THE MULTIPLICATIVE SECOND HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS

M. ARUVI ${ }^{1, *}$, J. MARIA JOSEPH ${ }^{2}$, E. RAMGANESH ${ }^{3}$
${ }^{1}$ Department of Mathematics, University College of Engineering-BIT Campus, Anna University, Tiruchirappalli, India
${ }^{2}$ Department of Mathematics, St.Joseph's College, Affiliated to Bharathidasan University, Tiruchirappalli, India
${ }^{3}$ Department of Educational Technology, Bharathidasan University, Tiruchirappalli, India
Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, the multiplicative second hyper Zagreb index is presented and the sharp upper bound for this index of various graph operations for example, join, composition, cartesian and corona products of graphs are derived. And we prove that the sharp upper bound is tight.

Keywords: topological indices; graph operations.
2010 AMS Subject Classification: 05C07, 05C09, 05C76.

1. Introduction

All graphs observed here are simple, connected and finite. Let $V(G), E(G)$ and $d_{G}(w)$ indicate the vertex set, the edge set and the degree of a vertex of a graph G respectively. A graph with p vertices and q edges is known as a (p, q) graph. We encourage the readers to see[5] for basic definitions and notations of a graph.

[^0]A topological index is a numerical parameter which is mathematically attained from the graph structure.

Gutman et.al.,[2] introduced the first and second Zagreb indices of a graph G as follows:

$$
M_{1}(G)=\sum_{w z \in E(G)}\left(d_{G}(w)+d_{G}(z)\right)=\sum_{w \in V(G)} d_{G}^{2}(w) \text { and } M_{2}(G)=\sum_{w z \in E(G)} d_{G}(w) d_{G}(z)
$$

Shirdel et.al. in [7] found Hyper-Zagreb index $H M(G)$ which is established as

$$
H M(G)=\sum_{w z \in E(G)}\left[d_{G}(w)+d_{G}(z)\right]^{2}
$$

Also, they have computed the hyper - Zagreb index of the cartesian product, composition, join and disjunction of graphs.

A forgotten topological index F-index [4] is defined for a graph G as

$$
F(G)=\sum_{w \in V(G)} d_{G}^{3}(w)=\sum_{w z \in E(G)}\left[d_{G}^{2}(w)+d_{G}^{2}(z)\right]
$$

Farahani et.al [3] defined the second hyper Zagerb as

$$
H M_{2}(G)=\sum_{w z \in E(G)}\left[d_{G}(w) d_{G}(z)\right]^{2}
$$

Here we introduce a second forgotten topological index F_{2} which is defined for a graph G as

$$
F_{2}(G)=\sum_{w \in V(G)} d_{G}^{4}(w)
$$

V.R.Kulli [6] introduced the first and second Gourava indices and defined as

$$
G O_{1}(G)=\sum_{w z \in E(G)}\left(d_{G}(w)+d_{G}(z)\right)+\left(d_{G}(w) d_{G}(z)\right)
$$

and

$$
G O_{2}(G)=\sum_{w z \in E(G)} d_{G}(w) d_{G}(z)\left(d_{G}(w)+d_{G}(z)\right)
$$

Todeschine et al $[9,10]$ presented the multiplicative variants of ordinary Zagreb indices, which are defined as follows:

$$
\begin{gathered}
\Pi_{1}=\prod_{1}(G)=\prod_{w \in V(G)} d_{G}(w)^{2}=\prod_{w z \in E(G)}\left[d_{G}(w)+d_{G}(z)\right] \\
\text { and } \left.\prod_{2}=\prod_{2}(G)=\prod_{w z \in E(G)} d_{G}(w) d_{G}(z)\right]
\end{gathered}
$$

Recently, Akbar [1] has introduced the multiplicative hyper Zagreb index, denoted by

$$
\Pi H M(G)=\prod_{u v \in E(G)}\left(d_{G}(w)+d_{G}(z)\right)^{2}
$$

Also in this paper, the upper bounds on the multiplicative hyper Zagreb index of the cartesian, corona product, composition, join and disjunction of graphs.

In this paper, we introduce a new graph invariant namely multiplicative second hyper Zagreb index, denoted by

$$
\Pi H M_{2}(G)=\prod_{u v \in E(G)}\left(d_{G}(w) d_{G}(z)\right)^{2}
$$

In this paper, we compute the sharp upper bound for the multiplicative second hyper Zagreb index of the graph operations for example, join, composition, cartesian and corona products and prove that our bound is tight.

