
_____________ 

*Corresponding author 

E-mail address: devakinandan.bu@gmail.com 

Received September 29, 2020 

109 

 

          Available online at http://scik.org 

          J. Math. Comput. Sci. 11 (2021), No. 1, 109-124 

https://doi.org/10.28919/jmcs/5072 

ISSN: 1927-5307 

 

 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION 

ALGORITHM  

PHURAILATPAM DEVAKINANDAN SHARMA1,*, KANGUJAM PRIYOKUMAR SINGH1,2 

1Department of Mathematical Sciences, Bodoland University, Kokrajha-783370, Assam, India 

2Department of Mathematics, Manipur University, Canchipur, Imphal-795003, India 

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License,which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: Execution of a task in a synchronized manner in a distributed setting, one needs the common idea of time. 

To accomplish this task, clock synchronization is conceptualized. Clock drifting is an intrinsic property of a clock, 

which necessitates the synchronization and resynchronization. A network consists of nodes, which may behave 

appropriately or behave badly. The mischievous node may pose difficulty in clock synchronization. We require a 

method to overcome the effect of mischievous nodes. Synchronization can be achieved in two ways namely accuracy 

and precision. In this paper, we present an accurate weighted average clock synchronization algorithm to execute a 

coordinated activity in a fault-tolerant manner. We use trusted clock value from GPS/GLONASS/IRNSS as a reference 

clock to achieve better accuracy. We also use behavior of the node to compute normalized weight in a localized 

manner, which lies between unit intervals. This weight assignment enables us to contain the effect of misbehavior up 

to some extent. This algorithm offers better accuracy and precision while tolerating mischievous nodes. The upper 

bound of tolerance boundary is one-third of the network size. 

Keywords: network, accuracy; precision; IEEE 1588; synchronization; tolerant; mischievous; window; weighted 

average.  

2010 AMS Subject Classification: 68M10. 



110 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

1. INTRODUCTION 

A distributed network consists of spatially scattered diverse nodes. These nodes are essential to 

carry out cooperative functions in close synchronization to one another. This is achievable only 

when they share some familiar idea of time. This ensures chronological precedence order across 

the network. In the contemporary world, with proliferation of internet and development of 

information technology, many facets of our life are integrated over the web. Internet of Things 

(IoT) is the trend which integrate all our smart devices over the web so as some major aspects of 

our life [1]. Our smart devices collect various data and share information over the network for 

better management. All of these systems are able to function only they are synchronized over the 

network. The clock synchronization process will help in faithful collection of data and its 

transmission [2].  IoT seldom works in isolation. Many synchronization algorithms use 

GPS/GLONASS/similar trusted clock signal. However, there are certain applications in which 

such trusted clock signal cannot be used for certain reasons. Some of these applications may use 

these clock signal for some time and as per design may not use at other times. We have designed 

an algorithm in which there is an option to use the trusted clock signal whenever necessary. This 

will help a network to work in isolation without any contact with outside world, if there should 

exist such a requirement.  

 

2. RELATED WORK 

Time and message format for synchronization are defined in IEEE 1588 standards [3][4]. In the 

IEEE standards a grand Master node propagates periodically synchronization information to the 

slave nodes over the boundary clock and the transparent clocks. The synchronization information 

may also be carried over either by boundary clock or transparent clock only. There are multiple 

Precision Time Protocol (PTP) ports in a boundary clock. The boundary clock can also act as 

master clock which can synchronize other clocks, as slave clocks. In such a scheme the grand 

master will first synchronized its neighbouring slave clocks and then these slaves in turn will 



111 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION ALGORITHM 

synchronize their neighbouring slave clock. Here the slave clocks performed the role of a master 

clocks. 

