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Abstract. We give the concept of an (m,n)-interior ideal of a semiring, and we characterize an intra-regular

semiring by (m,n)-interior ideals. In addition, we show that every (m,n)-interior ideal and both m-left ideal and

n-right ideal coincide in an intra-regular semiring.
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1. INTRODUCTION

The concept of quasi-ideals was introduced for semigroups, cf. [13]. Iseki [5] described

some characterizations of quasi-ideals for semirings without a zero element. Later, Donges

[3] considered quasi-ideals of semirings with an absorbing zero element and studied some of

their properties. Then, Chinram [2] defined a generalization of quasi-ideals of semirings named

(m,n)-quasi-ideals and investigated its properties and using their (m,n)-quasi-ideals.
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The concept of regular semirings was introduced by Zeleznekow [15]. Afterward, Shabir,

Ali, and Batool [12] presented some properties of quasi-ideals and used them to characterize

regular semirings. A generalization of bi-ideals of semirings named m-bi-ideals was introduced

by Munir and Shafiq [8]. Moreover, they presented the form of the m-bi-ideal generated by a

nonempty subset of semirings.

The purpose of this study is to define (m,n)-interior ideals in semirings. Then, we give some

characterizations of intra-regular semirings by m-left ideals, n-right ideals, max{m,n}-bi-ideals,

(m,n)-quasi-ideals and (m,n)-interior ideals. Moreover, we show that every (m,n)-interior ideal

and both m-left ideal and n-right ideal coincide in an intra-regular semiring.

2. PRELIMINARIES

A semiring (S,+, ·) is a triple consisting of a nonempty set S and two binary operations +

and · on S such that (S,+) and (S, ·) are semigroups which are connected by the distributive

law. From now on, we shall simply write ab instead of a ·b for all a,b ∈ S. A nonempty subset

T of a semiring S is called a subsemiring of S if T is a semiring with respect to the same binary

operations of S. A nonempty subset A of a semiring S is called a left ideal (resp., right ideal)

of S if A+A ⊆ A and SA ⊆ A (resp., AS ⊆ A). If A is both a left and a right ideal of S, then

A is called an ideal of S. A semiring S is called additively commutative if a+ b = b+ a, for

all a,b ∈ S. An element 0 of a semiring S is called absorbing zero if 0+ x = x = x+ 0 and

0x = 0 = x0, for all x ∈ S.

Throughout this paper, we assume that every semiring is an additively commutative semiring

with absorbing zero and also write S instead of a semiring (S,+, ·).

Let A and B be nonempty subsets of S and a ∈ S. Then we denote the following notations:

An = AA · · ·A (n times),where n ∈ N;

ΣA = {∑
i∈I

ai | ai ∈ A and I is a finite subset of N};

ΣAB = {∑
i∈I

aibi | ai ∈ A,bi ∈ B and I is a finite subset of N};
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Σa = Σ{a}, for every a ∈ S;

∑
i∈ /0

ai = 0, for every ai ∈ S.

Next, we present about some necessary basic properties of a semiring S which occurred in

[14] as follows.

Remark 2.1. Let A and B be nonempty subsets of a semiring S. Then the following statements

hold:

(i) A⊆ ΣA and Σ(ΣA) = ΣA;

(ii) if A⊆ B, then ΣA⊆ ΣB;

(iii) A(ΣB)⊆ (ΣA)(ΣB)⊆ ΣAB and (ΣA)B⊆ (ΣA)(ΣB)⊆ ΣAB;

(iv) ΣA(ΣB)⊆ ΣAB and Σ(ΣA)B⊆ ΣAB;

(v) Σ(A+B)⊆ ΣA+ΣB.

Lemma 2.2. Let A be a subset of a semiring S. If A ⊆ ΣA2 + ΣSA2 + ΣA2S + ΣSA2S, then

A⊆ ΣSA2S.

