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Abstract. The objective of this work is to use an application of H(., .)-ϕ-η-mixed monotone mappings [13] via

resolvent equation technique to solve the set-valued variational-like inclusions in semi-inner product spaces. We

aim to establish an equivalence between the set-valued variational-like inclusion problem and fixed point problem.

A relationship also obtain between the set-valued variational-like inclusion problem and the resolvent equation

problem. This equivalent formulation suggests an idea to construct an iterative algorithm to find a solution of the

resolvent equation problem.
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1. INTRODUCTION

Variational Inequality theory is very important due to its large application in various prob-

lem e.g. partial differential equation and optimization problems, see [3]. Therefore it have
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been developed and generalized in numerous directions. Variational inclusions is a natural gen-

eralization of variational inequalities. Monotonicity have a very crucial role in the study of

variational inclusions. Therefore researchers introduced and studied many types of monotonic-

ity e.g. maximal monotone mapping, relaxed monotone mapping, H-monotone mapping, A-

monotone mapping etc., and discussed the solvability of different variational inclusion problems

with the help of underlying different monotone mappings, see [4, 5],[8]-[11],[16],[25, 26],[28]-

[31],[34, 35, 38]. The resolvent operator technique which is the generalized form of projection

technique, is very efficient tool to solve variational inclusions and their generalizations. The

resolvent equation is also a very significant approach. The resolvent operator equations tech-

nique is utilized to expand significant and feasible numerical approaches to find a the solution

of many variational inequalities (inclusions) and linked optimization problems, see [1, 2].

Many heuristics generalized the monotonicity such as (H,η)-monotone, (A,η)-monotone,

(A,η)-maximal relaxed monotone etc. They introduced and studied different variational in-

clusions problems involving these monotone mapping in Hilbert spaces (Benach spaces), see

[9, 10, 25, 28, 29, 34].

“Recently, Sahu et al. [30] proved the existence of solutions for a class of nonlinear implicit

variational inclusion problems in semi-inner product spaces, which is more general than the

results studied in [31]. Moreover, they constructed an iterative algorithm for approximating the

solution for the class of implicit variational inclusion problems involving A-monotone and H-

monotone operators by using the generalized resolvent operator technique. It is remarked that

they discussed the existence and convergence analysis by relaxing the condition of monotonicity

on the set-valued map considered”, [4].

Very recently Luo and Huang [26], introduced and studied (H,ϕ)-η-monotone mapping in

Banach spaces which provides a unifying framework for various classes of monotone mapping.

Most recently, Bhat and Zahoor [4, 5], introduced and studied (H,φ)-η-monotone mapping in

semi-inner product space and discussed the convergence analysis of proposed iterative schemes

for some classes of variational inclusion through generalized resolvent operator. For the appli-

cations point of view of discussed operators in variational inequalities and variational inclusion,

see [8]-[11],[14, 15],[17]-[26],[28]-[35],[37, 39].
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The proposed work is impelled by the noble research works discussed above. First, we es-

tablish a relation between the set-valued variational-like inclusions and fixed point problem and

also obtain a equivalance between the set-valued variational-like inclusion amd the resolvent

operator equation involving H(., .)-ϕ-η-mixed monotone mapping [13]. These equivalant fixed

point problem and the resolvent equation problem formulation suggest us an idea to develop an

iterative algorithm. We also make an attempt to find the existence of solution of set valued vari-

ational inclusion involving nonlinear operators in 2-uniformly smooth Banach space. The ob-

tained results are quite similar to above discussed research work but we utilize distinguished no-

tion and approach to solve variational inclusion problems in 2-uniformly smooth Banach space.

Our work is the extension and refinement of the existing results, see [1, 2, 4, 5, 17, 24, 26, 39].

Definition 1.1. [27, 30] Let us consider the vector space Y over the field F of real or complex

numbers. A functional [., .] : Y ×Y → F is called a semi inner product if

(i) [u1 +u2,v1] = [u1,v1]+ [u2,v1], ∀u1,u2,v1 ∈ Y

(ii) [αu1,v1] = α[u1,v1], ∀α ∈ F, u1,v1 ∈ Y

(iii) [u1,u1]≥ 0, f or u1 6= 0

(iv) |[u1,v1]|2 ≤ [u1,u1][v1,v1], ∀u1,v1 ∈ Y

The pair (Y, [., .]) is called a semi-inner product space.