Over a period of time, many researchers had suggested various precise clock synchronization 

algorithm which are IEEE 1588 compliant. Some of them had also demonstrated their algorithm 

[5] – [9]. These suggested algorithms mainly cater for single hop network. Ability of these 

algorithms working in multi hop distributed network is suspect since for such multi hop 

environment, the requirement for high accuracy is mandatory. The clock synchronization error 

increases as number of hops increases in a distributed network. This is a major limitation in 

boundary clock synchronization scheme. Peak – to – peak clock synchronization error increases 

to 0.8, 08, 40 & 300 microsec for 01, 03, 05 & 10 hops respectively for such scheme. Simulation 

for the same is reported in [10].    

Many researchers had proposed various clock synchronization algorithm catering for various 

requirement including that of IoT [11] – [16]. Maintaining time records of information sent and 

received is a basic function of synchronization algorithm. Timestamp for each for such bits of 

information is always enclosed with the information sent/received. The slave clock is able to 

synchronize by calculating various clock parameters like clock offset, compensate time etc. A 

basic protocol is under numerated:  

a) Master clock forwards a Sync message to the neighbouring slave clocks and it records the 

transmit time t1.  

b) On receiving the message, this slave clock records the reception time as t2.  

c) The master clock may also immediately forwards another sync message carrying t1.  

d) The slave clock, then, forwards a message requesting to forward the delay in transmission 

to the master clock.  

e) The slave clock, then, will initiate the calculation of the reverse transmit delay and records 

the transmit time t3.  

f) On receiving this message, master clock records the received time as t4.  



112 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

g) Now on receiving the message requesting delay, the master clock forwards back a message 

carrying t4 as response to the request.  

Now the slave clock has 04 time stamps t1, t2, t3 & t4. Utilizing the time records we can calculate 

the total round trip delay between the master and slave clocks as [(t2 − t1) + (t4 − t3)]. As the 

network is symmetric, the one-way delay between    the    master and   slave clocks is [(t2 −t1) + 

(t4 −t3)]/2. Therefore, the clock deviation of the slave clock from the master clock is:  

offset = (t2−t1) − [(t2−t1) + (t4−t3)]/2 = [(t2−t1) − (t4−t3)]/2  

 Malicious nodes in the network may however use these timestamp to exploit the system. The 

problem become more acute if the slave nodes require to go through multiple hops for 

synchronization with the master node. W. Dong [16] has suggested a novel graph theoretical 

algorithm to counter the effect of malicious behaviour. In the algorithm malicious behaviour is 

detected at the message level only.  This approach is however computing resource exhaustive. 

Hence, there is a requirement of an approach to counter malicious behaviour while ensuring 

resource efficient clock synchronization.  

 

3. OUR PROPOSED CLOCK SYNCHRONIZATION SCHEME 

Clock synchronization in a distributed system has been exhaustively deliberate in the previous 

few decades. Many synchronization algorithms used averaging method as convergence function 

with varying degrees of competence and complexities. Some of the important algorithm are 

already discussed in the section above. 

Here we are giving some essential definitions, which help to build up our system model and 

synchronization algorithm. 

Definition 1. Correct Behavior: Correct Behavior in context of distributed network is the 

performance of a variety of function by the network component as expected according to the design 

or algorithm. 



113 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION ALGORITHM 

Definition 2. Malfunction: A malfunction is a deviation from a correct behavior. Any component 

or subsystem, which deviates from their correct behavior, is considered to be failed. 

Definition 3. Faulty Component: Any component, which fails, is faulty. 

Definition 4. Mischievous Behavior: Mischievous behavior is an arbitrary fault that occurs during 

the execution of an algorithm by a distributed system. It is a serious type of malfunction, which 

gives inaccurate, untimely and conflicting information. Mischievous behavior includes 'dual-faced' 

clocks, which give different time to different nodes at the same real time. 

3.1. System model and problem statement 

In this section we give a thorough explanation of the system model. We also describe the 

problem statement of the paper subsequently. 

3.1.1 System Model 

 The system model is explained in two parts; at first we describe the network architecture and 

then the Malfunction model of the network. 

