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Abstract: A numerical method is presented in this paper to solve fractional integro-differential equations in the 

sense of Caputo, the fractional derivative is considered. The proposed method is perturbed Least Squares Method 

(PLSM) with the aid of constructed orthogonal polynomials as basis functions. The suggested method reduces 

this type of problem to a solution of system of linear algebraic equations and then solved using Maple 18 

software. Some numerical examples are provided to show the accuracy and applicability of the presented 

method, numerical results show that when applied to fractional integro-differential equations, the method is easy 

to implement and accurate. 
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1. INTRODUCTION 

  Fractional calculus is an area that encompasses the integration, derivatives and 

applications of arbitrary orders in science, engineering and other fields. The application of 

fractional differentiation in mathematical modelling of real-life problem has been significantly 

increased in recent years, such as earthquake modelling, decreased viral transmission, regulation 

of electrical socket memory behaviour, etc. There are many fascinating or exciting books about 

fractional calculus and fractional differential equations [1], [2].  Many fractional integro-

differential equations (FIDEs) are often difficult to solve and hence may not have analytical or 

exact solutions in the interval of consideration, so approximate and numerical methods must be 

used. Several numerical methods to solve the FIDEs have been given, such as, Adomian 

Decomposition Method [3], Standard Least Squares Method [4-6], Homotopy Analysis 

Transform Method [7], Collocation Method [8], Fractional Order Model with Caputo–Fabrizio 

Operator [9], Homotopy Perturbation Method [10], Differential Transform Method [11], 

Parameter Expansion Method [12], Variational Iteration Method [13]. 

Rawashdeh [8] proposed a numerical solution of integro differential fractional equations using th

e method of collocation in which polynomial spline functions was used to find the approximate 

solution. Momani and Qaralleh [14] suggested an efficient method for the solution of the 

systems of fractional integro-differential equations solution using Adomian Decomposition 

Method (ADM). Also, Mittal and Nigam [3], employed Adomian Decomposition Method for the 

solution of fractional Integro-differential equations. ADM requires the construction of Adomian 

polynomials which was reported demanding to construct. Mohammed [4], applied least squares 

method and shifted Chebyshev polynomial for the solution of fractional integro-differential 

equations. In the work, the author employed shifted Cheyshev polynomial of the first kind as 

basis function and the result was presented graphically. Taiwo and Fesojaye, [15] applied 

perturbation least-Squares Chebyshev method for solving fractional order integro-differential 

equations. In their work, an approximate solution taken together with the Least - Squares 
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Method is utilized to reduce the fractional integro-differential equations to system of algebraic 

equations, which are solved for the unknown constants associated with the approximate solution. 

[7] applied homotopy analysis transform method for the solving fractional integro-differential 

equation in the work, Laplace transforms was used to reduce a differential equation to an 

algebraic equation. [8] suggested a numerical method called Numerical studies for the resolution 

of fractional Integro-differential equations using the least square method and polynomials of 

Berntein. Also, [6] applied standard least squares method for solving fractional 

integrodifferential equations using constructed orthogonal as basis function 

The main objective of this work is to find the numerical solution of the volterra type fractional 

integro-differential equation using the standard least square method based on the orthogonals 

constructed as basis functions. The general form of the problem class considered in this work is 

as follow 

(1)  𝐷𝛼𝑢(𝑥) = 𝑝(𝑥)𝑢(𝑥) + 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑥)𝑑𝑡,   𝑜 ≤ 𝑥, 𝑡 ≤ 1,
𝑥

0
                          

With the following supplementary conditions: 

(2) 𝑢(𝑖)(0) = 𝛿𝑖,𝑖 = 0,1,2, … , 𝑛 − 1,    n -1 < 𝛼 ≤ 𝑛, 𝑛 ∈,𝑁                                                  

Where 𝐷𝛼𝑢(𝑥) indicates the ∝ 𝑡ℎ Caputo fractional derivative of  𝑢(𝑥);  𝑝(𝑥),𝑓(𝑥), 

𝐾(𝑥, 𝑡) are given smooth functions, 𝛿𝑖   are real constant, 𝑥  and 𝑡 are real variables varying [0, 1] 

and 𝑢(𝑥) is the unknown function to be determined. 