“We observed that ‖u1‖ = [u1,u1]1/2 is a norm and we can say a semi-inner product space is

a normed linear space with the norm. Every normed linear space can be made into a semi-inner

product space in infinitely many different ways. Giles [12] had shown that if the underlying

space Y is a uniformly convex smooth Banach space then it is possible to define a semi-inner

product uniquely” [4].

Remark 1.2. “This unique semi-inner product has the following nice properties:

(i) [u1,v1] = 0 iff v1 is orthogonal to u1, that is iff ‖v1‖ ≤ ‖v1 +αu1‖, for all scalars α .

(ii) Generalized Riesz representation theorem: If f is a continuous linear functional on Y then

there is a unique vector v1 ∈ Y such that f (u1) = [u1,v1], for all u1 ∈ Y .

(iii) The semi-inner product is continuous, that is for each u1,v1 ∈Y , we have Re[v1,u1+αv1]→

Re[v1,u1] as α → 0”, [4].
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Since the sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly convex

smooth Banach spaces, we can define a semi-inner product on these spaces, uniquely.

Definition 1.3. [30] The real sequence space lp f or 1 < p < 1 is a semi-inner product space

with the semi-inner product defined by

[v,w] =
1

‖w‖p−2
p

∑
j

v jw j|w|p−2, v,w ∈ lp.

Definition 1.4. [12, 30] The real Banach space Lp(Y,µ) for 1 < p < 1 is a semi-inner product

space with the semi-inner product defined by

[g,h] =
1

‖h‖p−2
p

∫
Y

g(u)|h(u)|p−1sgn(h(u))dµ, v,w ∈ Lp.

Definition 1.5. [30, 36] The Y be a Banach space, then

(i) modulus of smoothness of Y defined as

ρY (s) = sup
{
‖u1 + v1‖+‖u1− v1‖

2
−1 : ‖u1‖ ≤ 1, ‖v1‖ ≤ s

}
.

(ii) Y be uniformly smooth if lims→0 ρY (s)/s = 0

(iii) Y be p-uniformly smooth for p > 1, if there exists c > 0 such that ρY (s)≤ csp.

(iv) Y be 2-uniformly smooth if there exists c > 0 such that ρY (s)≤ cs2.

Lemma 1.6. [30, 36] Let p > 1 be a real number and Y be a smooth Banach space. Then the

following statements are equivalent:

(i) Y is 2-uniformly smooth.

(ii) There is a constant k > 0 such that for every v1,w1 ∈ Y , the following inequality holds

‖v1 +w1‖2 ≤ ‖v1‖2 +2〈w1, fv1〉+ k‖w1‖2,(1.1)

where fv1 ∈ J(v1) and J(v1) = {v1∗ ∈Y ∗ : [v1,v1∗] = ‖v1‖2 and ‖v1∗‖= ‖v1‖} is the normalized

duality mapping.

Remark 1.7. “ Every normed linear space Y is a semi-inner product space (see [27]). Infact,

by Hahn-Banach theorem, for each v1 ∈Y , there exists at least one functional fv1 ∈Y ∗ such that
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〈v1, fv1〉 = ‖v1‖2. Given any such mapping f : Y → Y ∗, we can verify that [w1,v1] = 〈w1, fv1〉

defines a semi-inner product. Hence we can write the inequality (2.1) as

‖v1 +w1‖2 ≤ ‖v1‖2 +2[w1, fv1]+ s‖w1‖2.(1.2)

The constant s is known as constant of smoothness of Y , is chosen with best possible minimum

value”, [30].

Example 1.8. “The function space Lp is 2-uniformly smooth for p ≥ 2 and it is p-uniformly

smooth for 1 < p < 2. If 2≤ p < ∞, then we have for all v1,w1 ∈ Lp,

‖v1 +w1‖2 ≤ ‖v1‖2 +2[w1, fv1 ]+ (p−1)‖w1‖2.

where the constant of smoothness is p−1”, [30].