3.1.2 Network Architecture 

 We consider a connected distributed static network which has  

three levels of hierarchies. As shown in the Fig. 1, the layers are Reference layer (RL), Pseudo 

reference layer (PRL) and Non reference layer (NRL). In the reference layer there are one or more 

than one Master Node (MN) which receives reference clock value for outside trusted sources such 

as GPS/GLONASS/ IRNSS/Galileo etc. The MN can utilize this clock value for clock 

synchronization process for rest of the network. However, these MN can also switch off receiving 

this clock value. The MN in the reference layer are connected to Pseudo Master Nodes (PMN) in 

the Pseudo reference layer. The number of MN is much fewer than PMN. There are at least two 

PMN in the Pseudo layer and any MN is connected to the at least two or more PMN. All PMN are 

fully connected and they are much fewer than the number of nodes. PMN in the pseudo reference 

are connected to Nodes in the non-reference. Here any node is connected to at least one PMN and 

the nodes are generally connected to their neighboring nodes but not necessarily 



114 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

Each of the MN, PMN and Nodes has a local physical clock from where the logical clock of the 

node is derived. We assumed that the physical clocks run continuously with respect to the real 

time. This physical clock can drift at rate ρ apart from the real time due to factors like temperature, 

pressure or aging. We make the following assumptions in our paper:  

Drift-Bound: The Physical Clock for any node  𝑛𝑖 , 𝑝𝑛𝑖
(𝑡)   ρ-bounded for all real time t as 

following:  

(1 + 𝜌)−1 ≤
𝑑𝑃𝑛𝑖

(𝑡)

𝑑𝑡
≤ (1 + 𝜌) 

The logical clock is related to the physical clock as L( t ) = P( t ) + A(t) where A(t) is the called 

the adjustment. This adjustment can be done discretely or linearly. 

Initial synchronization: The logical clock of any two nodes 𝑛𝑖 and 𝑛𝑗   at 𝑡0 where 𝑡0 is the real 

time at the start of the synchronization algorithm differ by real time α. 

|𝐿𝑛𝑖
(𝑡) − 𝐿𝑛𝑗

(𝑡)| ≤  𝛼 

This is basically the initial synchronization assumption. Here we are assuming that all the nodes 

are initially synchronized at real time t0. 

 

Fig. 1: Network Architecture 



115 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION ALGORITHM 

3.1.3 Malfunction Model 

 In our system malfunctions can occur to malfunction of nodes, their clock or due to link 

malfunction between the nodes or a combination of some or all of these malfunction. A clock is 

considered failed if the Drift-Bound assumption is violated. We are basically considering two types 

of clock malfunctions namely timing malfunction and mischievous clock. If a clock gives 

inaccurate, untimely and conflicting information or behaves like a 'dual-faced' clock then we 

assumed the clock is a mischievous clock. A clock is a good clock if it is running without any 

malfunction. We also assumed that the maximum number of bad clock is f. 

Maximum Clock Malfunction: There are at maximum f number of faulty clock in the network for 

3f+1 nodes. 

3.1.4 Problem Statement 

 Our algorithm uses trusted reference clock value and a weighted averaging and sliding window 

method for attaining synchronization of the nodes in a distributed network. The synchronization 

obtained is both accurate and precise. The synchronization algorithm satisfies the following 

properties: 

Agreement Property: For good clocks of nodes 𝑛𝑖  and 𝑛𝑗  at real time t immediately after re-

synchronization, 𝐶𝑛𝑖
(𝑡) and 𝐶𝑛𝑗

(𝑡) satisfy: 

|𝐶𝑛𝑖
(𝑡) −  𝐶𝑛𝑗

(𝑡)| ≤  Π 

where Π ≤ (δ + ε) is the precision of our synchronization algorithm. 

Incremental Step property: The correct clocks change every time by some amount ξ at each 

synchronization. 

