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Abstract. The main idea of this paper is establishing a common fixed point theorem for four self-mappings of a

complete linear 2-normed space using the weak commutating condition and A-contraction type condition and give

some inclusion relations between these concepts.

Keywords: linear 2-normed space; weakly commuting mappings; fixed point.

2010 AMS Subject Classification: 47H10, 54H25.

1. INTRODUCTION

In 1963, S.Gahler ([5],[6]) introduced The concept of linear 2-normed spaces and 2- metric

spaces. They are very important in mathematics, A. White,Y J Cho,R W Freese, S C Gupta, A

H Siddique and others established and proved many theorems in linear 2-normed spaces and 2-

metric spaces ([7],[14],[15],[4],[2],[9],[11][12],[13]). They have many applications in Metric

Geometry, Functional Analysis and Topology as a new branch. Recently many researchers pre-

sented results in 2-normed spaces, analogous with that in classical normed spaces and Banach
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spaces. By a (K)-space, we mean a linear 2-normed space such that the 2-metric induced by

the 2-norm satisfies the (K) property ([3]).

Here we prove a common fixed point theorem for two pairs of weakly commuting mappings

using the idea of A-contraction and then extend the theorem for a family of self-mappings in

a linear 2-normed space. Before proving our main theorem we need to state some preliminary

ideas and definitions of weakly commuting mappings in a linear 2-normed space.

2. PRELIMINARY ASSERTIONS

In 1963, S. Gahler ([5],[8]) introduced the concept of linear 2-normed space. Since then a

number of mathematician have been investigating the different aspects of fixed point theory in

the setting of linear 2-normed space.

2.1. Linear 2-Normed Space.

Definition 2.1. [12] Let X be a linear space over R with dimension greater then or equal to 2.

If the function ‖., .‖ : X2→ R+∪{0} satisfies the following axioms then (X ,‖., .‖) is called a

linear 2- normed space:. Then

1. ‖x,y‖ ≥ 0 for all x,y ∈ X , ‖x,y‖= 0 if and only if x and y are linearly dependent,

2. ‖x,y‖= ‖y,x‖ for all x,y ∈ X ,

3. ‖αx,y‖= |α|‖x,y‖ for all x,y ∈ X and α ∈ R,

4. ‖x,y+ z‖ ≤ ‖x,y‖+‖y,z‖ for all x,y,z ∈ X .

If ‖, .,‖ is called a 2-norm and the pair (X ,‖, .,‖) is called a linear 2- normed space. So a

2-norm ‖., .‖ always satisfies[24] ‖x,y+αx‖= ‖x,y‖ for all x,y ∈ X and scalar α

If we fix {ui}d
i=1 to be a basis for X , we can give the following lemma.

Lemma 2.2. [12] Let (X ,‖., .‖) be a 2-normed space. Then a sequence {xn} converges to x in

X if and only if lim
n→∞

max‖xn− x,ui‖= 0.

Definition 2.3. [12] A 2-normed space (X ,‖., .‖) is a 2-Banach space if any Cauchy sequence

in X is convergent to an x in X .
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Definition 2.4. Let S and T be two mappings from a linear 2-normed space (X ,‖., .‖) into

itself. Then a pair of mappings (S,T ) is said to be weakly commuting on x, if ‖ST x−T Sx,u‖ ≤

‖T x−Sx,u‖ for all u ∈ X

Note that a commuting pair (S,T ) on a linear 2-normed space (X ,‖., .‖) is weakly commut-

ing, but the converse is not true (see [10]). On the otherhand Cho, Khan, Singh ([1]) have proved

some common fixed point theorems for weakly commuting self mappings in a linear 2-normed

space. Here we shall prove some common fixed point theorems in linear 2-normed space in a

more generalised conditions.

Let a nonempty set A consisting of all functions α : R3
+→ R+ satisfying

(i) α is continuous on the set R3
+ of all triplets of nonnegative reals(with respect to the Euclidean

metric on R3).

(ii) a≤ kb for some k ∈ [0,1) whenever a≤ α(a,b,b) or a≤ α(b,a,b) or a≤ α(b,b,a), for all

a,b.

Definition 2.5. A self map T on a metric space X is said to be A-contraction if it satisfies the

condition:

(2.1) ‖T x,Ty‖ ≤ α(‖x,y‖,‖x,T x‖,‖y,Ty‖).

for all x,y ∈ X and some αA.