2. PRELIMINARIES

Let Y be a 2-uniformly smooth Banach space. Its norm and topological dual space is given by

‖.‖ and Y ∗, respectively. The semi-inner product [., .] signify the dual pair among Y and Y ∗.

In order to proceed the next, we recall some basic concepts, which will be needed in the subse-

quent sections.

Definition 2.1. [26, 30] Let Y be real 2-uniformly smooth Banach space. Let single-valued

mappings H, η : Y ×Y → Y, and Q,R : Y → Y , then

(i) Q is (r,η)-strongly monotone if there ∃ constant r > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ r ‖u−u′‖2, ∀u, u′ ∈ Y ;

(ii) Q is (s,η)-relaxed monotone if there ∃ constant s > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ −s ‖u−u′‖2, ∀u, u′ ∈ Y ;

(iii) Q is α-expansive if there ∃ constant α > 0

‖Q(u)−Q(u′)‖ ≥ α ‖u−u′‖, ∀u, u′ ∈ Y ;

(iv) H(Q, .) is (µ,η)-cocoercive in regards R if there ∃ constant µ > 0 such that

[H(Qu,x)−H(Qu′,x), η(u,u′)] ≥ µ ‖Qu−Qu′‖2, ∀x, u, u′ ∈ Y ;
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(v) H(.,R) is (γ,η)-relaxed monotone in regards R if there ∃ constant γ > 0 such that

[H(x,Ru)−H(x,Ru′),η(u,u′)] ≥ −γ ‖u−u′‖2, ∀x, u, u′ ∈ Y ;

(vi) H(Q, .) is κ1-Lipschitz continuous in regards Q if there ∃ constant κ1 such that

‖H(Qu,x)−H(Qu′,x)‖ ≤ κ1 ‖u−u′‖, ∀x, u,u′ ∈ Y ;

(vii) H(.,R) is κ2-Lipschitz continuous in regards R if there ∃ constant κ2 such that

‖H(x,Ru)−H(x,Ru′)‖ ≤ κ2 ‖u−u′‖, ∀x, u, u′ ∈ Y ;

(viii) η is be τ-Lipschitz continuous if there ∃ constant τ > 0 such that

‖η(u,u′)‖ ≤ τ ‖u−u′‖, ∀u, u′ ∈ Y.

“Let M :Y (Y be a set-valued mapping, then graph of M is given by graph(M)= {(v,w) : w∈

M(v)}. The domain of M is given by

Dom(M) = {v ∈ Y : ∃w ∈ Y : (v,w) ∈M}.

The Range of (M) is given by

Range(M) = {w ∈ Y : ∃V ∈ Y : (v,w) ∈M}.

The inverse of (M) is given by

M−1 = {(w,v) : (v,w) ∈M}.

For any two set-valued mappings N and M, and any real number β , we define

N +M = {(v,w+w′) : (v,w) ∈ N,(v,w′) ∈M},

βM = {(v,βw) : (v,w,) ∈M}.

For a mapping A and a set-valued map M : Y ( Y , we define A+M = {(v,w+w′) : Av =

w,(v,w′) ∈M}”, [4].

Definition 2.2. [26, 30] A set-valued mapping M : Y ( Y is said to be

(i) (n,η)-strongly monotone if ∃ a constant n > 0 such that

[v∗−w∗,η(v,w)] ≥ n ‖v−w‖2, ∀v,w ∈ Y, v∗ ∈M(v), w∗ ∈M(w);
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(ii) (m,η)-relaxed monotone if ∃ a constant m > 0 such that

[v∗−w∗,η(v,w)] ≥ −m ‖v−w‖2, ∀v,w ∈ Y, v∗ ∈M(v), w∗ ∈M(w).

