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Abstract. This work aims to investigate the numerical analysis of the electrohydrodynamic (EHD) effect using a

Casson fluid model. The EHD flow for the laminar forced convection and heat transfer on a vertical wavy cone

with variable electric conductivity in the existence of internal heat generation/absorption and Ohmic dissipation

was simulated. The problem model was characterized by highly partial differential equations that were concluded

via the approximation of the boundary layer. The governing model was then turned into ordinary paired differen-

tial equations that applied convenient similarity transformations. Thus, the resulted equations were numerically

investigated using the Keller-box method. The impact of the different physical parameters on the velocity profiles

and temperature distributions, and also on the shear stress and heat transfer rate, were presented. It was found that

a decrease in the electric field parameter leads to heighten the velocity, local skin friction coefficient, and local rate

of heat transfer whereas the temperature reduces. Further, rising the Eckert number was deduced to decrease the

local rate of heat transfer whilst the velocity, temperature, and local skin friction coefficient were enhanced.
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1. INTRODUCTION

In many engineering and manufacturing applications, roughened surfaces are commonly

present. It is oftentimes developed to enhance heat transfer in heat transfer devices. The nat-

ural laminar convection flow over rough surfaces can be utilized for heat transfer in countless

thermal transfer devices, for instance, flat plate condensers in refrigerators, heat exchanger, flat

plate solar collectors, industrial heat radiators, geothermal reservoirs, and functional clothing

design, etc. It is therefore that the investigation of the flow over the rough surface has interested

many researchers in different physical situations [1-10].

It is well known that Electrohydrodynamics (EHD) is a cross-disciplinary field with important

applications in industrial processes addressing the interaction among fluids, electric charges,

and electrical fields [11, 12]. The effects of an electromagnetic fields on convective heat transfer

are of great interest since they induce currents in the fluid. the hydrodynamic and Maxwell’s

equations of electromagnetism are the equations that describe this category of flow which is of

considerable prominence in the industrial, technological, and geothermal applications. Further

research on this type of electromagnetic fluid flow numerically can be followed through the

references [13] to [20]. Many engineering applications are available for the magnetic field,

which affect the heat generation/absorption processes in the conduction of electrical fluid flows

[21-29].

Casson fluid is a type of visco-plastic fluids that reveals yield stress and whose constitutive

equation was described by Casson [30]. Insomuch as the shear stress is weaker than the yield

stress, Casson ’s liquid functions like a solid and behaves like a fluid when the shear stress

is larger than the yield stress. It has considerable usages in polymer treatment industries and

biomechanics. Casson fluid model examples jelly, juices, honey, tomato sauce, silicon suspen-

sion, human blood, polymeric liquids, and many others. Some relevant studies about this fluid

model can be seen in references [31] up to recently [36].

To the authors’ knowledge, the heat transfer problems of viscous flows alongside roughened

surfaces have been extensively discussed by many authors. However, solutions are not yet

presented for the Casson fluid flow in the existence of an electric field together with variable

electric conductivity. Therefore, The goal of the current seeking is to investigate the problem
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of effects of electromagnetic field on forced convective heat transfer over a vertical wavy cone

retained at an unvarying surface temperature flooded with a Casson fluid beside an irregular

electric conductivity and take into consideration the internal heat generation/absorption and

Ohmic heating (Joule electromagnetic dissipation) to explore the impact of the germane param-

eters, such as amplitude wavelength ratio, Casson fluid parameter, electrical field parameter,

magnetic field parameter, Prandtl number, Eckert number and heat generation/absorption pa-

rameter on fluid velocity, temperature, local coefficient of skin friction, and local heat transfer

rate. The governing nonlinear equations are constricted to ordinary differential equations via the

fitting similarity transformations and then they are numerically solved applying the Keller-box

implicit finite difference method.

2. FLOW ANALYSIS

The physical problem deals with the steady-state of an incompressible electrically conducive

Casson fluid boundary layer flow near a wave cone whose transverse vertical sinusoidal surface.