 

2. PRELIMINARIES 

2.1 Some relevant basic definitions. 

Definition 1. 

Fraction Calculus involves differentiation and integration of arbitrary order (all real numbers and 

complex values). Example 𝐷
1

2 , 𝐷𝜋, 𝐷2+𝑖 etc. 

Definition 2. 
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The Caputor Factional Derivative is defined as 

(3)   𝐷𝛼𝑓(𝑥) =
1

Γ(m−∝)
∫ (𝑥 − 𝑠)𝑚−∝−1𝑓𝑚(𝑠)𝑑𝑠  
𝑥

0
                                  

Where 𝑚 is a positive integer with the property that  𝑚 − 1 <∝< 𝑚 

For example, if  0 <∝< 1 the caputo fractional derivative is 

(4)  𝐷𝛼𝑓(𝑥) =
1

Γ(1−∝)
∫ (𝑥 − 𝑠)−∝𝑓1(𝑠)𝑑𝑠  
𝑥

0
                                          

Hence, we have the following properties: 

(1) 𝐽𝛼 𝐽𝑣 𝑓 = 𝑗𝛼+𝑣 𝑓, 𝛼, 𝑣 > 0, 𝑓 ∈ 𝐶𝜇, 𝜇 > 0 

(2) 𝐽𝛼𝑥𝛾=
𝛤(𝜆+1)

𝛤(𝛼+𝛾+1)
𝑥𝛼+𝛾, 𝛼 > 0, 𝛾 > −1, 𝑥 > 0 

(3) 𝐽𝛼 𝐷𝛼 𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 ,         𝑥 > 0,𝑚 − 1 < 𝛼 ≤ 𝑚 

(4) 𝐷𝛼 𝐽𝛼 𝑓(𝑥) = 𝑓(𝑥),    𝑥 > 0,𝑚 − 1 < 𝛼 ≤ 𝑚, 

(5) 𝐷𝛼𝐶 = 0, 𝐶  is the constant, 

(6) {
0,                                                𝛽 ∈ 𝑁0, 𝛽 < [𝛼],             

 𝐷𝛼𝑥𝛽 =
𝛤(𝛽+1)

𝛤(𝛽−𝛼+1)
𝑥𝛽−𝛼,                𝛽 ∈ 𝑁0, 𝛽 ≥ [𝛼],   

                 

Where [𝛼] denoted the smallest integer greater than or equal to 𝛼  and  𝑁0 = {0, 1, 2, … } 

Definition 3. 

Shifted Chebyshev polynomial of the first kind denoted by 𝑇𝑛(𝑥) is denoted by the following:  

 (5)   𝑇∗𝑛(𝑥) = cos{𝑛 cos
−1(2𝑥 − 1)};   𝑛 ≥ 0                                             

and the recurrence relation is given by  

(6)      𝑇∗𝑛+1(𝑥) = 2(2𝑥 − 1)𝑇
∗
𝑛(𝑥) − 𝑇

∗
𝑛−1(𝑥) ; 𝑛 = 1,2 

 with the initial condition                                                         

 (7)     𝑇∗0(𝑥) = 1, 𝑇∗1(𝑥) = 2𝑥 − 1                                                                                                                                                                           

Definition 4. 

Orthogonality: Two functions say 𝑢𝑝(𝑥)  and 𝑢𝑞(𝑥)  defined on the interval 𝑎 ≤ 𝑥 ≤ 𝑏 

are said to be orthogonal if 
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(8)   < 𝑢𝑝(𝑥),𝑢𝑞(𝑥)= ∫ 𝑢𝑝(𝑥) 𝑢𝑞(𝑥)
𝑏

𝑎
𝑑𝑥 = 0                                                                                

If, on the other hand, a third function 𝑤(𝑥) > 0    exists such that 

(9)   < 𝑢𝑝(𝑥),𝑢𝑞(𝑥) >=∫ 𝑤(𝑥)𝑢𝑝(𝑥) 𝑢𝑞(𝑥)
𝑏

𝑎
𝑑𝑥 = 0                                                                    

Then, we say that  𝑢𝑝(𝑥)  and 𝑢𝑞(𝑥)   are mutually orthogonal with respect to the 

weight function 𝑤(𝑥). 