Definition 2.3. Let P,η : Y ×Y → Y be the mappings and M : Y ×Y ( Y be the multi-valued

mapping. Then

(i) M is (n,η)-strongly monotone if ∃ a constant n > 0 such that

[v∗−w∗,η(v,w)] ≥ n ‖v−w‖2, ∀v,w ∈ Y, v∗ ∈M(v, t), w∗ ∈M(w, t), for each fixed t ∈ Y;

(ii) M is (m,η)-relaxed monotone if ∃ a constant m > 0 such that

[v∗−w∗,η(v,w)] ≥ −m ‖v−w‖2, ∀v,w ∈Y, v∗ ∈M(v, t), w∗ ∈M(w, t), for each fixed t ∈ Y;

(iii) P is (ν ,η)-relaxed monotone in regards first component if ∃ a constant ν > 0 such that

[P(v,u∗)−P(w,u∗),η(v,w)] ≥ −ν‖v−w‖2, ∀v,w,u∗ ∈ Y ;

(iv) P(., .) is ε1-Lipschitz continuous in regards first component if ∃ a constant ε1 > 0 such that

‖P(v,u∗)−P(w,u∗)‖ ≤ ε1 ‖v−w‖, ∀v,w,u∗ ∈ Y ;

(v) P(., .) is ε2-Lipschitz continuous in regards second component if ∃ a constant ε2 > 0 such

that

‖P(u∗,v)−P(u∗,w)‖ ≤ ε2 ‖v−w‖, ∀v,w,u∗ ∈ Y.

Definition 2.4. [7] The Hausdorff metric D(., .) on CB(Y ), is defined by

D(A,B) = max
{

sup
u∈A

inf
v∈B

d(u,v),sup
v∈B

inf
u∈A

d(u,v)
}
, A,B ∈CB(Y ),

where d(., .) is the induced metric on Y and CB(Y ) denotes the family of all nonempty closed

and bounded subsets of X.

Definition 2.5. [7] A multi-valued mapping S : Y ( CB(Y ) is called D-Lipschitz continuous

with constant λS > 0, if

D(Sv,Sw)≤ λS ‖v−w‖, ∀v, w ∈ Y.
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3. H(., .)-φ -η -MIXED MONOTONE MAPPINGS

First, we give some definitions and important theorems associates with H(., .)-ϕ-η-mixed

monotone mapping.

Let Y be 2-uniformly smooth Banach space. Assume that η ,H : Y ×Y →Y , and ϕ,Q,R : Y →Y

be single-valued mappings and M : Y ×Y ( Y be a multi-valued mapping.

Definition 3.1. [13] Let H(., .) is (µ,η)-cocoercive in regards Q with non-negative constant

µ and (γ,η)-relaxed monotone in regards R with non-negative constant γ , then M is called

H(., .)-ϕ-η-mixed monotone in regards Q and R if

(i) for each fixed t, ϕoM(., t) is (m,η)-relaxed monotone in regards first argument;

(ii) (H(., .)+λϕoM(., t))(Y ) = Y, λ > 0.

Remark 3.2. If H(., .) = H and ϕoM is η-monotone. Then H(., .)-ϕ-η-mixed monotone re-

duces to (H,ϕ)-η-monotone mapping, see [4]. In addition, if ϕoM is monotone. Then H(., .)-

ϕ-η-mixed monotone reduces to (H,ϕ)-monotone mapping, see [26]. If ϕ(v) = v, ∀ v ∈ Y and

λ > 0. Then H(., .)-ϕ-η-mixed monotone reduces to (H(., .),η)-monotone mapping, see [37].

Let us consider the following

Assumption M1: Let H is (µ,η)-cocoercive in regards Q with non-negative constant µ and

(γ,η)-relaxed monotone in regards R with non-negative constant γ with µ > γ .

Assumption M2: Let Q is α-expansive.

Assumption M3: Let η is τ-Lipschitz continuous.

Assumption M4: Let M is H(., .)-ϕ-η-mixed monotone mapping in regards Q and R for each

fixed t ∈ Y.

Theorem 3.3. [13] Let assumptions M1, M2 and M4 hold good with ` = µα2 − γ > mλ ,

then (H(Q,R)+λϕoM(., t))−1 is single-valued.

Definition 3.4. [13] Let assumptions M1, M2 and M4 hold good with ` = µα2− γ > mλ then

the resolvent operator RH(.,.)−η

M(.,t),ϕ : Y → Y is given as

RH(.,.)−η

M(.,t),ϕ (u) = (H(Q,R)+λϕoM(., t))−1(u), ∀ u ∈ Y.(3.1)
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The next attempt is to prove the Lipschitz continuity of the resolvent operator defined by (3.1).