Proof. Assume that A⊆ ΣA2 +ΣA2S+ΣSA2 +ΣSA2S. Then

ΣA2 ⊆ ΣA(ΣA2 +ΣA2S+ΣSA2 +ΣSA2S)

⊆ ΣAA2 +ΣAA2S+ΣASA2 +ΣASA2S

⊆ ΣSA2 +ΣSA2S+ΣSA2 +ΣSA2S

= ΣSA2 +ΣSA2S,(1)

ΣA2 ⊆ Σ(ΣA2 +ΣA2S+ΣSA2 +ΣSA2S)A

⊆ ΣA2A+ΣA2SA+ΣSA2A+ΣSA2SA

⊆ ΣA2S+ΣA2S+ΣSA2S+ΣSA2S

= ΣA2S+ΣSA2S.(2)
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By (2), we have

ΣSA2 ⊆ ΣS(ΣA2S+ΣSA2S)

⊆ ΣSA2S+ΣSSA2S

⊆ ΣSA2S.(3)

By (1), we have

ΣA2S⊆ (ΣSA2 +ΣSA2S)S

⊆ ΣSA2S+ΣSA2SS

⊆ ΣSA2S.(4)

By (1) and (3), we have

ΣA2 ⊆ ΣSA2 +ΣSA2S

⊆ ΣSA2S+ΣSA2S

= ΣSA2S.(5)

By (3), (4), (5) and assumption, we have

A⊆ ΣA2 +ΣA2S+ΣSA2 +ΣSA2S

⊆ ΣSA2S+ΣSA2S+ΣSA2S+ΣSA2S

= ΣSA2S.

Therefore, A⊆ ΣSA2S. �

A nonempty subset A of a semiring S is called a left ideal (resp., right ideal) of S if A+A⊆ A

and SA⊆ A (resp., AS⊆ A). If A is both a left and a right ideal of S, then A is called an ideal of

S.

A nonempty subset Q of a semiring S is called a quasi-ideal [13] of S if Q+Q ⊆ Q and

(ΣSQ)∩ (ΣQS) ⊆ Q. A subsemiring B of a semiring S is called a bi-ideal [6] of S if BSB ⊆ B.
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We note that every left ideal and right ideal of a semiring S is a quasi-ideal, while every quasi-

ideal is a bi-ideal of a semiring S. A subsemiring I of a semiring S is called an interior ideal [7]

of S if SIS⊆ I.

Let m,n ∈ N. The following definition is a special case of Definition 3.2 in [10]. A sub-

semiring A of a semiring S is called an m-left ideal (resp., n-right ideal) [10] of S if SmA ⊆ A

(resp., ASn ⊆ A). A subsemiring Q of a semiring S is called an (m,n)-quasi-ideal [2] of S if

(ΣSmQ)∩ (ΣQSn) ⊆ Q. A subsemiring B of a semiring S is said to be an m-bi-ideal [8] of S if

BSmB⊆ B.

Lemma 2.3. Every m-left ideal or n-right ideal of a semiring S is an (m,n)-quasi-ideal of S.

Proof. Assume that Q is an m-left ideal of a semiring S. It is clear that Q+Q ⊆ Q. Next, we

consider (ΣSmQ)∩ (ΣQSn)⊆ ΣSmQ⊆ ΣQ⊆ Q. Hence, Q is an (m,n)-quasi-ideal of S. For the

case Q is an n-right ideal, we can prove similar. �

The converse of Lemma 2.3 is not true as show by the following example.

Example 2.4. Let S =


a b

c d

 | a,b,c,d ∈ N∪{0}

. Then S together with the usual addi-

tion and multiplication of matrices is a semiring. Let

Q =


0 0

0 x

 | x ∈ N∪{0}

 .

It is clear that Q is a subsemiring of S. We consider

ΣS3Q =


0 x1

0 x2

 | x1,x2 ∈ N∪{0}

* Q,

ΣQS2 =


 0 0

y1 y2

 | y1,y2 ∈ N∪{0}

* Q.

It follows that

(ΣS3Q)∩ (ΣQS2) =


0 0

0 x

 | x ∈ N∪{0}

= Q.

Therefore, Q is a (3,2)-quasi-ideal of S, but Q is not a 3-left ideal and 2-right ideal of S.
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Lemma 2.5. Every (m,n)-quasi-ideal of a semiring S is a max{m,n}-bi-ideal of S.

Proof. Assume that B is an (m,n)-quasi-ideal of a semiring S. Then, B is a subsemiring of S.

We consider

BSmax{m,n}B⊆ BSmB⊆ ΣBSmB⊆ ΣSm+1B⊆ ΣSmB,

BSmax{m,n}B⊆ BSnB⊆ ΣBSnB⊆ ΣBSn+1 ⊆ ΣBSn.

This implies that BSmax{m,n}B ⊆ (ΣSmB)∩ (ΣBSn) ⊆ B. Hence, B is a max{m,n}-bi-ideal of

S. �

The converse of Lemma 2.5 is not true as show by the following example.