2. Preliminaries

Lemma 2.1. [5, 8]
(a) $d_{G_{1}+G_{2}}(w)= \begin{cases}d_{G_{1}}(w)+V\left(G_{2}\right), & w \in V\left(G_{2}\right) \\ d_{G_{2}}(w)+V\left(G_{1}\right), & w \in V\left(G_{2}\right)\end{cases}$
(b) $d_{G_{1}\left[G_{2}\right]}(w, z)=V\left(G_{2}\right) d_{G_{1}}(w)+d_{G_{2}}(z)$
(c) $d_{G_{1} \square G_{2}}\left(\left(w_{i}, z_{j}\right)\right)=d_{G_{1}}\left(w_{i}\right)+d_{G_{2}}\left(z_{j}\right)$, where $\left(w_{i}, z_{j}\right) \in V\left(G_{1} \square G_{2}\right)$.
(d)

$$
d_{G_{1} \odot G_{2}}(w)= \begin{cases}d_{G_{1}}(w)+p_{2} & \text { if } w \in V\left(G_{1}\right) \\ d_{G_{1}}(w)+p_{2} & \text { if } w \in V\left(G_{2, i}\right) \text { for some } 0 \leq i \leq p_{1}-1\end{cases}
$$

where $u \in V\left(G_{1} \odot G_{2}\right) G_{2, i}$ is the ith copy of the graph G_{2} in $G_{1} \odot G_{2}$.
Lemma 2.2 (Arithmetic geometric Inequality). Let $y_{1}, y_{2}, \ldots, y_{n}$ be non-negative numbers. Then $\frac{y_{1}+y_{2}+\cdots+y_{n}}{n} \geq \sqrt[n]{y_{1} y_{2} \cdots y_{n}}$

3. The Multiplicative Second Hyper Zagreb Index of Join of Graphs

Theorem 3.1. Let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then

$$
\begin{aligned}
& \prod H M_{2}\left(G_{1}+G_{2}\right) \leq\left[\frac{H M_{2}\left(G_{1}\right)+p_{2}^{2} H M\left(G_{1}\right)+p_{2}^{4} q_{1}+2 p_{2} G O_{2}\left(G_{1}\right)}{+2 p_{2}^{2} M_{2}\left(G_{1}\right)+2 p_{2}^{3} M_{1}\left(G_{1}\right)} \begin{array}{c}
q_{1}
\end{array}\right]^{q_{1}} \\
& \times\left[\frac{H M_{2}\left(G_{2}\right)+p_{1}^{2} H M\left(G_{2}\right)+p_{1}^{4} q_{2}}{+2 p_{1} G O_{2}\left(G_{2}\right)+2 p_{1}^{2} M_{2}\left(G_{2}\right)+2 p_{1}^{3} M_{1}\left(G_{2}\right)} q_{2}^{q_{2}}\right]^{q_{2}} \\
& \times\left[\begin{array}{c}
M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+p_{1}^{2} p_{2} M_{1}\left(G_{1}\right)+p_{1} p_{2}^{2} M_{1}\left(G_{2}\right) \\
+4 p_{1} q_{2} M_{1}\left(G_{1}\right)+p_{1}^{3} p_{2}^{3}+p_{2} q_{1} M_{1}\left(G_{2}\right)+4 p_{1}^{2} p_{2}^{2} q_{2} \\
+4 p_{1}^{2} p_{2}^{2} q_{1}+16 p_{1} p_{2} q_{1} q_{2} \\
p_{1} p_{2}
\end{array}\right]^{p_{1} p_{2}}
\end{aligned}
$$

Proof : From the definition of the second hyper Zagreb index,

$$
\begin{aligned}
\prod H M_{2}\left(G_{1}+G_{2}\right) & =\prod_{w z \in E\left(G_{1}+G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& =\prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& \times \prod_{w z \in E\left(G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& \times \prod_{w \in V\left(G_{1}\right)} \prod_{z \in V\left(G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& =A \times B \times C
\end{aligned}
$$

where A, B and C indicate the products of the above terms in order.
Now we calculate A.

$$
\begin{aligned}
A & =\prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& =\prod_{w z \in E\left(G_{1}\right)}\left[\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{1}}(z)+p_{2}\right)^{2}\right] \\
& \left.\leq\left[\frac{\left.\sum_{w z \in\left(G_{1}\right)}\left[\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{1}}(z)+p_{2}\right)^{2}\right]\right]^{q_{1}}}{q_{1}}\right]^{q_{1}}\right]^{q_{1}} \\
& =\left[\frac{\left.\sum_{z z \in E\left(G_{1}\right)}\left[d_{G_{1}}^{2}(w)+p_{2}^{2}+2 p_{2} d_{G_{1}}(w)\right]\left[d_{G_{1}}^{2}(z)+p_{2}^{2}+2 p_{2} d_{G_{1}}(z)\right]\right]^{q_{1}}}{q_{1}}\right. \\
& =\left[\begin{array}{l}
H M_{2}\left(G_{1}\right)+p_{2}^{2} H M\left(G_{1}\right)+p_{2}^{4} q_{1}+2 p_{2} G O_{2}\left(G_{1}\right) \\
q_{1}\left(G_{1}\right)+2 p_{2}^{3} M_{1}\left(G_{1}\right)
\end{array}\right.
\end{aligned}
$$

Next we calculate B.