Generally, we write: 

(10)   ∫ 𝑤(𝑥)𝑢𝑝(𝑥)
𝑏

𝑎
𝑢𝑞(𝑥)={

0                                  𝑝 ≠ 𝑞

∫ 𝑤(𝑥)𝑢2𝑝(𝑥)𝑑𝑥     𝑝 = 𝑞
𝑏

𝑎
,
              

Definition 5. 

We defined absolute error as: 

(11) Absolute Error =|𝑌(𝑥) − 𝑦𝑛(𝑥)|;    0 ≤ 𝑥 ≤ 1,                                     

where 𝑌(𝑥) is the exact solution and 𝑦𝑛(𝑥) is the approximate solution. 

 

3. MATERIALS AND METHODS 

In this section, we constructed our orthogonal polynomials using the general weight function of 

the form:  𝑤(𝑥)=(𝑎 + 𝑏𝑥𝑖)𝑘 . 

This corresponds to quartic functions for  𝑎 = 1, 𝑏 = −1, 𝑘 = 1 and 𝑖 = 4 respectively, 

satisfying the orthogonality conditions in the interval [𝑎, 𝑏] under consideration. 

According to Gram-Schmidt orthogonalization process, the orthogonal polynomial 

𝑢𝑗(𝑥) Valid in the interval [a,b] with the leading term 𝑥𝑗 , is given as 

(12)  𝑢𝑗(𝑥) = 𝑥
𝑗 − ∑ 𝑎𝑗,𝑖𝑢𝑖(𝑥)      𝑖 = 0,1,2…… . 𝑗 − 1

𝑗−1
𝑖=0   and  𝑗 ≥ 1          

Where 𝑢𝑗(𝑥)  is an increasing polynomial of degree  𝑗 and  𝑢𝑖(𝑥)   are the 

Corresponding values of the approximating functions in 𝑥. Then, starting with 

𝑢0(𝑥)  = 1, we find that the linear polynomial 𝑢𝑗(𝑥)  with leading term x, is written as 

(13)       𝑢1(𝑥) = 𝑥 + 𝑎1,0𝑢0(𝑥)                                                                   
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Where 𝑎1,0 is a constant to be determined. Since 𝑢1(𝑥)  and 𝑢0(𝑥)  are orthogonal, 

we have 

(14) ∫ 𝑤(𝑥)𝑢1(𝑥)𝑢0(𝑥)
𝑏

𝑎
𝑑𝑥 = 0 = ∫ 𝑥𝑤(𝑥)𝑢0(𝑥)

𝑏

𝑎
𝑑𝑥 + 𝑎1,0  ∫ 𝑤(𝑥)𝑢20(𝑥)

𝑏

𝑎
𝑑𝑥                

Using (10) and (14). From the above, we have 

(15)     𝑎1,0 =
∫ 𝑤(𝑥)𝑥𝑢0(𝑥)
𝑏
𝑎

∫ 𝑤(𝑥)
𝑏
𝑎 𝑢20(𝑥)𝑑𝑥

                                                                                                         

Hence, substituting (15) into (12) gives 

(16)    𝑢1(𝑥) = 𝑥 + 
∫ 𝑤(𝑥)𝑥𝑢0(𝑥)
𝑏
𝑎

∫ 𝑤(𝑥)
𝑏
𝑎

𝑢20(𝑥)𝑑𝑥
     

Proceeding in this way, the method is generalized and is written as 

(17)  𝑢𝑗(𝑥) = 𝑥
𝑗 + 𝑎𝑗,0𝑢0(𝑥) + 𝑎𝑗,1𝑢1(𝑥) + 𝑎𝑗,2𝑢2(𝑥) + ⋯𝑎𝑗,𝑗−1𝑢𝑗−1(𝑥)     

where the constants 𝑎𝑗,0 are so chosen such that 𝑢𝑗(𝑥) is orthogonal to 

𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥)… . . 𝑢𝑗−1(𝑥). These conditions yield 