Accuracy property: The correct clock of node 𝑛𝑖, for some constants a, b, c and d holds for real 

time 𝑡1 < 𝑡2 the following: 

(𝑡2 − 𝑡1)

𝑎
−  𝑏 ≤  𝐶𝑛𝑖

(𝑡2) − 𝐶𝑛𝑖
(𝑡1)  ≤ (𝑡2 − 𝑡1)𝑐 + 𝑑  



116 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

 We would like to make Π as small as possible so that clocks are close to one another. The validity 

of the Agreement property and Incremental Step property implies that our good clocks are running 

linearly with respect to real time. We would also like to make (𝑡2 − 𝑡1)  as close as possible to 

𝐶𝑛𝑖
(𝑡2) - 𝐶𝑛𝑖

(𝑡1) for any node 𝑛𝑖. This ensures the time elapsed by the clock of any node 𝑛𝑖  is 

same to the real time elapsed in the interval. For optimal accuracy a and c should be equal to one 

and b and d should be zero in expression of Accuracy property. 

3.1.5. Accurate Weighted Average Synchronization Algorithm (AWASA) 

A synchronization algorithm which achieves clock synchronization by using a weighted 

averaging as a convergence function is described in [17]. This algorithm is called WASA and it 

utilizes the concept of sliding window to find the minimum variance data set upon which the 

convergence function is used. WASA achieves a precise clock synchronization. Here we are 

designing an algorithm which is both precise and accurate. Since this algorithm is an improvement 

on WASA, we call this algorithm as AWASA. 

 In this algorithm the MN receive reference clock value from trusted source. This clock value is 

then transmitted to the PMN in the PRL. There are much fewer MN as compare to PMN. Once the 

clock value is received by the PMN, they themselves synchronized with the new clock value by 

updating themselves. Since the clock value is from trusted source (MN) and on a single hop line 

of communication, we assume they are free of corruption. We trust the clock value and accept 

them as authentic value.  

We conduct a check on the clock value of the PMN to ascertain whether any of its value is faulty. 

In the RL all the MN are receiving trusted clock value and the MN send the clock value to all PMN 

connected to them. In the PRL each PMN exchanges its clock values and stores in an array in an 

order of their clock values. All the clock values received by the PMN are from a trusted source 

however since any clock could have been gone bad due some malfunction as described in the 

malfunction model, we run a check before sending these clock values further for synchronization.  

Now the clock values distributed in the array can be visualized in the following fashion: n clock 



117 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION ALGORITHM 

values are distributed in the array i.e. we can visualize this as n slots to be filled with n-f good 

clock values and f bad clocks. The good and bad clock values can be anywhere in the n slots. There 

are  𝑛𝑃𝑓  distinct possibility.  

3.1.5.1 WORKING OF AWASA 

 In any network, two kind of players are there with conflicting goals. One set of players which 

have an objective to stabilize the system are called good nodes. The other set of players which aim 

to destabilize the system are called bad nodes. Our goal is to synchronize the network even in 

presence of bad nodes. The most serious types of bad nodes are those nodes which give inaccurate, 

untimely and conflicting information. They may also give different time to different nodes at the 

same real time. These mischievous behaviors of nodes can be classified as follows: Consistent 

misbehavior - Nodes exhibit the same mischievous behavior in temporal domain. Inconsistent 

misbehavior - Nodes display mischievous behavior is inconsistent fashion in temporal domain. A 

node can misbehave in individual capacity or can collectively collude. These misbehaviors can be 

categorized as follows: Individual misbehavior: A node is displaying misbehavior in individual 

manner without consulting other bad nodes. Collaborative mischievous behavior: Bad nodes may 

consult each other and decide their strategy in a collective fashion. 

 In this paper our focus is to counter the individual misbehavior which includes consistent and 

inconsistent behavior both with the aim to achieve an accurate and precise clock synchronization. 

We have initially taken the trusted clock value from reputed authentic source like GPS/ 

GLONASS/IRNSS/ Galileo etc to the MN. This clock value is used as a reference to synchronized 

the rest of the network but after undergoing a check. This is done since the behavior of the clocks 

at PMN may have, by any probability, gone corrupted. We have devised a sliding window 

technique to find the set of values, which show minimum deviation among the values. We know 

that Gaussian distribution is widely present in nature. We capitalized this knowledge to design the 

weight function. This weighted approach is used to mitigate the misbehavior. 