Theorem 3.5. [13] Let assumptions M1-M4 hold good with ` = µα2− γ > mλ and η is τ-

Lipschitz then RH(.,.)−η

M(.,t),ϕ : Y → Y is τ

`−mλ
-Lipschitz continuous, that is,

‖RH(.,.)−η

M(.,t),ϕ (y)−RH(.,.)−η

M(.,t),ϕ (z)‖ ≤ τ

`−mλ
‖y− z‖, ∀ y,z ∈ Y, and fixed t ∈ Y.

4. FORMULATION OF THE PROBLEM AND EXISTENCE OF SOLUTION

Now we make an attempt to show that H(., .)-ϕ-η-mixed monotone mapping under acceptable

assumptions can be used as a powerful tool to solve variational inclusion problems.

Let Y be 2-uniformly smooth Banach space. Let S,T,G : Y (CB(Y ) be the multi-valued map-

pings, and let Q,R,ϕ : Y →Y , P : Y ×Y →Y and η , H : Y ×Y →Y be single-valued mappings.

Suppose that multi-valued mapping M : Y ×Y (Y be a H(., .)-ϕ-η-mixed monotone mapping

in regards Q, R. We consider the following generalized set-valued variational like inclusion

problem to find u ∈ Y , v ∈ S(u), w ∈ T (u) and t ∈ G(u) such that

0 ∈ P(v,w)+M(u, t).(4.1)

If Y is real Hilbert space and M(., t) is maximal monotone operator, then the similar problem to

(4.1) studied by Huang et al. [16].

Lemma 4.1. Let us consider the mapping ϕ : Y → Y such that ϕ(v+w) = ϕ(v)+ϕ(w) and

Ker(ϕ) = {0}, where Ker(ϕ) = {v ∈ Y : ϕ(v) = 0}. If (u,v,w, t), where u ∈ Y , v ∈ S(u), w ∈

T (u) and t ∈ G(u) is a solution of problem (4.1) if and only if (u,v,w, t) satisfies the following

relation:

u = RH(.,.)−η

M(.,t),ϕ [H(Qu,Ru)−λϕoP(v,w)].(4.2)

The resolvent equation corresponding to generalized set-valued variational-like inclusion prob-

lem (4.1).

ϕoP(v,w)+λ
−1JH(.,.)−η

M(.,t),ϕ (x) = 0.(4.3)

where λ > 0,

JH(.,.)−η

M(.,t),ϕ (x) =
[
I−H(Q(RH(.,.)−η

M(.,t),ϕ (x)),R(RH(.,.)−η

M(.,t),ϕ (x)))
]
,
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I is the identity mapping and H(Q,R)
[
RH(.,.)−η

M(.,t),ϕ (x)
]
= H

(
Q(RH(.,.)−η

M(.,t),ϕ (x)),R(RH(.,.)−η

M(.,t),ϕ (x))
)
.

Now, we show that the problem (4.1) is equivalent to the resolvent equation problem (4.3).

Lemma 4.2. If (u,v,w, t) with u ∈ Y , v ∈ S(u), w ∈ T (u) and t ∈ G(u) is a solution of problem

(4.1) if and only if the resolvent equation problem (4.3) has a solution (x,u,v,w, t) with x,u ∈Y ,

v ∈ S(u), w ∈ T (u) and t ∈ G(u), where

u = RH(.,.)−η

M(.,t),ϕ (x),(4.4)

and x = H(Qu,Ru)−λϕoP(v,w).

Proof: Let (u,v,w, t) be a solution of problem (4.1), and from Lemma 4.1 Using the fact that

JH(.,.)−η

M(.,t),ϕ =
[
I−H

(
Q(RH(.,.)−η

M(.,t),ϕ ),R(RH(.,.)−η

M(.,t)),ϕ)
)]

,

JH(.,.)−η

M(.,t),ϕ (x) = JH(.,.)−η

M(.,t),ϕ

[
H(Qu,Ru)−λϕoP(v,w)

]
=
[
I−H

(
Q(RH(.,.)−η

M(.,t),ϕ ),R(RH(.,.)−η

M(.,t)),ϕ)
)][

H(Qu,Ru)−λϕoP(v,w)
]

=
[
H(Qu,Ru)−λϕoP(v,w)

