First we prove that T is a partially continuous

on X3. Let Q = (x,y,z) and S = (u,v,w) be two comparable elements of X3. Without loss of

generality, we may assume that Q ≥S .

Let ε > 0 be given. Now, by the definitions of the mapping T and the metric d2, we obtain

d2(T (Q),T (S ))

= d2((F (x,y,z),F (y,x,y),F (z,y,x)),(F (u,v,w),F (v,u,v),F (w,v,u)))

≤ 1
3
[d((F (x,y,z),F (u,v,w))+d(F (y,x,y),F (v,u,v))+(F (z,y,x),F (w,v,u)))]

(2.7)

Since F is partially continuous on X3, for ε > 0 there exists a δ1 > 0 such that

d((F (x,y,z),F (u,v,w))<
ε

3
, (2.8)

whenever

d2(Q,S ) = d2((x,y,z),(u,v,w))< δ1

Similarly, for ε > 0 there exists a δ2 > 0 such that

d((F (y,x,y),F (v,u,v))<
ε

3
, (2.9)

whenever

d2(Q
′
,S

′
) = d2((y,x,y),(v,u,v))< δ2

and for ε > 0 there exists a δ3 > 0 such that

d((F (z,y,x),F (w,v,u))<
ε

3
, (2.10)
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whenever

d2(Q
′′
,S

′′
) = d2((z,y,x),(w,v,u))< δ3

Choose δ = min{δ1,δ2,δ3}. Then, from the inequalities (2.7), (2.8), (2.9) and (2.10) it

follows that

d2(Q,S )< δ ⇒ d2(T (Q),T (S ))< ε. (2.11)

Hence T is a partially continuous mapping on X3 into itself.

Next we shall show that T is a nondecreasing map with respect to the order relation ≤

defined in X3. Let Q = (x,y,z) and S = (u,v,w) be two elements in X3 with Q ≥S . Then

x≥ u, y≤ v and z≥ w. From mixed monotonicity of the mapping F it follows that

F (x,y,z)≥F (u,v,w), F (y,x,y)≤F (v,u,v), and F (z,y,x)≥F (w,v,x)

Now, by definition of the mapping T , we get

T (Q) = (F(x,y,z),F(y,x,y),F(z,y,x))

≥ (F(u,v,w),F(v,u,v),F(w,v,u))

= S (W )

which clear that T is a nondecreasing mapping on X3 into itself. Next we show that T

is a nonlinear partial M-set-contraction on X3. Let B, C and D be three chains in X and let

C = B×C×D be a chain in X3. Then, by the definition of partial measure of noncompactness

in X3, we obtain

µ̃p(T (C )) = µ̃p(T (B×C×D))

= µ̃p(F (B×C×D)×F (C×B×C)×F (D×C×B))

= [µp(F (B×C×D))+µp(F (C×B×C))+µp(F (D×C×B))]

= ϕ(µp(B)+µp(C)+µp(D))

= ϕ(µ̃p(B×C×D))

= ϕ(µ̃p(C ))
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for all bounded chains B, C and D in X . This shows that T is a nonlinear partial M-

contraction on X3 into itself.

Next, given an element Q0 = (x0,y0,z0) ∈ X3, define a sequence {Qn} in X3 as follows.

Set

Q1 = (x1,y1,z1) = (F (x0,y0,z0),F (y0,x0,y0),F (z0,y0,x0)) = T (Q0),

Q2 = (x2,y2,z2) = (F 2(x0,y0,z0),F
2(y0,x0,y0),F

2(z0,y0,x0)) = T 2(Q0),

.

.

.

Qn = (xn,yn,zn) = (F n(x0,y0,z0),F
n(y0,x0,y0),F

n(z0,y0,x0)) = T n(Q0),

etc.

By hypotheses, there exists an element (x0,y0,z0) ∈ X3 such that

Q0 = (x0,y0,z0)≤ (F (x0,y0,z0),F (y0,x0,y0),F (z0,y0,x0)) = T (Q0) = Q1 (2.12)

Since T is nondecreasing, from (2.12) it follows that

Q0 ≤Q1 ≤Q2 ≤ ...≤Qn ≤ ... (2.13)

Denote
C0 = {Q0,Q1, ...,Qn, ...}

C1 = {Q1,Q2, ...,Qn+1, ...}

.

.

.

Cn = {Qn,Qn+1, ...,Q2n, ...}

(2.14)

As F is partially bounded, T is a partially bounded mapping on X3, and so, each chain Cn,

n = 0, 1, . . . , is bounded in X3. Moreover,

C0 ⊃ C1 ⊃ C2 ⊃ . . . Cn ⊃ . . . (2.15)



2670 SACHIN V. BEDRE

Therefore, by nondecreasing nature of µ̃p, we obtain

µ̃p(Cn) = µ̃p(Cn)

= µ̃p(T (Cn−1))

≤ ϕ(µ̃p(Cn−1))

≤ ϕ
2(µ̃p(Cn−2))

.

.

.