$$
\begin{aligned}
B & =\prod_{w z \in E\left(G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& =\prod_{w z \in E\left(G_{2}\right)}\left[\left(d_{G_{2}}(w)+p_{1}\right)^{2}\left(d_{G_{2}}(z)+p_{1}\right)^{2}\right] \\
& \leq\left[\frac{\left.\sum_{w z E\left(G_{2}\right)}\left[\left(d_{G_{2}}(w)+p_{1}\right)^{2}\left(d_{G_{2}}(z)+p_{1}\right)^{2}\right]\right]^{q_{2}}}{q_{2}}\right] \\
& =\left[\frac{\sum_{w z \in E\left(G_{2}\right)}\left[d_{G_{2}}^{2}(w)+p_{1}^{2}+2 p_{1} d_{G_{2}}(w)\right]\left[d_{G_{2}}^{2}(z)+p_{1}^{2}+2 p_{1} d_{G_{2}}(z)\right]}{q_{2}}\right]^{q_{2}}
\end{aligned}
$$

$$
=\left[\begin{array}{c}
H M_{2}\left(G_{2}\right)+p_{1}^{2} H M\left(G_{2}\right)+p_{1}^{4} q_{2}+2 p_{1} G O_{2}\left(G_{2}\right) \\
+2 p_{1}^{2} M_{2}\left(G_{2}\right)+2 p_{1}^{3} M_{1}\left(G_{2}\right) \\
q_{2}
\end{array}\right]^{q_{2}}
$$

Finally, we compute C.

$$
\begin{aligned}
C & =\prod_{w \in V\left(G_{1}\right)} \prod_{z \in V\left(G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w)+d_{G_{1}+G_{2}}^{2}(z)\right] \\
& =\prod_{w \in V\left(G_{1}\right)} \prod_{z \in V\left(G_{2}\right)}\left[\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{2}}(z)+p_{1}\right)^{2}\right] \\
& \left.\leq\left[\frac{\sum_{w \in V\left(G_{1}\right)} \sum_{z \in V\left(G_{2}\right)}\left[\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{2}}(z)+p_{1}\right)^{2}\right]^{p_{1} p_{2}}}{p_{1} p_{2}}\right]^{p_{1} p_{2}}\right] \\
& =\left[\frac{\left.\sum_{w \in V\left(G_{1}\right) z \in V\left(G_{2}\right)}\left[d_{G_{1}}^{2}(w)+p_{2}^{2}+2 p_{2} d_{G_{1}}(w)\right]\left[d_{G_{2}}^{2}(z)+p_{1}^{2}+2 p_{1} d_{G_{2}}(z)\right]\right]^{p_{1} p_{2}}}{p_{1} p_{2}}\right]^{p_{1} p_{2}} \\
& =\left[\begin{array}{l}
M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+p_{1}^{2} p_{2} M_{1}\left(G_{1}\right)+p_{1} p_{2}^{2} M_{1}\left(G_{2}\right)+4 p_{1} q_{2} M_{1}\left(G_{1}\right) \\
+p_{1}^{3} p_{2}^{3}+p_{2} q_{1} M_{1}\left(G_{2}\right)+4 p_{1}^{2} p_{2}^{2} q_{2}+4 p_{1}^{2} p_{2}^{2} q_{1}+16 p_{1} p_{2} q_{1} q_{2}
\end{array}\right]
\end{aligned}
$$

Now using A, B and C we get the deired result.

Lemma 3.2. Let $G_{i},(i=1,2)$ be two regular graphs of degree r_{i}.
Let $G_{i},(i=1,2)$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then

$$
\begin{aligned}
\prod H M_{2}\left(G_{1}+G_{2}\right) & =\left(r_{1}+p_{2}\right)^{4 q_{1}} \times\left(r_{2}+p_{1}\right)^{4 q_{2}} \\
& \times\left[\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+p_{1}\right)^{2}\right]^{p_{1} p_{2}}
\end{aligned}
$$

Proof :

$$
\prod H M_{2}\left(G_{1}+G_{2}\right)=\prod_{w z \in E\left(G_{1}+G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right]
$$

$$
\begin{align*}
& =\prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& \times \prod_{w z \in E\left(G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& \times \prod_{w \in V\left(G_{1}\right)} \prod_{z \in V\left(G_{2}\right)}\left[d_{G_{1}+G_{2}}^{2}(w) d_{G_{1}+G_{2}}^{2}(z)\right] \\
& =\prod_{w z \in E\left(G_{1}\right)}\left(r_{1}+p_{2}\right)^{2}\left(r_{1}+p_{2}\right)^{2} \prod_{w z \in E\left(G_{2}\right)}\left(r_{2}+p_{1}\right)^{2}\left(r_{2}+p_{1}\right)^{2} \\
& \prod_{w z \in E\left(G_{1}\right)} \prod_{w z \in E\left(G_{2}\right)}\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+p_{1}\right)^{2} \\
& =\left(r_{1}+p_{2}\right)^{4 q_{1}} \times\left(r_{2}+p_{1}\right)^{4 q_{2}} \\
& \times\left[\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+p_{1}\right)^{2}\right]^{p_{1} p_{2}} \tag{1}
\end{align*}
$$