]
−H

(
Q(RH(.,.)−η

M(.,t),ϕ ),R(RH(.,.)−η

M(.,t)),ϕ)
)](

H(Qu,Ru)−λϕoP(v,w)
)

=
[
H(Qu,Ru)−λϕoP(v,w)

]
−H
(

Q(RH(.,.)−η

M(.,t),ϕ )(H(Qu,Ru)−λϕoP(v,w)),R(RH(.,.)−η

M(.,t)),ϕ)(H(Qu,Ru)−λϕoP(v,w))
)

=
[
H(Qu,Ru)−λϕoP(v,w)

]
−H(Qu,Ru)

=−λϕoP(v,w)

This implies that

ϕoP(v,w)+λ
−1JH(.,.)−η

M(.,t),ϕ (x) = 0.

Conversely, let (x,u,v,w, t) is a solution of resolvent equation problem (4.3), then

JH(.,.)−η

M(.,t),ϕ (x) =−λϕoP(v,w)[
I−H

(
Q(RH(.,.)−η

M(.,t),ϕ ),R(RH(.,.)−η

M(.,t)),ϕ)
)]

(x) =−λϕoP(v,w)

x−H(Qu,Ru) =−λϕoP(v,w).
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This implies that

x = H(Qu,Ru)−λϕoP(v,w).

Hence (u,v,w, t) is a solution of variational inclusion problem (4.1).

Lemma 4.1 and Lemma 4.2 are very crucial from the numerical point of view. They permit us

to suggest the following iterative scheme for finding the approximate solution of (4.3).

Algorithm 4.3. For any given (x0,u0,v0,w0, t0), we can choose x0,u0 ∈ Y , v0 ∈ S(u0), w0 ∈

T (u0), t0 ∈ G(u0) and 0 < ε < 1 such that sequences {xk}, {uk}, {vk}, {wk} and {tk} satisfy

uk = RH(.,.)−η

Mk(.,t),ϕ(xk),

vk ∈ S(uk), ‖vk− vk+1 ‖ ≤ D(S(uk),S(uk+1))+ εk+1‖uk−uk+1‖,

wk ∈ T (uk),‖wk−wk+1‖ ≤ D(T (uk),T (uk+1))+ εk+1‖uk−uk+1‖,

tk ∈ G(uk), ‖tk− tk+1‖ ≤ D(G(uk),G(uk+1))+ εk+1‖uk−uk+1‖,

xk+1 = H(Quk,Ruk)−λϕoP(vk,wk),

where λ > 0, k ≥ 0, and D(., .) is the Hausdorff metric on CB(Y ).

Next, we find the convergence of the iterative algorithm for the resolvent equation problem

(4.3) corresponding generalized set-valued variational inclusion problem (4.1).

Theorem 4.4. Let us consider the problem (4.1) with assumptions M1-M4 and ϕ : Y → Y be a

single-valued mapping with ϕ(v+w) = ϕ(v)+ϕ(w) and Ker(ϕ) = {0}. Let assume that

(i) S,T and G are λS,λT and λG continuous, respectively;

(ii) H(Q,R) is κ1, κ2-Lipschitz continuous in regards Q and R, respectively;

(iii) ϕoP is (ν ,η)-relaxed monotone in regards first component;

(iv) ϕoP is ε1, ε2-Lipschitz continuous in regards first and second component, respectively;

(v) 0 <

√{
(κ1 +κ2)2 +2νλλ 2

S −2ε1λλS

(
(κ1 +κ2)+ τλS

)
+ ε2

1 λ 2λ 2
S

}
< (1−ξ λG)(`−mλ )

τ
− ε2λλT ;

(vi) ‖RH(.,.)−ϕ−η

Mk(.,tk)
(u)−RH(.,.)−ϕ−η

Mk−1(.,tk−1)
(u)‖ ≤ ξ‖tk− tk−1‖, ∀ t, t∗ ∈ Y,ξ > 0;

Then the iterative sequences {xk},{uk},{vk},{wk}, and {tk} generated by Algorithm 4.3 con-

verges strongly to the unique solution (x,u,v,w, t) of the resolvent equation problem (4.3).
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Proof. Using Algorithms 4.3 and λS,λT ,λG-D Lipschitz continuity of S, T and G, we have

‖vk− vk−1‖ ≤ D(S(uk),S(uk−1))+ ε
k‖uk−uk−1‖ ≤ {λS + ε

k}‖uk−uk−1‖,(4.5)

‖wk−wk−1‖ ≤ D(T ((uk),T (uk−1))+ ε
k‖uk−uk−1‖ ≤ {λT + ε

k}‖uk−uk−1‖,(4.6)

‖tk− tk−1‖ ≤ D(G((uk),G(uk−1))+ ε
k‖uk−uk−1‖ ≤ {λG + ε

k}‖uk−uk−1‖,(4.7)

where k = 1, 2, .....