(18)        𝑎𝑗,𝑖=−
∫ 𝑥𝑗𝑤(𝑥)𝑢0(𝑥)
𝑏
𝑎

∫ 𝑤(𝑥)
𝑏
𝑎 𝑢20(𝑥)𝑑𝑥

                                                                                                         

For 𝑘 = 1, 𝑎 =  1, 𝑏 =  −1 and 𝑖 = 4 valid in [0, 1] 

(19)    𝑤(𝑥) = 1 − 𝑥4                                                                                                                      

(20)    𝑢0(𝑥) = 1                                                                                                                              

We have k = 1, j = 1 and𝑢0(𝑥) = 1, we write equation (12) as 

(21)    𝑢1(𝑥) = 𝑥 − 𝑎1,0𝑢0(𝑥)                                                                                                         

Simplifying the above equation, we have 

(22)    𝑢1(𝑥) = 𝑥, 𝑢2(𝑥) = 𝑥
2 −

5

21
                                                                                                  

The shifted equivalent of the (22) that is valid in [0, 1] are given as: 

(23)   𝑢0
∗(𝑥) = 1, 𝑢1

∗(𝑥) = 2𝑥 − 1 , 𝑢2
∗(𝑥) = 4𝑡2 − 4𝑥 +

16

21
               

In this work the method assumed an approximate solution with the orthogonal 

polynomial as basis function as 
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(24)   𝑢(𝑥) ≅ 𝑢𝑛(𝑥) = ∑ 𝑎𝑖𝑢𝑖
∗(𝑥)𝑛

𝑖=0                                                                                            

Where 𝑢𝑖
∗(𝑥) denotes the orthogonal polynomial of degree 𝑁 where𝑎𝑖, i = 0,1, 2, … 

are constants. 

 

4. DEMONSTRATION OF THE PROPOSED METHOD 

In this section, we demonstrate the proposed method mentioned above 

4.1 Perturbed Least Squares Method (PLSM) 

The perturbed least squares method is based on the constructed orthogonal polynomials as basis 

function and used to find the numerical solution of fractional integro-differential equation given 

in (1). The basis idea of the perturbed least squares method as conceived by [17] by substituting 

(24) into a slightly perturbed (1) to obtain 

(25)  𝐷𝛼[∑ 𝑎𝑖𝑢𝑖
∗(𝑥)𝑛

𝑖=0 ] = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡) ∑ 𝑎𝑖𝑢𝑖
∗(𝑡)𝑛

𝑖=0 𝑑𝑡 + 𝐻𝑛(𝑥)
𝑥

0
                                     

Where,  

(26)          𝐻𝑛(𝑥)=∑ 𝜏𝑖𝑇𝑛−𝑖+1
∗ (𝑥)

⌈𝛼⌉
𝑖=1            𝑥 ∈ [𝑎, 𝑏]                                                        

And ⌈𝛼⌉  is the smallest integer which is bigger than the real number, which is the order of the 

fractional integro-differential equation. N is the degree of the approximation, 𝜏𝑖(𝑖1(2)𝑛) is free 

tau parameters to be determined, 𝑇𝑛−𝑖+1
∗ (𝑥) are Chebyshev polynomials defined in (5). Operating 

𝐽∝ on both sides of (25) as follows: 