3. MAIN RESULT

Theorem 3.1. Let I,J,S and T be four self mappings of a complete linear 2-normed space

(X ,‖., .‖) satisfying

(3.1) I(X)⊆ T (X) and J(X)⊆ S(X).

For α ∈ A and for all x,y,u ∈ X

(3.2) ‖Ix− Jy,u‖ ≤ α(‖Sx−Ty,u‖,‖Sx− Ix,u‖,‖Ty− Jy,u‖).
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If one of I,J,S and T is continuous and if I and J weakly commute with S and T respectively,

then I,J,S and T have a unique common fixed point z in X.

Proof. Let x0 be an arbitrary element of X . We define Ix2n+1 = y2n+2,T x2n = y2n and Jx2n =

y2n+1,Sx2n+1 = y2n+1;n = 1,2, ... Taking x = x2n+1 and y = x2n in (3.2) we have

‖Ix2n+1− Jx2n,u‖ ≤

α(‖Sx2n+1−T x2n,u‖,‖Sx2n+1− Ix2n+1,u‖,‖T x2n− Jx2n,u‖)

or

‖y2n+2− y2n+1,u‖ ≤ α(‖y2n+1− y2n,u‖,‖y2n+1− y2n+2,u‖,‖y2n− y2n+1,u‖).

So by axiom (1) of function α ,

(3.3) ‖y2n+1− y2n+2,u‖ ≤ k.‖y2n− y2n+1,u‖ where k ∈ [0,1)

Similarly by putting x = x2n−1 and y = x2n in (3.2) we get

‖Ix2n−1− Jx2n,u‖ ≤

α(‖Sx2n−1−T x2n,u‖,‖Sx2n−1− Ix2n−1,u‖,‖T x2n− Jx2n,u‖)

or

‖y2n− y2n+1,u‖ ≤ α(‖y2n−1− y2n,u‖,‖y2n−1− y2n,u‖,‖y2n− y2n+1,u‖).

So by axiom (2) of function α ,

(3.4) ‖y2n− y2n+1,u‖ ≤ k.‖y2n−1− y2n,u‖ where k ∈ [0,1)

So by (3.3) and (3.4) we get

‖y2n+1− y2n+2,u‖ ≤ k.‖y2n− y2n+1,u‖ ≤ k2.‖y2n−1− y2n,u‖.

Proceeding in this way

‖y2n+1− y2n+2,u‖ ≤ k2n+1.‖y0− y1,u‖

and

‖y2n− y2n+1,u‖ ≤ k2n.‖y0− y1,u‖
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So in general

(3.5) ‖yn− yn+1,u‖ ≤ kn.‖y0− y1,u‖

Then using property (4) of linear 2-normed space we get

‖yn− yn+2,u‖ ≤‖yn− yn+2,yn+1‖+‖yn− yn+1,u‖+‖yn+1− yn+2,u‖(3.6)

≤‖yn− yn+2,yn+1‖+
1

∑
r=0
‖yn+r− yn+r+1,u‖.(3.7)

Here we consider two possible cases to show that ‖yn,yn+2,yn+1‖= 0.

Case I

n = even = 2m (say), therefore

‖yn− yn+2,yn+1‖=‖y2m− y2m+2,y2m+1‖

= ‖y2m+2− y2m+1,y2m‖

≤ ‖Ix2m+1− Jx2m,y2m‖

≤ α(‖Sx2m+1−T x2m,y2m‖,‖Sx2m+1− Ix2m,y2m‖,‖T x2m− Jx2m,y2m‖)

= α(‖y2m+1− y2m,y2m‖,‖y2m+1− y2m,y2m‖,‖y2m− y2m+1,y2m‖)

= α(0,‖y2m+1− y2m,y2m‖,0).

So by axiom (1) of function α ,

‖yn− yn+2,yn+1‖= ‖y2m− y2m+2,y2m+1‖ ≤ k.0 wherek ∈ [0,1)

which implies ‖yn− yn+2,yn+1‖= 0.

Case II
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n = odd = 2m+1 (say),therefore

‖yn− yn+2,yn+1‖=‖y2m+1− y2m+3,y2m+2‖

=‖y2m+3− y2m+2,y2m+1‖

≤‖Jx2m+2− Ix2m+1,y2m+1‖

≤α(‖Sx2m+1−T x2m+2,y2m+1‖,‖Sx2m+1− Ix2m+1,y2m+1‖,

‖T x2m+2− Jx2m+2,y2m+1‖)

=α(‖y2m+1− y2m+2,y2m+1‖,‖y2m+1− y2m+2,y2m+1‖,

‖y2m+2− y2m+3,y2m+1‖)

=α(0,0,‖y2m+2− y2m+3,y2m+1‖).