 



118 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

3.1.5.2. Detailed View of AWASA 

 We give a detailed description of AWASA in this section. The synchronization timeline as show 

in fig. 2. The synchronization at every regular interval of time, RN. The periodicity or the time 

length every is same and decided according to the requirement of the system design like deviation 

range allow before a resynchronization is necessary. Within this time span the process of 

resynchronization has to take place, the time required for resynchronization is depicted as Trn, 

Resync Process Time. The Trn functions in three phases namely resynchronization of Reference 

Layer (tref), resynchronization of Pseudo Reference Layer (tpref) and resynchronization of Pseudo 

Non-Reference Layer (tnref). During each tpref , the PMN executes WASA. WASA can counter 

consistent mischievous nodes. It also works in presence of inconsistent mischievous behavior 

provided the mischievous nodes remain consistent during Trn.  

In tref phase the MN receive trusted clock value from authentic source such as 

GPS/GLONASS/IRNSS etc. The ultimate aim to synchronize all types of nodes in the network to 

this clock value. In such a scenario, the clock synchronization will be very accurate as all the nodes 

will have clock value of the trusted/ reference clock.   

 

 

Fig. 2: Synchronization Timeline 

 



119 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION ALGORITHM 

However, synchronization of all nodes in the network with GPS/similar trusted clock value will 

not be possible. Some of the possible reasons for the same is given below. AWASA can overcome 

this type of scenario easily without effecting the synchronization process. The same will be 

explained subsequently.   

a)   Every node may not have a GPS/ similar receiver 

b)   Some nodes may be in such a location where they are not able to access the GPS signal 

c)   There arises such a situation in which the system administrator considers it not to utilize 

such external source of clock input, may be, in order to maintain secrecy 

d) The GPS/similar sys is no longer trustworthy, etc.  

When the MN is at time ts, it sends a resync request to all PMN. If the clock state of the PMN is 

between trs and tre, an ACK is replied after due verification of the request. Timeline for one such 

tref is depicted in Fig.3. This indicates the start of the resynchronization process. However, if no 

ACK is received, the MN will understand that the resynchronization time has not yet started and 

waits for next resynchronization time and again send out its resync request. On receiving the ACK, 

the MN sends the trusted clock value received from GPS/similar source to all connected PMN. 

The PMN then assigns this clock value as their new clock value and hence resynchronize with the 

MN. For each resynchronization process, we follow the IEEE 1588 standard: as already described 

in the related work section. 

In tpref phase as all the PMN are now in sync with the MN, the PMN now need to further resync 

with the connected node. However before sending out the clock value to all connected Nodes with 

IEEE 1588 standard, all the PMN under a WASA [17] check. WASA consists of three phases 

namely Information Collection Phase (ICP), Sliding Window Phase (SWP) and Weighted Average 

Phase (WAP). The same is described briefly below. 



120 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

 

Fig. 3: Timeline for one Sub_sync period 

 

3.1.5.3. Information Collection Phase (ICP) 

 In this phase every PMN share their clock with one another. PMN stores these clock values in 

an array. The clock values in the array are then arranged in an ordered fashion as per their values. 

3.1.5.4. Sliding Window Phase (SWP) 

 We introduced the notion of window. The size of window is n-f where n network size and f is 

allowed bad PMN, if any. Initially we placed the left boundary of the window at the beginning of 

the array. So first window consists of first 𝑛 − 𝑓 values of the array. Thereafter we slide the 

window one step in the right direction and this consists of next 𝑛 − 𝑓 values. We continue this 

process until the right boundary of the window reaches the end of the array. In this process we find 

the f data set of size 𝑛 − 𝑓. Now out of f data sets we find out the data set with minimum variance. 

3.1.5.5. Weighted Average Phase (WAP) 

 We use the minimum variance data set calculated in the SWP for finding the weighted average 

with some modifications. Since the size of the minimum variance window is 𝑛 − 𝑓, it contains at 



121 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION ALGORITHM 

least 𝑛 − 2𝑓 good clocks and at most f bad clocks. For the worst case the minimum variance 

window contains 𝑛 − 2𝑓 good clocks and f bad clocks. There can be also at maximum f good 

clocks outside the minimum variance window. 