Remark 3.3. We find the upper bound of Lemma 3.2 when G is a regular graph of degree r with p vertices and q edges. Here

$$
\begin{aligned}
& q=\frac{p r}{2}, M_{1}(G)=p r^{2}, M_{2}(G)=q r^{2}, F(G)=2 q r^{2}, F_{2}(G)=2 q r^{3} \\
& H M(G)=4 q r^{2} H M_{2}(G)=q r^{4}, G O_{2}(G)=2 q r^{3}
\end{aligned}
$$

Corollary 3.4. Let $G_{i},(i=1,2)$ be two regular graphs of degree r_{i}.
Let $G_{i},(i=1,2)$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then

$$
\prod H M_{2}\left(G_{1}+G_{2}\right) \leq\left(r_{1}+p_{2}\right)^{4 q_{1}} \times\left(r_{2}+p_{1}\right)^{4 q_{2}}
$$

$$
\begin{equation*}
\times\left[\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+p_{1}\right)^{2}\right]^{p_{1} p_{2}} \tag{2}
\end{equation*}
$$

From (1) and (2) the bound is tight.

4. The Multiplicative Second Hyper Zagreb Index of Composition of Graphs

Theorem 4.1. Let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then
$\left.\left.\begin{array}{rl}\prod H M_{2}\left(G_{1}\left[G_{2}\right]\right) \leq & {\left[\begin{array}{l}p_{2}^{4} q_{2} F_{2}\left(G_{1}\right)+p_{2}^{2} M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+p_{1} H M_{2}\left(G_{2}\right) \\ +2 p_{2}^{3} F\left(G_{1}\right) M_{1}\left(G_{2}\right)+2 p_{2}^{2} M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)+4 p_{2} q_{1} G O_{2}\left(G_{2}\right) \\ p_{1} q_{2}\end{array}\right]^{p_{1} q_{2}}} \\ & \times\left[\frac{p_{2}^{6} H M_{2}\left(G_{1}\right)+p_{2}^{3} M_{1}\left(G_{2}\right) F\left(G_{1}\right)+q_{1}\left(M_{1}\left(G_{2}\right)\right)^{2}+4 p_{2}^{4} q_{2} G O_{2}\left(G_{2}\right)}{+16 p_{2}^{2} q_{2}^{2} M_{2}\left(G_{1}\right)+4 p_{2} q_{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)}\right. \\ q_{1} p_{2}^{2}\end{array}\right]{ }^{q_{1} p_{2}^{2}}\right]$

Proof :

$$
\begin{aligned}
\prod H M_{2}\left(G_{1}\left[G_{2}\right]\right) & =\prod_{(w, k)(z, l) \in E\left(G_{1}\left[G_{2}\right]\right)}\left[d_{G_{1}\left[G_{2}\right]}^{2}(w, k) d_{G_{1}\left[G_{2}\right]}^{2}(z, l)\right] \\
& =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}\left[G_{2}\right]}^{2}(w, k) d_{G_{1}\left[G_{2}\right]}^{2}(z, l)\right] \\
& \times \prod_{k \in V\left(G_{2}\right)} \prod_{l \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}\left[G_{2}\right]}^{2}(w, k) d_{G_{1}\left[G_{2}\right]}^{2}(z, l)\right] \\
& =A \times B,
\end{aligned}
$$

where A and B indicate the products of the above terms in order.
Now we compute A.

$$
\begin{aligned}
A & =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}\left[G_{1}\right]}^{2}(w, k) d_{G_{1}\left[G_{2}\right]}^{2}(w, l)\right] \\
& =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[\left[p_{2} d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[p_{2} d_{G_{1}}(w)+d_{G_{2}}(l)\right]^{2}\right] \\
& \leq\left[\frac{\left.\left.\sum_{w \in V\left(G_{1}\right) k l \in E\left(G_{2}\right)}\left[p_{2} d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[p_{2} d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\right]\right]^{p_{1} q_{2}}}{p_{1} q_{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
\sum_{w \in V\left(G_{1}\right) k l \in E\left(G_{2}\right)}\left[p_{2}^{2} d_{G_{1}}^{2}(w)+d_{G_{2}}^{2}(k)+2 p_{2} d_{G_{1}}(w) d_{G_{2}}(k)\right] \\
{\left[p_{2}^{2} d_{G_{1}}^{2}(w)+d_{G_{2}}^{2}(l)+2 p_{2} d_{G_{1}}(w) d_{G_{2}}(l)\right]} \\
p_{1} q_{2}
\end{array}\right]^{p_{1} q_{2}} \\
& =\left[\begin{array}{l}
p_{2}^{4} q_{2} F_{2}\left(G_{1}\right)+p_{2}^{2} M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+p_{1} H M_{2}\left(G_{2}\right)+2 p_{2}^{3} F\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
+2 p_{2}^{2} M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)+4 p_{2} q_{1} G O_{2}\left(G_{2}\right) \\
p_{1} q_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
B & =\prod_{k \in V\left(G_{2}\right)} \prod_{l \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}\left[G_{1}\right]}^{2}(w, k) d_{G_{1}\left[G_{2}\right]}^{2}(z, l)\right] \\
& =\prod_{k \in V\left(G_{2}\right)} \prod_{l \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[\left[p_{2} d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[p_{2} d_{G_{1}}(z)+d_{G_{2}}(l)\right]^{2}\right]
\end{aligned}
$$