Now, we compute

‖xk+1− xk‖= ‖H(Quk,Ruk)−H(Quk−1,Ruk−1)−λ (ϕoP(vk,wk)−ϕoP(vk−1,wk−1))‖

≤ ‖H(Quk,Ruk)−H(Quk−1,Ruk−1)−λ (ϕoP(vk,wk)−ϕoP(vk−1,wk))‖

+λ‖ϕoP(vk−1,wk)−ϕoP(vk−1,wk−1))‖.(4.8)

‖H(Quk,Ruk)−H(Quk−1,Ruk−1)−λ (ϕoP(vk,wk)−ϕoP(vk−1,wk))‖2

≤ ‖H(Quk,Ruk)−H(Quk−1,Ruk−1)‖2

−2λ [ϕoP(vk,wk)−ϕoP(vk−1,wk),η(vk,vk−1)]

+2λ‖ϕoP(vk,wk)−ϕoP(vk−1,wk)‖

×
{
‖H(Quk,Ruk)−H(Quk−1,Ruk−1)‖+‖η(vn,vn−1)‖

}

+λ
2‖ϕoP(vk,wk)−ϕoP(vk−1,wk)‖2.(4.9)

Since H(Q,R) is κ1,κ2-Lipschitz continuous in regards Q,R, respectively, We have

‖H(Quk,Ruk)−H(Quk−1,Ruk−1)‖2 ≤ (κ1 +κ2)
2‖uk−uk−1‖2.(4.10)

Since ϕoP is (ν ,η)-relaxed monotone, then we have

[ϕoP(vk,wk)−ϕoP(vk−1,wk),η(vk,vk−1)]≥−ν‖vk− vk−1‖2 ≥−ν{λS + ε
k}2‖uk−uk−1‖.2(4.11)



3060 SANJEEV GUPTA, MANOJ SINGH

As ϕoP(., .) is ε1,ε2-Lipschitz continuous in the first, second arguments, respectively and using

(4.5),(4.6), we have

‖ϕoP(vk,wk)−ϕoP(vk−1,wk)‖ ≤ ε1‖vk− vk−1‖ ≤ ε1{λS + ε
k}‖uk−uk−1‖,(4.12)

‖ϕoP(vk−1,wk)−ϕoP(vk−1,wk−1)‖ ≤ ε2‖wk−wk−1‖ ≤ ε2{λT + ε
k}‖uk−uk−1‖.(4.13)

By using M-3 and (4.10)-(4.13) in (4.9), we have

‖H(Quk,Ruk)−H(Quk−1,Ruk−1)− (ϕoP(vk,wk)−ϕoP(vk−1,wk))‖2

≤
{
(κ1 +κ2)

2 +2νλ{λS + ε
k}2−2ε1λ{λS + ε

k}
{
(κ1 +κ2)+ τ{λS + ε

k}
}
+ ε

2
1 λ

2{λS + ε
k}2
}

×‖uk−uk−1‖2,

‖H(Quk,Ruk)−H(Quk−1,Ruk−1)− (ϕoP(vk,wk)−ϕoP(vk−1,wk))‖

≤
√[

(κ1 +κ2)2 +2νλ{λS + εk}2−2ε1λ{λS + εk}
{
(κ1 +κ2)+ τ{λS + εk}

}
+ ε2

1 λ 2{λS + εk}2
]

×‖uk−uk−1‖.(4.14)