So by axiom (1) of function α ,

‖yn− yn+2,yn+1‖= ‖y2m+1− y2m+3,y2m+2‖ ≤ k.0 wherek ∈ [0,1)

So in either cases ‖yn− yn+2,yn+1‖= 0. Therefore from (3.6) we have

‖yn− yn+2,u‖ ≤
1

∑
r=0
‖yn+r− yn+r+1,u‖.

Proceeding in the same fashion we have for any p > 0,

‖yn− yn+p,u‖ ≤
p−1

∑
r=0
‖yn+r− yn+r+1,u‖.

Then by (3.5) we get

‖yn− yn+p,u‖ ≤
kn

1− k
‖y0− y1,u‖→ 0 asn→ ∞, p > 0 andk ∈ [0,1).

Hence {yn} is a Cauchy sequence. Then by completeness of X ,{yn} converges to a point

z ∈ X i.e. yn→ z ∈ X as n→ ∞.

Since {yn} is a Cauchy sequence and taking limit as n→∞, we get Ix2n = T x2n+1→ z,Jx2n−1 =

Sx2n→ z and also Jx2n+1→ z. Next suppose that S is continuous. Then {SIx2n} converges to



620 DOAA RIZK, D. DHAMODHARAN, A. MOHAMED ALI

Sz. Then by property (4) of linear 2-normed space, we have

‖ISx2n−Sz,u‖ ≤ ‖ISx2n−Sz,SIx2n‖+‖ISx2n−SIx2n,u‖+‖SIx2n−Sz,u‖

≤‖ISx2n−Sz,SIx2n‖+‖Sx2n− Ix2n,u‖+‖SIx2n−Sz,u‖

since I and S weakly commute.

Letting n→ ∞, it follows that {ISx2n} converges to Sz. Again by using (3.2) we have

‖ISx2n− Jx2n+1,u‖ ≤ ‖ISx2n−Sz,SIx2n‖+‖ISx2n−SIx2n,u‖+‖SIx2n−Sz,u‖

≤α(‖S2x2n−T x2n+1,u‖+‖S2x2n− ISx2n,u‖+‖T x2n+1− Jx2n+1,u‖).

Since α is continuous, taking limit as n→ ∞ we get

‖Sz− z,u)≤ α(‖Sz− z,u‖,‖Sz−Sz,u‖,‖z− z,u‖)

implies

‖Sz− z,u‖ ≤ α(‖Sz− z,u‖,0,0)

So by axiom (1) of function α ,

(3.8) ‖Sz− z,u‖ ≤ k.0 = 0 which gives Sz = z.

Again using the inequality (3.2) we have

‖Iz− Jx2n+1,u‖ ≤ α(‖Sz−T x2n+1,u‖,‖Sz− Iz,u‖,‖T x2n+1− Jx2n+1,u‖).

Passing limit as n→ ∞ we get

‖Iz− z,u‖ ≤ α(‖Sz− z,u‖,‖z− Iz,u‖,‖z− z,u‖)

implies

‖Iz− z,u‖ ≤ α(0,‖z− Iz,u‖,0).

Then by axiom (1) of function α ,

(3.9) ‖Iz− z,u‖ ≤ k.0 = 0 which gives Iz = z.



WEAKLY COMMUTING MAPPING IN LINEAR 2-NORMED SPACES 621

Since I(X)⊆ T (X), there exists a point ∈ X such that = z = Iz, so by (3.2) we have

‖z− Jz,u‖= ‖z− Jz,u‖

≤α(‖Sz−T z,u‖,‖Sz− Iz,u‖,‖T z− Jz,u‖)

=α(‖z− z,u‖,‖z− z,u‖,‖z− Jz,u‖)

=α(0,0,‖z− Jz,u‖)

Then by axiom (1) of function α ,

‖z− Jz,u)‖ ≤ k.0 = 0 which implies Jz = z.

As J and T weakly commute

‖JT z−T Jz,u‖ ≤ ‖T z− Jz,u‖

which gives JT z = T Jz implies

(3.10) Jz = JT z = T Jz = T z

‖z−T z,u‖‖Iz− Jz,u‖

≤α(‖Sz−T z,u‖,‖Sz− Iz,u‖,‖T z− Jz,u‖)

=α(‖z−T z,u‖,0,0).