≤ ϕ
n(µ̃p(C0))

(2.16)

Taking the limit superior as n→ ∞ in the above equality (2.16), we obtain

lim
n→∞

µ̃p(Cn) = lim
n→∞

µ̃p(Cn)≤ limsup
n→∞

ϕ
n(µ̃p(C0)) = lim

n→∞
ϕ

n(µ̃p(C0)) = 0 (2.17)

Hence, by condition (P4) of µp,

C ∞ = ∩∞
n=1Cn 6= φ and C∞ ⊂Prcp,cn(X)

From (2.17) it follows that for every ε > 0 there exists an n0 ∈ N such that

µ̃p(Cn)< ε ∀n≥ n0

This shows that C n0 and consequently C 0 is a compact chain in X . Hence, {Qn} has a conver-

gent subsequence. Furthermore, since the order relation ≤ and d are compatible in the compact

chain C0 of X , the original sequence {Qn} = {T nQ0} is convergent and converges mono-

tonically to a point, say Q∗ ∈ C 0. Since the ordered metric space X is regular, we have that

Qn ≤Q∗. Finally, from the partial continuity of T , we get

T (Q∗) = T ( lim
n→∞

Qn) = lim
n→∞

T (Qn) = lim
n→∞

Qn+1 = Q∗

This further in view of the definition of mapping T implies that

(F (x∗,y∗,z∗), F (y∗,x∗,y∗),F (z∗,y∗,x∗)) = (x∗,y∗,z∗)

x∗ = F (x∗,y∗,z∗),y∗ = F (y∗,x∗,y∗) and z∗ = F (z∗,y∗,x∗)
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As a result the tripled equations F (x∗,y∗,z∗), F (y∗,x∗,y∗) and F (z∗,y∗,x∗) have a tripled

solution (x∗,y∗,z∗) and the sequences of successive iterations {F n(x0,y0,z0)}, {F n(y0,x0,y0)}

and {F n(z0,y0,x0)} converge monotonically to x∗, y∗ and z∗. This completes the proof. �

Theorem 2.2. Let (X ,≤,d) be a regular partially ordered complete metric space such that the

metric d and the order relation ≤ are compatible in every compact chain C of X. Suppose that

F : X3→ X is a partially continuous and partially bounded mixed monotone tripled mapping

satisfying

µp(F (B×C×D))+µp(F (C×B×C))+µp(F (D×C×B))

≤ µp(B)+µp(C)+µp(D)

for all B,C,D ∈Pbd,cn(X), where µp is a full partial measure of noncompactness with max-

imum property satisfying µp(B) + µp(C) + µp(D) > 0. Further, if there exists an element

(x0,y0,z0) ∈ X ×X ×X such that x0 ≤ F(x0,y0,z0), y0 ≥ F(y0,x0,y0) and z0 ≤ F(z0,y0,x0)

or x0 ≥ F(x0,y0,z0), y0 ≤ F(y0,x0,y0) and z0 ≥ F(z0,y0,x0), then F has a tripled fixed point

(x∗,y∗,z∗) and the sequences {Fn(x0,y0,z0)}, {Fn(y0,x0,y0)} and {Fn(z0,y0,x0)} of succes-

sive iterations converge monotonically to x∗, y∗ and z∗, respectively. Moreover, the set of all

comparable tripled fixed points is compact.

Proof. As in previous theorem, Our main purpose in the immediate sequel is to prove the

theorem in the event that there exists an element (x0,y0,z0) ∈ X × X × X such that x0 ≤

F(x0,y0,z0), y0 ≥ F(y0,x0,y0) and z0 ≤ F(z0,y0,x0). The proof for the case x0 ≥ F(x0,y0,z0),

y0 ≤ F(y0,x0,y0) and z0 ≥ F(z0,y0,x0) is similar and can be gained by using equivalent argu-

ments with suitable modification. Define a mapping T : X3→ X3 by

T (Z ) = (F (x,y,z),F (y,x,y),F (z,y,x))

For all Z = (x,y,z) ∈ X ×X ×X = X3. From Lemmas 2.2, 2.3 and 2.4, it follows that T is a

partially continuous, partially bounded mapping on X3 into itself. Also it is easily verified that

T is nondecreasing on X3. We now show that T is a partial condensing mapping on X3. Let

C = B×C×D be a chain in X3, where B, C and D are bounded chains in X . Then, by definition

of the mapping T and the partial measure of noncompactness µp, we obtain
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µ̃p(T (C )) = µ̃p(T (B×C×D))

= µ̃p(F (B×C×D)×F (C×B×C)×F (D×C×B))

= µp(F (B×C×D))+µp(F (C×B×C))+µp(F (D×C×B))

= µp(B)+µp(C)+µp(D)

= µ̃p(B×C×D)

= µ̃p(C )

Provided µ̃p(C ) = µp(B)+µp(C)+µp(D)> 0. Therefore, T is a condensing mapping on X3

into itself. Given Q0 = (x0,y0,z0) ∈ X3, define a sequence {Qn} of points of X3 of successive

iterations of T by

Qn+1 = T (Qn), n = 0, 1, . . . (2.18)

Since T is nondecreasing, in view of (2.12) we obtain

Q0 ≤Q1 ≤ . . . ≤Qn ≤ . . .

Let
C = {Q0,Q1, . . Qn . . . }

= {Q0}∩{Q1, . . Qn . . . }

= {Q0}∩{T (C )}

Clearly, C is a bounded chain in E3 in view of the fact that T is a partially bounded mapping

on E3. Now, if µ̃p(C )> 0, then

µ̃p(C ) = µ̃p(Q0∪T (C ))

= max{µp(Q0),µp(T (C ))}

= max{0,µp(T (C ))}

= µ̃p(T (C ))

< µ̃p(C )

which is a contradiction. Hence µp(C ) = 0 and that C is a compact chain in X3. The rest of the

proof is similar to Theorem 2.1 and hence we omit the details. �
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