Using (4.14) in (4.8), we get

‖xk+1− xk‖= ‖H(Quk,Ruk)−H(Quk−1,Ruk−1)− (ϕoP(vk,wk)−ϕoP(vk−1,wk))‖

≤
[√[

(κ1 +κ2)2 +2νλ{λS + εk}2−2ε1λ{λS + εk}
{
(κ1 +κ2)+ τ{λS + εk}

}
+ ε2

1 λ 2{λS + εk}2
]

+ε2λ{λT + ε
k}
]
×‖uk−uk−1‖.(4.15)

By Lipschitz continuity of resolvent operator and condition (vi),(4.7), we have

‖uk−uk−1‖ ≤ ‖R
H(.,.)−η

Mk(.,tk),ϕ
(xk)−RH(.,.)−η

Mk(.,tk−1),ϕ
(xk−1)‖

≤ ‖RH(.,.)−η

Mk(.,tk),ϕ
(xk)−RH(.,.)−η

Mk(.,tk),ϕ
(xk−1)‖

+‖RH(.,.)−η

Mk(.,tk),ϕ
(xk−1)−RH(.,.)−η

Mk−1(.,tk−1),ϕ
(xk−1)‖

≤ τ

`−mλ
‖xk− xk−1‖+ξ‖tk− tk−1‖

≤ τ

`−mλ
‖xk− xk−1‖+ξ{λG + ε

k}‖uk−uk−1‖
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‖uk−uk−1‖ ≤
τ

(`−mλ )(1−ξ (λG + εk))
‖xk− xk−1‖.(4.16)

Using (4.16), in (4.15), equation (4.15) becomes

‖xk+1− xk‖ ≤Θ(εk)‖xk− xk−1‖, where(4.17)

Θ(εk) =

τ

√{
(κ1 +κ2)2 +2νλ{λS + εk}2−2ε1λ{λS + εk}

(
(κ1 +κ2)+ τ{λS + εk}

)
+ ε2

1 λ 2{λS + εk}2
}
+ τε2λ{λT + εk}

(`−mλ )(1−ξ (λG + εk))
.

.

Since 0 < ε < 1, this implies that Θ(εk)→Θ as k→ ∞, where

Θ =

τ

[√{
(κ1 +κ2)2 +2νλλ 2

S −2ε1λλS

(
(κ1 +κ2)+ τλS

)
+ ε2

1 λ 2λ 2
S

}
+ ε2λλT

]
(`−mλ )(1−ξ λG)

.

It is given that Θ < 1, then {xk} is a Cauchy sequence in Banach space Y , then xk→ x as k→∞.

From (4.16), {uk} is also Cauchy sequence in Banach space Y , then there exist u such that

uk→ u.

From equation (4.5)-(4.7) and Algorithm 4.3, the sequences {vk}, {wk} and {tk} are also

Cauchy sequences in Y . Thus, there exist v, w and t such that vk → v, wk → w and tk → t as

k→ ∞. Next we will prove that v ∈ S(u). Since vk ∈ S(uk), then

d(v, S(u)) ≤ ‖v− vk‖ + d(vk, S(u))

≤ ‖v− vk‖ + D(S(uk), S(u))

≤ ‖v− vk‖ + λS ‖uk−u‖→ 0, as k→ ∞,

which gives d(v, S(u)) = 0. Due to S(u) ∈CB(Y ), we have v ∈ S(u). In the same manner, we

easily show that w ∈ T (u) and t ∈ G(u).

By the continuity of RH(.,.)−η

M(.,t),ϕ , Q, R, S, T G, ϕoP, η and M and Algorithms 4.3, we know

that u, v, w and t satisfy

xk+1 = [H(Quk,Ruk)−λϕoP(vk,wk)],

→ x = [H(Qu,Ru)−λϕoP(v,w)] as k→ ∞.
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RH(.,.,)−η

M(.,t),ϕ (xk) = uk → u = RH(.,.,)−η

M(.,t),ϕ (x), as k→ ∞. Using the Lemma 4.2 and above equation

we have

ϕoP(v,w)+λ
−1(x−H(Q(RH(.,.)−η

M(.,t),ϕ (x)),R(RH(.,.)−η

M(.,t),ϕ (x))) = 0,(4.18)

ϕoP(v,w)+λ
−1JH(.,.)−η

M(.,t),ϕ (x) = 0.(4.19)

Hence (x,u,v,w, t) is a solution of the problem (4.3).
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