 We now push these good clocks outside the minimum variance window inside the window by 

assigning the value of the good clock nearest to them inside the window. Now data set values 

inside the minimum variance window are assigned weights as per weight function and the 

weighted average is calculated. These weighted average value, θ, is the new clock. 

 For assignment of the weights, clock value within one ± σ distance from μ are assigned weight 

𝜔1 , where μ is the mean and σ is the standard deviation of the window. Clocks within ± σ to ± 2 

σ are assigned weight 𝜔2  and clocks within ± 2 σ to ± 3 σ are assigned weight  𝜔3. Finally clocks 

beyond ± 3 σ are assigned zero weight.  

3.1.5.6. Best and Worst Case Scenario of WASA  

 The precision of WASA in an ideal condition where there is no PMN clock is 𝛱 =  휀, which is 

optimal. The worst possible precision of WASA for large value of bad PMN is within: 

Π ≤ ε +
2(δ + ε)

3
 

The worst possible precision guaranteed by WASA is given by  

Π ≤ ε +
2(δ + ε)

3
 

Since 휀 ≪  𝛿,  

Π ≤ ε +
2(δ + ε)

3
< (δ +  ε) 

Hence WASA guaranteed Agreement Property. 

The worst case precision by SWAmean
det  [18] is given as for n ≥ 4f 

Π ≤ ε + f
(δ + ε)

n − f
+ f

(2δ + ε)

n − f + 1
 

If f ≫ 1 and taking δ ≫ ε, WASA is at least 33% tighter. 

 



122 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

 Now we have a highly accurate and precise clock value at the end of this phase. This clock value 

is now required to be sent to all Nodes in NRL for further resync with PMN at PRL. We used the 

IEEE 1588 standard for the same within the tnref on completion of the tpref. 

 As discussed in section 3.1.5 for synchronization of PMN in PRL, trusted clock value from RL 

are utilized after running a WASA check. There may be certain scenario where this trusted clock 

value are no more available or the system administrator decides not to use it as brought out in the 

section.  In absence of such trusted clock value at PRL, the PMN after waiting for time tref during 

the resync time Tr, do the WASA check using own clock value. This is a smart strategy since up 

to now all the PMN are in highly accurate synchronization with the MN. Upon completion of the 

WASA check, the PMN with then get synchronized as described earlier. The PMN will also update 

the MN clock with its latest clock value using IEEE 1588 standard. This will ensure both the RL 

and NRL is precisely in sync with PRL. On availability of the trusted clock value, the 

resynchronization will revert back to its usual protocol.  

 

4. CONCLUSION 

In this paper, we devise and present AWASA algorithm for clock synchronization, which is 

suitable for fully connected network. AWASA achieve at least 33% tighter accuracy and precision 

in the worst-case scenario. Even the worst-case scenario occurrence is very less but our study 

provides meaningful analytically insight. AWASA guarantees clock synchronization in presence 

of mischievous clocks if the upper bound of mischievous nodes is just under one-third of the 

network size. Using this algorithm, we are able to achieve highly accurate and precise 

synchronization when there is presence of GPS/GLONASS/IRNSS etc clock value. The algorithm 

also works in absence of such trusted clock values as well. However, since a reference clock value 

is not present, the algorithm will give highly precise synchronization value only. In our current 

work, we provide the analysis for static network. In future work we will try to achieve 

synchronization for a dynamic connected network. 



123 

A NOVEL PRECISE AND ACCURATE CLOCK SYNCHRONIZATION ALGORITHM 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests. 

 

REFERENCES 

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: A Survey on Enabling 

Technologies, Protocols, and Applications, IEEE Commun. Surv. Tutorials. 17 (2015), 2347–2376.  