Example 2.6. Let S =




0 u v w

0 0 x y

0 0 0 z

0 0 0 0

 | u,v,w,x,y,z ∈ N∪{0}


. Then (S,+, ·) is a semiring

under usual the matrix addition and the matrix multiplication. Let

B =




0 a 0 0

0 0 0 0

0 0 0 b

0 0 0 0

 | a,b ∈ N∪{0}


.

It is not difficult to check that B is a subsemiring of S. Then B is a 2-bi-hyperideal of S, that is,

BS2B⊆ B, see in [8], but B is not a (2,1)-quasi-ideal, because

(ΣS2B)∩ (ΣBS) =




0 0 0 c

0 0 0 0

0 0 0 0

0 0 0 0

 | c ∈ N∪{0}


* B.

For any nonempty subset A of a semiring S, we denote Lm(A),Rn(A),Q(m,n)(A) and Bm(A) as

the m-left ideal, the n-right ideal, the (m,n)-quasi-ideal and the m-bi-ideal of S generated by A,

respectively. If A= {a}, we define Lm(a)= Lm({a}),Rn(a)=Rn({a}),Q(m,n)(a)=Q(m,n)({a})

and Bm(a) = Bm({a}). Then we have the following lemma.
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Lemma 2.7. [14] Let A be a nonempty subset of a semiring S. Then the following statements

hold:

(i) Lm(A) = ΣA+ΣA2 + · · ·+ΣAm +ΣSmA;

(ii) Rn(A) = ΣA+ΣA2 + · · ·+ΣAn +ΣASn;

(iii) Q(m,n)(A) = ΣA+ΣA2 + · · ·+ΣAmax{m,n}+((ΣSmA)∩ (ΣASn));

(iv) Bm(A) = ΣA+ΣA2 + · · ·+ΣAm+1 +ΣASmA.

Corollary 2.8. Let S be a semiring and a ∈ S. Then the following statements hold:

(i) Lm(a) = Σa+Σa2 + · · ·+Σam +ΣSma;

(ii) Rn(a) = Σa+Σa2 + · · ·+Σan +ΣaSn;

(iii) Q(m,n)(a) = Σa+Σa2 + · · ·+Σamax{m,n}+((ΣSma)∩ (ΣaSn));

(iv) Bm(a) = Σa+Σa2 + · · ·+Σam+1 +ΣaSma.

3. MAIN RESULTS

In this section, we define the concept of (m,n)-interior ideals in semirings and give charac-

terizations of intra-regular semirings by their (m,n)-interior ideals.

Definition 3.1. [1] Let S be a semiring. An element a∈ S is said to be intra-regular if a∈ΣSa2S.

If every element a ∈ S is intra-regular, then S is called an intra-regular semiring.

We note that S is an intra-regular semiring if and only if A⊆ ΣSA2S for any /0 6= A⊆ S.

Definition 3.2. A subsemiring I of a semiring S is said to be an (m,n)-interior ideal of S if

SmISn ⊆ I, where m and n are positive integers.

It is clear that every interior ideal of a semiring S is an (m,n)-interior ideal. In addition, an

(m,n)-interior ideal of a semiring S is a (k, l)-interior ideal of S for all k, l,m,n ∈ N such that

k ≥ m and l ≥ n.

Lemma 3.3. Every both m-left ideal and n-right ideal of a semiring S is an (m,n)-interior ideal.

Proof. Assume that I is both an m-left ideal and an n-right ideal of a semiring S. Then, I is a

subsemiring of S. Hence, SmISn ⊆ SmI ⊆ I. �
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The converse of Lemma 3.3 is not true as show by the following example.

Example 3.4. Let S = {a,b,c,d,e}. Define two binary operations + and · on S as follows:

+ a b c d e

a a b c d e

b b b b b b

c c b b b b

d d b b b b

e e b b b b

and

· a b c d e

a a a a a a

b a b b b b

c a b b b b

d a b b b c

e a b b c c

Then, S is a semiring [11]. Let I = {a,b,d}. Clearly, I is a subsemiring of S. Next, we

consider

S2IS = {a,b,c}{a,b,d}{a,b,c,d,e}= {a,b}{a,b,c,d,e}= {a,b} ⊆ I.

Thus, I is a (2,1)-interior ideal of S, but it is not a 1-right ideal of S, since IS = {a,b,d}S =

{a,b,c}* I.