(27)  ∑ 𝑎𝑖𝑢𝑖
∗(𝑥)𝑛

𝑖=0 = ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 + 𝐽∝𝑓(𝑥) +

                           𝐽∝[∫ 𝑘(𝑥, 𝑡) ∑ 𝑎𝑖𝑢𝑖
∗(𝑡)𝑛

𝑖=0 𝑑𝑡]
𝑥

0
+𝐽∝∑ 𝜏𝑖𝑇𝑛−𝑖+1

∗ (𝑥)
⌈𝛼⌉
𝑖=1               

Hence, the residual equation is obtained as 

(28)       𝑅(𝑎0,𝑎1, ……… . , 𝑎𝑛, 𝜏1, 𝜏2, … 𝜏𝛼) =    ∑ 𝑎𝑖𝑢𝑖
∗(𝑥)𝑛

𝑖=0 − {∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 + 𝐽∝𝑓(𝑥) +

            𝐽∝[∫ 𝑘(𝑥, 𝑡) ∑ 𝑎𝑖𝑢𝑖
∗(𝑡)𝑛

𝑖=0 𝑑𝑡]}
𝑥

0
+ 𝐽∝∑ 𝜏𝑖𝑇𝑛−𝑖+1

∗ (𝑥)
⌈𝛼⌉
𝑖=1               

Let 
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(29) 𝑆(𝑎0,𝑎1, ……… . , 𝑎𝑛) = ∫ [𝑅(𝑎0,𝑎1, ……… . , 𝑎𝑛, 𝜏1, 𝜏2, … 𝜏𝛼)]
2
𝑤(𝑥)𝑑𝑥

1

0
         

Where 𝑤(𝑥) is the positive weight function defined in the interval, [a, b]. In this work, 

we take  𝑤(𝑥) = 1 for simplicity. Thus, 

(30) 𝑆(𝑎0,𝑎1, ……… . , 𝑎𝑛) = ∫  {∑ 𝑎𝑖𝑢𝑖
∗(𝑥)𝑛

𝑖=0 − {∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 + 𝐽∝𝑓(𝑥) +

1

0

              [∫ 𝑘(𝑥, 𝑡) ∑ 𝑎𝑖𝑢𝑖
∗(𝑡)𝑛

𝑖=0 𝑑𝑡]}
𝑥

0
+ 𝐽∝∑ 𝜏𝑖𝑇𝑛−𝑖+1

∗ (𝑥)
⌈𝛼⌉
𝑖=1 }

2

𝑑𝑥               

In order to minimize equation (30), we obtained the values of  𝑎𝑖 (𝑖 ≥ 0) by finding 

the minimum value of  𝑆  as: 

(31)     
𝜕𝑆

𝜕𝑎𝑖
= 0, 𝑖 = 0,1,2… , 𝑛      

(32)     
𝜕𝑆

𝜕𝜏𝑖
= 0, 𝑖 = 0,1,2… , ⌈𝛼⌉                             

Applying  (31)  and (32) on  (30) to have 

(33) ∫ {∑ 𝑎𝑖𝑢𝑖
∗(𝑥)𝑛

𝑖=0 − {∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 + 𝐽∝𝑓(𝑥) + 𝐽∝[∫ 𝑘(𝑥, 𝑡) ∑ 𝑎𝑖𝑢𝑖

∗(𝑡)𝑛
𝑖=0 𝑑𝑡]}

𝑥

0
+

1

0

            𝐽∝∑ 𝜏𝑖𝑇𝑛−𝑖+1
∗ (𝑥)

⌈𝛼⌉
𝑖=1 } 𝑑𝑥 × ∫ {𝑢𝑖

∗(𝑥) − 𝐽∝(∫ 𝑘(𝑥, 𝑡)𝑢𝑖
∗(𝑡)𝑑𝑡)

𝑥

0
+ 𝑇𝑛−𝑖+1

∗ (𝑥)}𝑑𝑥
1

0
               

Thus,  (33) are then simplified for 𝑖 = 0,1, … 𝑛 to obtain (𝑛 + 1 + ⌈𝛼⌉) algebraic 

system of equations in (𝑛 + 1 + ⌈𝛼⌉) unknown 𝑎′𝑖 s which are put in matrix form as follow: 

𝐴 =

(

 
 
 
 
 
∫ 𝑅(𝑥, 𝑎0)ℎ0𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ0𝑑𝑥
1

0

⋯∫ 𝑅(𝑥, 𝑎𝑛)ℎ0𝑑𝑥 
1

0

∫ 𝑅(𝑥, 𝜏1)ℎ0𝑑𝑥
1

0

…∫ 𝑅(𝑥, 𝜏⌈𝛼⌉)ℎ0𝑑𝑥
1

0

∫ 𝑅(𝑥, 𝑎0)ℎ1𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ1𝑑𝑥
1

0

⋯       ∫ 𝑅(𝑥, 𝑎𝑛)ℎ1𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝜏1)ℎ1𝑑𝑥
1