$$
\left.\leq\left[\frac{\sum_{k \in V\left(G_{2}\right)} \sum_{l \in V\left(G_{2}\right)} \sum_{w z \in E\left(G_{1}\right)}\left[\left[p_{2} d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[p_{2} d_{G_{1}}(z)+d_{G_{2}}(l)\right]^{2}\right]}{p_{2}^{2} q_{1}}\right]\right]^{p_{2}^{2} q_{1}}
$$

$$
=\left[\frac{\sum_{k \in V\left(G_{2}\right)} \sum_{l \in V\left(G_{2}\right)} \sum_{w z \in E\left(G_{1}\right)}\left[p_{2}^{2} d_{G_{1}}^{2}(p)+d_{G_{2}}^{2}(k)+2 p_{2} d_{G_{1}}(w) d_{G_{2}}(k)\right]}{\left[p_{2}^{2} d_{G_{1}}^{2}(z)+d_{G_{2}}^{2}(l)+2 n_{2} d_{G_{1}}(z) d_{G_{2}}(l)\right]} q_{1} p_{2}^{2}\right]
$$

$$
=\left[\begin{array}{l}
p_{2}^{6} H M_{2}\left(G_{1}\right)+p_{2}^{3} M_{1}\left(G_{2}\right) F\left(G_{1}\right)+q_{1}\left(M_{1}\left(G_{2}\right)\right)^{2}+4 p_{2}^{4} q_{2} G O_{2}\left(G_{2}\right) \\
+16 p_{2}^{2} q_{2}^{2} M_{2}\left(G_{1}\right)+4 p_{2} q_{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right) \\
q_{1} p_{2}^{2}
\end{array}\right]^{q_{1} p_{2}^{2}}
$$

Using A and B, we get the required result.

Lemma 4.2. Let $G_{i}, i=1,2$ be two regular graphs of degree r_{i} and let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)$-graph. Then $\prod_{2}\left(G_{1}\left[G_{2}\right]\right)=\left(p_{2} r_{1}+r_{2}\right)^{4\left(p_{1} q_{2}+p_{2}^{2} q_{1}\right)}$.

Proof :

$$
\begin{align*}
\prod H M_{2}\left(G_{1}\left[G_{2}\right]\right) & =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}\left[G_{2}\right]}^{2}(w, k) d_{G_{1},\left[G_{2}\right]}^{2}(w, l)\right] \\
& \times \prod_{k \in V\left(G_{2}\right)} \prod_{l \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}\left[G_{2}\right]}^{2}(w, k) d_{G_{1}\left[G_{2}\right]}^{2}(z, l)\right] \\
& =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left(p_{2} r_{1}+r_{2}\right)^{2}\left(p_{2} r_{1}+r_{2}\right)^{2} \\
& \times \prod_{k \in V\left(G_{2}\right)} \prod_{l \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left(p_{2} r_{1}+r_{2}\right)^{2}\left(p_{2} r_{1}+r_{2}\right)^{2} \\
& =\left(p_{2} r_{1}+r_{2}\right)^{4 p_{1} q_{2}} \times\left(p_{2} r_{1}+r_{2}\right)^{4 p_{2}^{2} q_{1}} \\
& =\left(p_{2} r_{1}+r_{2}\right)^{4\left(p_{1} q_{2}+p_{2}^{2} q_{1}\right)} \tag{3}
\end{align*}
$$

Corollary 4.3. Let $G_{i},(i=1,2)$ be two regular graphs of degree r_{i}.
Let $G_{i},(i=1,2)$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then

$$
\begin{equation*}
\prod H M_{2}\left(G_{1}\left[G_{2}\right]\right) \leq\left(p_{2} r_{1}+r_{2}\right)^{4\left(p_{1} q_{2}+p_{2}^{2} q_{1}\right)} \tag{4}
\end{equation*}
$$

From (3) and (4) our bound is tight.

5. The Multiplicative Second Hyper Zagreb Index of Cartesian Product of Graphs

Theorem 5.1. Let $G_{i}, i=1,2$ be $a\left(p_{i}, q_{i}\right)$-graph. Then

$$
\prod H M_{2}\left(G_{1} \square G_{2}\right) \leq\left[\begin{array}{l}
q_{2} F_{2}\left(G_{1}\right)+2 F\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right) \\
+M_{1}\left(G_{1}\right) F\left(G_{2}\right)+p_{1} H M_{2}\left(G_{2}\right)+4 q_{1} G O_{2}\left(G_{2}\right) \\
p_{1} q_{2}
\end{array}\right]^{p_{1} q_{2}}
$$

$$
\times\left[\begin{array}{c}
p_{1} F_{2}\left(G_{2}\right)+2 F\left(G_{2}\right) M_{1}\left(G_{1}\right)+4 M_{1}\left(G_{2}\right) M_{2}\left(G_{1}\right) \\
+M_{1}\left(G_{2}\right) F\left(G_{1}\right)+p_{2} H M_{2}\left(G_{1}\right)+4 q_{2} G O_{2}\left(G_{1}\right) \\
p_{2} q_{1}
\end{array}\right]^{p_{2} q_{1}}
$$