Let A be a nonempty subset of a semiring S and m,n ∈ N. we denote the notation I(m,n)(A)

to be the (m,n)-interior ideal of S generated by A. Now, we describe the forms of the (m,n)-

interior ideal of a semiring S generated by a nonempty subset A.

Lemma 3.5. Let A be a nonempty of a semiring S and m,n ∈ N. Then

I(m,n)(A) = ΣA+ΣA2 + · · ·+ΣAm+n +ΣSmASn.

Proof. Let I = ΣA+ΣA2+ · · ·+ΣAm+n+ΣSmASn. Since 0 ∈ S and A⊆ ΣA, we have A⊆ ΣA =

ΣA+ 0+ 0+ · · ·+ 0 ⊆ I. It is clear that I is closed under addition, because S is additively
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commutative. By Remark 2.1, we obtain that

I2 = (ΣA+ΣA2 + · · ·+ΣAm+n +ΣSmASn)2

⊆ ΣAA+ΣAA2 + · · ·+ΣAAm+n +ΣASmASn

+ · · ·+ΣAm+nA+ΣAm+nA2 + · · ·+ΣAm+nAm+n +ΣAm+nSmASn

+ΣSmASnA+ΣSmASnA2 + · · ·+ΣSmASnAm+n +ΣSmASnSmASn

⊆ ΣA2 +ΣA3 + · · ·+ΣAm+n +ΣSmASn ⊆ I.

Thus, I is a subsemiring of S. Again, by Remark 2.1, we obtain that

SmISn = Sm(ΣA+ΣA2 +ΣA3 + · · ·+ΣAm+n +ΣSmASn)Sn

⊆ ΣSmASn +ΣSmA2Sn + · · ·+ΣSmAm+nSn +ΣSmSmASnSn

⊆ ΣSmASn ⊆ I.

Hence, I is an (m,n)-interior ideal of S. Next, let K be an (m,n)-interior ideal of S containing

A. It follows that ΣA ⊆ ΣK ⊆ K,ΣA2 ⊆ ΣK2 ⊆ ΣK ⊆ K, . . . ,ΣAm+n ⊆ ΣKm+n ⊆ ΣK ⊆ K and

ΣSmASn ⊆ ΣSmKSn ⊆ ΣK ⊆ K. Also, I = ΣA+ΣA2+ · · ·+ΣAm+n+ΣSmASn ⊆ K. Therefore, I

is the (m,n)-interior ideal of S generated by A, that is, I(m,n)(A) = I = ΣA+ΣA2+ · · ·+ΣAm+n+

ΣSmASn. �

In a particular of Lemma 3.5, if A = {a} then we have the following corollary.

Corollary 3.6. Let S be a semiring and a ∈ S. Then I(m,n)(a) = Σa+ Σa2 + · · ·+ Σam+n +

ΣSmaSn.

Theorem 3.7. Let S be an intra-regular semiring. Then (m,n)-interior ideals and both m-left

ideals and n-right ideals coincide in S.

Proof. By Lemma 3.3, it is sufficient to show that every (m,n)-interior ideal is both an m-left

ideal and an n-right ideal of S. Assume that I is an (m,n)-interior ideal of S. Then, I is a

subsemiring of S. Since S is an intra-regular and by Remark 2.1, we have

SmI ⊆ Sm(ΣSI2S)⊆ ΣSm+2IS⊆ ·· · ⊆ ΣSm+2nISn ⊆ ΣSmISn ⊆ I.
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Hence, I is an m-left ideal of S. Similarly, we can show that I is also an n-right ideal of S. �

Theorem 3.8. A semiring S is intra-regular if and only if L∩R⊆ ΣLR, for every m-left ideal L

and n-right ideal R of S.

Proof. Assume that S is an intra-regular semiring. Let L be an m-left ideal and R be an n-right

ideal of S. If m≥ n. Let a ∈ L∩R. By assumption and Remark 2.1, we obtain that

a ∈ ΣSa2S⊆ ΣS(ΣSa2S)aS⊆ ΣS2a2S3 ⊆ ·· · ⊆ ΣSma2S2m−1

Thus, a ∈ ΣSma2S2m−1 ⊆ ΣSma2Sn ⊆ ΣSmLRSn ⊆ ΣLR. Hence, L∩R ⊆ ΣLR. For the case

n≥ m, we can prove similar to the previous case.