Then by axiom (1) of function α ,

(3.11) ‖z−T z,u‖ ≤ k.0 = 0 which implies T z = z.

So by (3.8),(3.9),(3.10) and (3.11) we conclude that z is a common fixed point of I,J,S and T .

For uniqueness, Let w be another common fixed point in X such that

Iz = Jz = Sz = T z = z and Iw = Jw = Sw = Tw = w.
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Then by (3.2) we have

‖w− z,u‖= ‖Iw− Jz,u‖

≤α(‖Sw−T z,u‖,‖Sw− Iw,u‖,‖T z− Jz,u‖)

=α(‖w− z,u‖,0,0)

Then by axiom (1) of function α ,

‖w− z,u‖ ≤ k.0 = 0 which impliesw = z.

So uniqueness of z is proved. The same result holds if any one of I,J and T is continuous. �

Corollary 3.2. Let S,T, I and J be four self mappings of a complete linear 2-normed space

(X ,‖., .‖) satisfying

(3.12) I(X)⊆ T (X) andJ(X)⊆ S(X)

(3.13) ‖Ix− Jy,u‖ ≤ c.max{‖Sx−Ty,u‖,‖Sx− Ix,u‖,‖Ty− Jy,u‖}.

for all x,y,u in X, where 0 ≤ c < 1. If one of S,T, I and J is continuous and if I and J weakly

commute with S and T respectively, then I,J,S and T have a unique common fixed point z in X.

This result is a Linear 2-normed space analogue of the theorem of [14].

For any f : (X ,‖., .‖)→ (X ,‖., .‖) we denote Ff = {x ∈ X : x = f (x)}.

Lemma 3.3. Let I,J,S and T be four self mappings of a complete Linear2-normed space

(X ,‖., .,‖). If the inequality (3.2) holds for α ∈ A and for all x,y,u ∈ X .

Then (FS
⋂

FT )
⋂

FI = (FS
⋂

FT )
⋂

FJ .

Proof. Let x ∈ (FS
⋂

FT )
⋂

FI . Then by(3.2)

‖x− Jx,u‖= ‖Ix− Jx,u‖

≤α(‖Sx−T x,u‖,‖Sx− Ix,u‖,‖T x− Jx,u‖)

=α(0,0,‖x− Jx,u‖)
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Then by axiom (1) of function α ,

‖x− Jx,u‖ ≤ k.0 = 0 impliesx = Jx

thus

(FS
⋂

FT )
⋂

FI ⊆ (FS
⋂

FT )
⋂

FJ.

Similarly we have

(FS
⋂

FT )
⋂

FJ ⊆ (FS
⋂

FT )
⋂

FI.

and so (FS
⋂

FT )
⋂

FI ⊆ (FS
⋂

FT )
⋂

FJ. �

Theorem 3.4. Let S,T and {In}n∈N be mappings from a complete Linear 2-normed space

(X ,‖., .‖) into itself satisfying

(3.14) I1(X)⊆ T (X) and
⋂

I2(X)⊆ S(X)

For α ∈ A and for all x,y,u ∈ X,

(3.15) ‖Inx− In+1y,u‖ ≤ α(‖Sx−Ty,u‖,‖Sx− Inx,u‖,‖Ty− In+1y,u‖).

holds for all n ∈ N. If one of S,T, I1 and I2 is continuous and if I1 and I2 weakly commute with

S and T respectively, then S,T and {In}n ∈ N have a unique common fixed point z in X.

Proof. By Theorem (3.1), S,T, I1 and I2 have a unique common fixed point z in X . Now z is a

unique common fixed point of S,T, I1 and also by Lemma (3.3), (FS
⋂

FT )
⋂

FI1 =(FS
⋂

FT )
⋂

FI2,z

is a common fixed point of S,T, I2. Also z is unique common fixed point of S,T, I2. If not, let w

be another common fixed point of S,T, I2. Then by (3.15)

‖z−w,u‖= ‖I1z− I2w,u‖

≤α(‖Sz−Tw,u‖,‖Sz− I1z,u‖,‖Tw− I2w,u‖)

= α(‖z−w,u‖,‖z− z,u‖,‖w−w,u‖)

=α(‖z−w,u‖,0,0)

Then by axiom (1) of function α ,

‖z−w,u‖ ≤ k.0 = 0 impliesz = w



624 DOAA RIZK, D. DHAMODHARAN, A. MOHAMED ALI

In the similar manner we can show that z is a unique common fixed point of S, T , I1 and I2.

Continuing in this way, we arrive at desired result �
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