Proof :

$$
\begin{aligned}
\prod H M_{2}\left(G_{1} \square G_{2}\right) & \leq \prod_{(w, k)(z, l) \in E\left(G_{1} \square G_{2}\right)}\left[d_{G_{1} \square G_{2}}^{2}(w, k) d_{G_{1} \square G_{2}}^{2}(z, l)\right] \\
& =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square G_{2}}^{2}(w, k) d_{G_{1} \square G_{2}}^{2}(z, l)\right] \\
& \times \prod_{k \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1} \square G_{2}}^{2}(w, k) d_{G_{1} \square G_{2}}^{2}(z, l)\right] \\
& =A \times B
\end{aligned}
$$

where A and B indicate the products of the above terms in order.
Now we calculate A.

$$
\left.\begin{array}{rl}
A & =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square G_{2}}^{2}(w, k) d_{G_{1} \square G_{2}}^{2}(z, l)\right] \\
& =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[d_{G_{1}}(w)+d_{G_{2}}(l)\right]^{2}\right] \\
& \leq\left[\frac{\left.\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[d_{G_{1}}(w)+d_{G_{2}}(l)\right]^{2}\right]^{p_{1} q_{2}}}{p_{1}}\right]^{\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left[d_{G_{1}}^{2}(w)+d_{G_{2}}^{2}(k)+2 d_{G_{1}}(w) d_{G_{2}}(k)\right]}\left[d_{G_{1}}^{2}(k)+d_{G_{2}}^{2}(l)+2 d_{G_{1}}(w) d_{G_{2}}(l)\right] \\
p_{1} q_{2}
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
q_{2} F_{2}\left(G_{1}\right)+2 F\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 M_{1}\left(G_{1}\right) M_{2}\left(G_{2}\right)+M_{1}\left(G_{1}\right) F\left(G_{2}\right) \\
+p_{1} H M_{2}\left(G_{2}\right)+4 q_{1} G O_{2}\left(G_{2}\right) \\
p_{1} q_{2}
\end{array}\right]^{p_{1} q_{2}}
$$

Now we compute B.

$$
\begin{aligned}
& B=\prod_{k \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1} \square G_{2}}^{2}(w, k) d_{G_{1} \square G_{2}}^{2}(z, l)\right] \\
& =\prod_{k \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[d_{G_{1}}(z)+d_{G_{2}}(k)\right]^{2}\right] \\
& \leq\left[\frac{\sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}}(w)+d_{G_{2}}(k)\right]^{2}\left[d_{G_{1}}(z)+d_{G_{2}}(k)\right]^{2}}{p_{2} q_{1}}\right]^{p_{2} q_{1}} \\
& {\left[\sum_{k \in V\left(G_{2}\right)} \sum_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}}^{2}(w)+d_{G_{2}}^{2}(k)+2 d_{G_{1}}(w) d_{G_{2}}(k)\right]\right]^{p_{2} q_{1}}} \\
& =\left[\frac{\left[d_{G_{1}}^{2}(z)+d_{G_{2}}^{2}(k)+2 d_{G_{1}}(z) d_{G_{2}}(k)\right]}{p_{2} q_{1}}\right] \\
& =\left[\begin{array}{l}
q_{1} F_{2}\left(G_{2}\right)+2 F\left(G_{2}\right) M_{1}\left(G_{1}\right)+4 M_{1}\left(G_{2}\right) M_{2}\left(G_{1}\right)+M_{1}\left(G_{2}\right) F\left(G_{1}\right) \\
+p_{2} H M_{2}\left(G_{1}\right)+4 q_{2} G O_{2}\left(G_{1}\right) \\
p_{2} q_{1}
\end{array}\right]^{p_{2} q_{1}}
\end{aligned}
$$

Using A and B we get the desired result.

Lemma 5.2. Let $G_{i_{1}} i=1,2$ be two regular graphs of degree r_{i} and
let $G_{i} ;=1,2$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then $\prod H M_{2}\left(G_{1} \square G_{2}\right)=\left(r_{1}+r_{2}\right)^{4\left(p_{1} q_{2}+p_{2} q_{1}\right)}$

Proof :

$$
\begin{aligned}
\prod H M_{2}\left(G_{1} \square G_{2}\right) & =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left[d_{G_{1} \square G_{2}}^{2}(w, k) d_{G_{1} \square G_{2}}^{2}(w, l)\right] \\
& \times \prod_{k \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{1}\right)}\left[d_{G_{1} \square G 2}^{2}(w, k)+d_{G_{1}^{2} \square G_{2}}(z, k)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left(r_{1}+r_{2}\right)^{2}\left(r_{1}+r_{2}\right)^{2} \\
& \times \prod_{k \in V\left(G_{2}\right)} \prod_{w z \in E\left(G_{2}\right)}\left(r_{1}+r_{2}\right)^{2}\left(r_{1}+r_{2}\right)^{2} \\
& =\left(r_{1}+r_{2}\right)^{4 p_{1} q_{2}} \times\left(r_{1}+r_{2}\right)^{4 p_{2} q_{1}} \\
& =\left(r_{1}+r_{2}\right)^{4\left(p_{1} q_{2}+p_{2} q_{1}\right)}
\end{aligned}
$$

Corollary 5.3. Let $G_{i},(i=1,2)$ be two regular graphs of degree r_{i}.
Let $G_{i},(i=1,2)$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then

$$
\begin{equation*}
\prod H M_{2}\left(G_{1} \square G_{2}\right) \leq\left(r_{1}+r_{2}\right)^{4\left(p_{1} q_{2}+p_{2} q_{1}\right)} \tag{6}
\end{equation*}
$$

From (5) and (6) the bound is tight.