0

…∫ 𝑅(𝑥, 𝜏⌈𝛼⌉)ℎ1𝑑𝑥
1

0

⋮             ⋮                                    ⋱                                  ⋮

∫ 𝑅(𝑥, 𝑎0)ℎ𝑛𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ𝑛𝑑𝑥
1

0

…∫ 𝑅(𝑥, 𝑎𝑛)ℎ𝑛𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝜏1)ℎ𝑛𝑑𝑥
1

0

…∫ 𝑅(𝑥, 𝜏⌈𝛼⌉)ℎ𝑛𝑑𝑥
1

0 )

 
 
 
 
 

, 

(34)                                                                                                                                            

(35)   𝐵 =

(

 
 
 
∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)

𝑥𝑘

𝑘!

𝑚−1
𝑘=0 ] ℎ0𝑑𝑥

1

0

∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 ] ℎ1𝑑𝑥

1

0

⋮

∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑚−1
𝑘=0 ] ℎ𝑛𝑑𝑥

1

0 )
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where ℎ𝑖 = 𝑢𝑖
∗(𝑥) − 𝐽∝[∫ 𝑘(𝑥, 𝑡)𝑢𝑖

∗(𝑡)𝑑𝑡 + 𝑇𝑛−𝑖+1
∗ (𝑥)], 𝑖 = 0,1, … , 𝑛

𝑥

0
 

𝑅(𝑥, 𝑎𝑖) =∑𝑎𝑖𝑢𝑖
∗(𝑥)

𝑛

𝑖=0

− 𝐽∝[∫ 𝑘(𝑥, 𝑡)∑𝑎𝑖𝑢𝑖
∗(𝑡)

𝑛

𝑖=0

𝑑𝑡 +∑𝜏𝑖𝑇𝑛−𝑖+1
∗ (𝑥)

⌈𝛼⌉

𝑖=1

]
𝑥

0

, 𝑖 = 0,1, … , 𝑛 

The (n + 1⌈𝛼⌉) linear equation are then solved using Gaussian elimination method or any 

suitable computer package like maple 18 to obtain the unknown constants 𝑎𝑖(𝑖 = 0(1)(𝑛 + ⌈𝛼⌉)  

and 𝜏⌈𝛼⌉which are then substituted back into the assumed approximate solution to give the 

required approximation solution 

4.2 Numerical Examples 

In this section, we show some examples the method discussed above on the general integration -

 differential equations. The problems are solved using the constructed orthogonal polynomials as 

basic function. The examples are solved to illustrate the computational cost accuracy and 

efficiency of the proposed methods using Maple 18. 

Example 1: Consider the following fractional Integro-differential [16]: 

(36)  𝐷
3

4𝑢(𝑥) = −
𝑥2𝑒𝑥

5
𝑢(𝑥) +

6𝑥2.25

𝛤(3.25)
+ 𝑒𝑥 ∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
     

Subject to 𝑢(0) = 0. The exact solution is 

(37)      𝑢(𝑥) = 𝑥3             

Applying the above method on (36) , we got the exact solution as: 

(38)     𝑢(𝑥) = 𝑥3          

Example 2: Consider the following fractional Integro-differential [7]: 

(39)  𝐷
1

2𝑢(𝑥) = 𝑢(𝑥) +
8𝑥2.25

3𝛤(0.5)
− 𝑥2 −

1

2
𝑥3 + ∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
     

Subject to 𝑢(0) = 0. The exact solution is 

(40)      𝑈(𝑥) = 𝑥2       

Applying the above method on (39) to have the required approximate solution as: 

(41)    𝑢(𝑥) = 2.651 × 10−12 + 𝑥2  

Example 3: Consider the following fractional Integro-differential [16]: 
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(42) 𝐷
1

2𝑢(𝑥) = (cos(𝑥) − sin(𝑥)) 𝑢(𝑥) + 𝑓(𝑥) + ∫ 𝑥 sin(𝑡) 𝑢(𝑡)𝑑𝑡
𝑥

0
                                                                                                 

(43) 𝑓(𝑥) =
2𝑥1.5

𝛤(2.5)
+

1

𝛤(1.5)
𝑥0.5 + 𝑥(cos(𝑥) − 𝑥 sin(𝑥) + 𝑥2 cos(𝑥))        