Conversely, let A be a nonempty subset of a semiring S. By assumption, A⊆ Lm(A)∩Rn(A)⊆

ΣLm(A)Rn(A). By Lemma 2.7 and Remark 2.1, we obtain that

ΣLm(A)Rn(A) = Σ((ΣA+ΣA2 + · · ·+ΣAm +ΣSmA)

(ΣA+ΣA2 + · · ·+ΣAn +ΣASn))

⊆ ΣAA+ΣAA2 + · · ·+ΣAAn +ΣAASn

+ · · ·+ΣAmA+ΣAmA2 + · · ·+ΣAmAn +ΣAmASn

+ · · ·+ΣSmAA+ΣSmAA2 + · · ·+ΣSmAAn +ΣSmAASn

⊆ ΣA2 +ΣSA2 +ΣA2S+ΣSA2S.

Thus, A ⊆ ΣA2 +ΣSA2 +ΣA2S+ΣSA2S. By Lemma 2.2, A ⊆ ΣSA2S. Therefore, S is an intra-

regular semiring. �

Now, we give characterizations of intra-regular semirings by their (m,n)-interior ideals.

Theorem 3.9. Let S be a semiring and k = max{m,n}, where m,n ∈ N. Then the following

statements are equivalent:

(i) S is intra-regular;

(ii) I(m,n)(a)∩Bk(a)∩Lm(a)⊆ ΣLm(a)Bk(a)I(m,n)(a), for all a ∈ S;

(iii) I(m,n)(a)∩Q(m,n)(a)∩Lm(a)⊆ ΣLm(a)Q(m,n)(a)I(m,n)(a), for all a ∈ S.



CHARACTERIZATIONS OF INTRA-REGULAR SEMIRINGS BY (m,n)-INTERIOR IDEALS 11

Proof. (i)⇒ (ii) Assume that S is intra-regular. Let a∈ S. For any x∈ I(m,n)(a)∩Bk(a)∩Lm(a),

we have

x ∈ ΣSx2S⊆ ΣS(ΣSx2S)(ΣSx2S)S⊆ ΣS2x2S2x2S2

⊆ ΣS2(ΣSx2S)(ΣSx2S)S2(ΣSx2S)(ΣSx2S)S2 ⊆ ΣS3x2S8x2S7

⊆ ·· · ⊆ ΣSmx2Smx2Sn ⊆ ΣSmx2SmxSn.

Thus, x∈ΣSmx2SmxSn⊆ΣSmLm(a)Bk(a)SmI(m,n)(a)Sn⊆ΣLm(a)Bk(a)I(m,n)(a). Hence, I(m,n)(a)∩

Bk(a)∩Lm(a)⊆ ΣLm(a)Bk(a)I(m,n)(a) for all a ∈ S.

(ii)⇒ (iii) Since every (m,n)-quasi-ideal is a k-bi-ideal of S, statements hold.

(iii)⇒ (i) Let a∈ S. By assumption, a∈ I(m,n)(a)∩Q(m,n)(a)∩Lm(a)⊆ΣLm(a)Q(m,n)(a)I(m,n)(a).

By Corollary 2.8, Corollary 3.6 and Remark 2.1, we have

ΣLm(a)Q(m,n)(a)I(m,n)(a)

= Σ(Σa+Σa2 + · · ·+Σam +ΣSma)

(Σa+Σa2 + · · ·+Σamax{m,n}+((ΣSma)∩ (ΣaSn)))

(Σa+Σa2 + · · ·+Σam+n +ΣSmaSn)

⊆ Σ(Σa+Σa2 + · · ·+Σam +ΣSma)

(Σa+Σa2 + · · ·+Σamax{m,n}+ΣSma)

(Σa+Σa2 + · · ·+Σam+n +ΣSmaSn)

⊆ ΣSa2 +Σa2S+ΣSa2S

⊆ Σa2 +ΣSa2 +Σa2S+ΣSa2S.

It follows that a ∈ Σa2 +ΣSa2 +Σa2S+ΣSa2S. By Lemma 2.2, a ∈ ΣSa2S. Therefore, S is

intra-regular. �

Theorem 3.10. Let S be a semiring and k = max{m,n}, where m,n ∈ N. Then the following

statements are equivalent:

(i) S is intra-regular;

(ii) I(m,n)(a)∩Bk(a)∩Rn(a)⊆ ΣI(m,n)(a)Bk(a)Rn(a), for all a ∈ S;
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(iii) I(m,n)(a)∩Q(m,n)(a)∩Rn(a)⊆ ΣI(m,n)(a)Q(m,n)(a)Rn(a), for all a ∈ S.

Proof. The proof is similar to Theorem 3.9. �
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