6. The multiplicative second hyper Zagreb index of corona product of GRAPHS

Theorem 6.1. Let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)$-graph. Then

$$
\left.\begin{array}{rl}
\prod H M_{2}\left(G_{1} \odot G_{2}\right) \leq & {\left[\begin{array}{c}
p_{2}^{4} q_{1}+2 p_{2}^{3} M_{1}\left(G_{1}\right)+4 p_{2}^{2} M_{2}\left(G_{1}\right)+p_{2}^{2} F\left(G_{1}\right) \\
+H M_{2}\left(G_{1}\right)+2 p_{2} G O_{2}\left(G_{1}\right)
\end{array} q_{1}\right.}
\end{array}\right]^{q_{1}}
$$

$$
\left[\begin{array}{c}
M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 q_{2} M_{1}\left(G_{2}\right)+p_{2} M_{1}\left(G_{1}\right)+p_{2} M_{1}\left(G_{2}\right)\left(p_{1} p_{2}+4 q_{1}\right) \\
+16 q_{1} q_{2} p_{2}+4 p_{2}^{2} q_{1}+p_{1} p_{2}^{2}\left(p_{2}+4 q_{2}\right)
\end{array} p_{1} p_{2} \quad p^{p_{1} p_{2}}\right.
$$

Proof :

$$
\begin{aligned}
\prod H M_{2}\left(G_{1} \odot G_{2}\right) & =\prod_{w z \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{1}}(z)+p_{2}\right)^{2}\right) \\
& \times \prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}(k)+1\right)^{2}\left(d_{G_{2}}(l)+1\right)^{2}\right) \\
& \times \prod_{w \in V\left(G_{1}\right)} \prod_{k \in V\left(G_{2}\right)}\left(\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{2}}(k)+1\right)^{2}\right) \\
& =A \times B \times C
\end{aligned}
$$

where A, B and C are the products of the about terms in order.
Now calculate A,

$$
\begin{aligned}
A & =\prod_{w z \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{1}}(z)+p_{2}\right)^{2}\right) \\
& \left.\leq\left[\frac{\left.\sum_{w z \in E\left(G_{1}\right)}\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{1}}(z)+p_{2}\right)^{2}\right]^{q_{1}}}{q_{1}}\right]^{q_{1}}\right]^{q_{1}} \\
& =\left[\frac{\sum_{w z \in E\left(G_{1}\right)}\left[d_{G_{1}}^{2}(u)+p_{2}^{2}+2 p_{2} d_{G_{1}}(w)\right]\left[d_{G_{1}}^{2}(z)+p_{2}^{2}+2 p_{2} d_{G_{1}}(z)\right]}{q_{1}}\right. \\
& =\left[\frac{p_{2}^{4} q_{1}+2 p_{2}^{3} M_{1}\left(G_{1}\right)+4 p_{2}^{2} M_{2}\left(G_{1}\right)+p_{2}^{2} F\left(G_{1}\right)+H M_{2}\left(G_{1}\right)+2 p_{2} G O_{2}\left(G_{1}\right)}{q_{1}} q^{q_{1}}\right.
\end{aligned}
$$

Next compute B.

$$
\begin{aligned}
B & =\prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}(k)+1\right)^{2}\left(d_{G_{2}}(l)+1\right)^{2}\right) \\
& \leq\left[\frac{\sum_{w \in V\left(G_{1}\right)} \sum_{k l \in E\left(G_{2}\right)}\left(d_{G_{2}}(k)+1\right)^{2}\left(d_{G_{2}}(l)+1\right)^{2}}{p_{1} q_{2}}\right]^{p_{1} q_{2}}
\end{aligned}
$$