Subject to 𝑢(0) = 0. The exact solution is 

(44)   𝑈(𝑥) = 𝑥2 + 𝑥        

Applying the above method on (42) to have the required approximate solution as: 

(45)  𝑢(𝑥) = −4 × 10−10 + 𝑥 + 𝑥2                                                      

 

5. RESULTS 

5.1 Tables of Results 

    Table 1: Numerical results of Example 1. 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

x Exact Solution Approximate Solution Absolute Error 

0.0 0.000 0.00000000000000 0.00E+00 

0.1 0.001 0.00100000000000 0.00E+00 

0.2 0.008 0.00800000000000 0.00E+00 

0.3 0.273 0.02700000000000 0.00E+00 

0.4 0.064 0.06400000000000 0.00E+00 

0.5 0.125 0.12500000000000 0.00E+00 

0.6 0.216 0.21600000000000 0.00E+00 

0.7 0.343 0.34300000000000 0.00E+00 

0.8 0.512 0.51200000000000 0.00E+00 

0.9 0.729 0.72900000000000 0.00E+00 

1.0 1.000 1.00000000000000 0.00E+00 
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Table 2: Numerical results of Example 2. 

 

 

 

 

 

  

  

 

 

 

 

Table 3: Numerical results of Example 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

x Exact Solution Approximate Solution Absolute Error 

0.0 0.00 0.00000000000265 2.651E-12 

0.1 0.01 0.01000000000000 0.00E+00 

0.2 0.04 0.04000000000000 0.00E+00 

0.3 0.09 0.09000000000000 0.00E+00 

0.4 0.16 0.16000000000000 0.00E+00 

0.5 0.25 0.25000000000000 0.00E+00 

0.6 0.36 0.36000000000000 0.00E+00 

0.7 0.49 0.49000000000000 0.00E+00 

0.8 0.64 0.64000000000000 0.00E+00 

0.9 0.81 0.81000000000000 0.00E+00 

1.0 1.00 1.00000000000000 0.00E+00 

x Exact Solution Approximate Solution Absolute Error 

0.0 0.000 0.00000000000040 4.000E-12 

0.1 0.110 0.00000000000000 0.00E+00 

0.2 0.240 0.00000000000000 0.00E+00 

0.3 0.390- 0.00000000000000 0.00E+00 

0.4 0.560 0.00000000000000 0.00E+00 

0.5 0.750 0.00000000000000 0.00E+00 

0.6 0.960 0.00000000000000 0.00E+00 

0.7 1.190 0.00000000000000 0.00E+00 

0.8 1.440 0.00000000000000 0.00E+00 

0.9 1.710 0.00000000000000 0.00E+00 

1.0 2.000 0.00000000000000 0.00E+00 
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5.2 Graphical Representation of the Method. 

 

 

FIGURE 1: The graph of approximation solution and exact of example 1 

 

 

FIGURE 2: The graph of approximation solution and exact of example 2 
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FIGURE 3: The graph of approximation solution and exact of example 3 

 

 

FIGURE 4: The error graph of example 1 
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FIGURE 5: The error graph of example 2 

 

 

 

FIGURE 6: The error graph of example 3 
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6. DISCUSSION OF RESULTS 

All the three numerical examples presented in this study were solved using maple 18 software. 

The Tables of error for the examples shows that the method with the constructed orthogonal 

polynomials is accurate and converges at the lower numbers of the approximate. Also, for the 

graphs of the three examples when compared the approximate solution with the exact equations, 

we have exact equation graphs. 

 

7. CONCLUSION 

The study showed that the method with the constructed orthogonal polynomials is successfully 

used for solving FIDEs in a wide range with three examples. The method gives more realistic 

series solutions that converge very rapidly in fractional equations. The results obtained showed 

that the method is powerful when compared with the exact solutions and also show shown that 

there is a similarity between the exact and the approximate solution. The results showed that 

PLSM is a powerful and efficient technique to find a very good solution for this type of equation 

as well as analytical solutions to numerous physical problems in science and engineering. Also, 

the results were presented in graphical forms to further demonstrate of the method. 
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