[2] E. Xu, Z. Ding, S. Dasgupta, Target Tracking and Mobile Sensor Navigation in Wireless Sensor Networks, IEEE 

Trans. Mobile Comput. 12 (2013), 177–186.  

[3] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, 

IEEE Std. 1588-2002, 2002. 

[4] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, 

IEEE Std. 1588-2008,2008.  

[5] D. Kohler, A Practical Implementation of an IEEE1588 supporting Ethernet Switch, in: 2007 IEEE International 

Symposium on Precision Clock Synchronization for Measurement, Control and Communication, IEEE, Vienna, 

Austria, 2007: pp. 134–137. 

[6] R. Holler, T. Sauter, N. Kero, Embedded SynUTC and IEEE 1588 clock synchronization for industrial Ethernet, 

in: EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. 

No.03TH8696), IEEE, Lisbon, Portugal, 2003: pp. 422–426. 

[7] T. Neagoe, M. Hamdi, V. Cristea, Frequency Com pensated, H ardw are IEEE-1588 Im plem entation, in: 2006 

IEEE International Symposium on Industrial Electronics, IEEE, Montreal, Que., 2006: pp. 240–245.  

[8] T. Cooklev, J.C. Eidson, A. Pakdaman, An Implementation of IEEE 1588 Over IEEE 802.11b for Synchronization 

of Wireless Local Area Network Nodes, IEEE Trans. Instrum. Meas. 56 (2007) 1632–1639. 

[9] J. Kannisto, T. Vanhatupa, M. Hännikäinen, T.D. Hämäläinen, Precision Time Protocol Prototype on Wireless 

LAN, in: J.N. de Souza, P. Dini, P. Lorenz (Eds.), Telecommunications and Networking - ICT 2004, Springer 

Berlin Heidelberg, Berlin, Heidelberg, 2004: pp. 1236–1245. 

[10] J. Jasperneite, K. Shehab, K. Weber, Enhancements to the time synchronization standard IEEE-1588 for a system 

of cascaded bridges, in: IEEE International Workshop on Factory Communication Systems, 2004. Proceedings., 

IEEE, Vienna, Austria, 2004: pp. 239–244. 



124 

PHURAILATPAM DEVAKINANDAN SHARMA, KANGUJAM PRIYOKUMAR SINGH 

[11] M. Maróti, B. Kusy, G. Simon, Á. Lédeczi, The flooding time synchronization protocol, in: Proceedings of the 

2nd International Conference on Embedded Networked Sensor Systems  - SenSys ’04, ACM Press, Baltimore, 

MD, USA, 2004: p. 39. 

[12] M. Akhlaq, T.R. Sheltami, RTSP: An Accurate and Energy-Efficient Protocol for Clock Synchronization in 

WSNs, IEEE Trans. Instrum. Meas. 62 (2013), 578–589. 

[13] J. He, J. Chen, P. Cheng, X. Cao, Secure Time Synchronization in WirelessSensor Networks: A 

MaximumConsensus-Based Approach, IEEE Trans. Parallel Distrib. Syst. 25 (2014), 1055–1065. 

[14] L. Schenato, F. Fiorentin, Average TimeSynch: A consensus-based protocol for clock synchronization in wireless 

sensor networks, Automatica. 47 (2011), 1878–1886.  

[15] R. Solis, V.S. Borkar, P.R. Kumar, A New Distributed Time Synchronization Protocol for Multihop Wireless 

Networks, in: Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, CA, 2006: 

pp. 2734–2739. 

[16] W. Dong, X. Liu, Robust and Secure Time-Synchronization Against Sybil Attacks for Sensor Networks, IEEE 

Trans. Ind. Inf. 11 (2015) 1482–1491. 

[17] Phurailatpam Devakinandan Sharma. A Precise Clock Synchronization Algorithm in Network. J. Commun. Eng. 

Syst. 10 (2020), 12-21. 

[18] M.J. Pfluegl, D.M. Blough, A New and Improved Algorithm for Fault-Tolerant Clock Synchronization, J. Parallel 

Distrib. Comput. 27 (1995), 1–14. 

 