Finally, compute C

$$
\begin{aligned}
C & \left.=\prod_{w \in V\left(G_{1}\right)} \prod_{k \in V\left(G_{2}\right)}\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{2}}(k)+1\right)^{2}\right) \\
& \leq\left[\frac{\left.\sum_{w \in V\left(G_{1}\right)} \sum_{k \in V\left(G_{2}\right)}\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{2}}(k)+1\right)^{2}\right)}{p_{1} p_{2}}\right]^{p_{1} p_{2}} \\
& =\left[\frac{\left.\sum_{w \in V\left(G_{1}\right)} \sum_{k \in V\left(G_{2}\right)}\left(d_{G_{1}}^{2}(w)+2 p_{2} d_{G_{1}}(w)+p_{2}^{2}\right)\left(d_{G_{2}}^{2}(k)+2 d_{G_{2}}(k)+1\right)\right)}{p_{1} p_{2}}\right]^{p_{1} p_{2}} \\
& =\left[\begin{array}{c}
M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 q_{2} M_{1}\left(G_{2}\right)+p_{2} M_{1}\left(G_{1}\right)+p_{2} M_{1}\left(G_{2}\right)\left(p_{1} p_{2}+4 q_{1}\right) \\
+16 q_{1} q_{2} p_{2}+4 p_{2}^{2} q_{1}+p_{1} p_{2}^{2}\left(p_{2}+4 q_{2}\right) \\
p_{1} p_{2}
\end{array}\right]^{p_{1} p_{2}}
\end{aligned}
$$

Now multiplying A, B and C we get the required result.

Lemma 6.2. Let $G_{i}, i=1,2$ be two regular graph of degree r_{i}, and let $G_{i}, i=1,2$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then

$$
\prod H M_{2}\left(G_{1} \odot G_{2}\right)=\left(r_{1}+p_{2}\right)^{4 q_{1}} \times\left(r_{2}+1\right)^{4 p_{1} q_{2}} \times\left(\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+1\right)^{2}\right)^{p_{1} p_{2}}
$$

Proof :

$$
\prod H M_{2}\left(G_{1} \odot G_{2}\right)=\prod_{w z \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{1}}(z)+p_{2}\right)^{2}\right)
$$

$$
\begin{align*}
& \times \prod_{w \in V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}(k)+1\right)^{2}\left(d_{G_{2}}(l)+1\right)^{2}\right) \\
& \times \prod_{w \in V\left(G_{1}\right)} \prod_{k \in V\left(G_{2}\right)}\left(\left(d_{G_{1}}(w)+p_{2}\right)^{2}\left(d_{G_{2}}(k)+1\right)^{2}\right) \\
& =\prod_{w z \in E\left(G_{1}\right)}\left(r_{1}+p_{2}\right)^{2}\left(r_{1}+p_{2}\right)^{2} \\
& \times \prod_{u w i n V\left(G_{1}\right)} \prod_{k l \in E\left(G_{2}\right)}\left(r_{2}+1\right)^{2}\left(r_{2}+1\right)^{2} \\
& \times \prod_{w \in V\left(G_{1}\right)} \prod_{k \in V\left(G_{2}\right)}\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+1\right)^{2} \\
& =\left(r_{1}+p_{2}\right)^{4 q_{1}} \times\left(r_{2}+1\right)^{4 p_{1} q_{2}} \times\left(\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+1\right)^{2}\right)^{p_{1} p_{2}} \tag{7}
\end{align*}
$$

Corollary 6.3. Let $G_{i},(i=1,2)$ be two regular graphs of degree r_{i}.
Let $G_{i},(i=1,2)$ be a $\left(p_{i}, q_{i}\right)-$ graph. Then

$$
\begin{equation*}
\prod H M_{2}\left(G_{1} \odot G_{2}\right) \leq\left(r_{1}+p_{2}\right)^{4 q_{1}} \times\left(r_{2}+1\right)^{4 p_{1} q_{2}} \times\left(\left(r_{1}+p_{2}\right)^{2}\left(r_{2}+1\right)^{2}\right)^{p_{1} p_{2}} \tag{8}
\end{equation*}
$$

From (7) and (8) the bound is tight.

7. Conclusion

In this paper, we have defined the multiplicative second hyper Zagreb index and derived the sharp upper bound for this index of various graph operations lke join, composition, cartesian and corona producst of graphs are derived. And we have proved that the sharp upper bound is tight.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] A. Jahanbani, The multiplicative hyper Zagreb index of graph operations, Palestine J. Math. 9(1)(2020),
[2] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[3] M.R. Farahani, M.R. Rajesh Kanna, R.P. Kumar, On the hyper-Zagreb indices of some nanostructures, Asian Acad. Res. J. Multidiscip. 3 (2016), 115-123.
[4] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190.
[5] R.H. Hammack, W. Imrich, S. Klavžar, W. Imrich, Handbook of product graphs, 2nd ed, CRC Press, Boca Raton, FL, 2011.
[6] V.R. Kulli, The Gourava indices and coindices of graphs, Ann. Pure Appl. Math. 14 (2017), 33-38.
[7] G.H. Shirdel, H. Rezapour, A.M. Sayadi. The hyper-Zagreb index of graph operations, Iran. J. Math. Chem. 4 (2013), 213-220.
[8] V.S. Agnes, Degree distance and Gutman index of corona product of graphs, Trans. Comb. 4 (2015), 11-23.
[9] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In Novel Molecular Structure Descriptors - Theory and Applications I. Edited by: I. Gutman, B. Furtula, Univ. Kragujevac, Kragujevac; 2010: 73-100.
[10] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 64 (2010), 359-372.

[^0]: *Corresponding author
 E-mail address: aruvim.aut @ gmail.com
 Received September 4, 2020