The wavy surface cone is illustrated by

(1) y = δ (x) = a sin
(

πx
L

)
,

where a is the wavy surface amplitude and 2L is the characteristic length associated with the

uneven surface. The coordinate system is defined in such a way that x-axis runs from the apex

to the cone’s flat surface, and y-axis is perpendicularly measured outward as seen in Fig. 1. The

surface of the wave cone is assumed to be at a uniform temperature Tw and the regular ambient

temperature T∞, where Tw > T∞. Also, the region of flow is incurred to a regular electrical field

E = (0,0,E0) and regular transverse magnetic field B = (0,B0,0). From Maxwell’s equations,

it is well known that5×E = 0 and5·B = 0. The electric field and magnetical field conform

with the law of Ohm J = σ(E+V ×B), when the magnetic field is not vigorous, in which J is

the Joule current, σ is the magnetic permeability and V is the velocity of the fluid. Therefore,

the inducing magnetic field is neglected because of the motion of the electrically conductive

fluid. Further, the fluid’s electrical conductivity differs linearly with the component transverse

velocity [37]. Consequently, the thermal energy equation contains the thermal dispersion, heat

source/sink, and Joule heating owing to the magnetic in addition to electric fields. Moreover,
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FIGURE 1. Physical model configuration and coordinate scheme.

the thermal physical characteristics should be constant except that the fluid density in the mo-

mentum equation depends on the temperature during the buoyancy force term. The dimensional

equations of the problem are now built based on previous assumptions as following (see [8])

(2)
∂ (r u)

∂x
+

∂ (r v)
∂y

= 0,

(3) ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
=−∂ p

∂x
+µ

(
1+

1
α

)
52 u+ρβg

(
T −T ∞

)
cosγ−σB0 (E0 +B0 u) ,

(4) ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
=−∂ p

∂y
+µ

(
1+

1
α

)
52 v+ρβg

(
T −T ∞

)
sinγ,

(5) ρCp

(
u

∂T
∂x

+ v
∂T
∂y

)
= k52 T +Q0

(
T −T ∞

)
+σ (E0 +B0u)2 ,

where ρ is the fluid density, (u, v) are the components of the velocity in (x, y) respectively,

r(x) (= x sinγ) is the local radius of the cone’s flat surface, γ is the half-angle of the cone’s

flat surface, p is the pressure of fluid, µ is the viscosity of dynamic, α is the parameter of

Casson fluid, 52 is the Laplacian operator, β is the volumetric expansion coefficient, g is the

gravitational acceleration, T is the temperature, Cp is the specific heat at invariable pressure,
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k is the fluid thermal conductivity and Q0 is the dimensional heat generation (Q0 > 0) or heat

absorption (Q0 < 0). Here σ is presumed to rely on the fluid velocity and to have the format

σ = σ0u.

The suitable boundary conditions can often be modeled as

u = 0, v = 0, T = T w at y = δ (x),

u = 0, T = T w, p = p∞ at y−→ ∞.(6)

In order to dimensionless the system, we introduce the following transformations [34]

u =
ρL
µ

Gr−1/2u, v =
ρL
µ

Gr−1/4
(

v−δ xu
)
, x =

x
L
, r =

r
L
, y =

y−δ (x)
L

,

δ (x) =
δ (x)

L
,

dδ

dx
= δ x =

dδ

dx
, p =

L2

ρυ2Gr
p, θ =

T −T ∞

T w−T ∞

,

Gr =
gβ
(
T −T ∞

)
L3 cosγ

ν2 ,(7)

where a, Gr are the amplitude wavelength ratio and Grashof number in term of the temperature,

respectively. Now, on substituting the transformations (7) into Eqs. (2) to (5) and assuming that

Gr−→∞ [3], the equations system can be converted as follows in equations of boundary layers

(8)
∂ (ru)

∂x
+

∂ (rv)
∂y

= 0,

(9) u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+Gr1/4
δx

∂ p
∂y

+

(
1+

1
α

)(
1+δ

2
x
) ∂ 2u

∂y2 −Mu(E +u)+θ ,

(10) δx

(
u

∂u
∂x

+ v
∂u
∂y

)
+δxxu2 =−Gr1/4 ∂ p

∂y
+

(
1+

1
α

)
δx
(
1+δ

2
x
) ∂ 2u

∂y2 −θ tanγ,

(11) u
∂θ

∂x
+ v

∂θ

∂y
=

1+δ 2
x

Pr
∂ 2θ

∂y2 +Qθ +M Ec u(E +u)2 ,

and the boundary conditions (6) turned out to

u = 0, v = 0, θ = 1 at y = 0,

u = 0, θ = 0, p = 0 at y−→ ∞.(12)
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Here, M
(
=

σ0B2
0L

ρ

)
, E
(
= LE0

B0νGr1/2

)
, Q
(
= Q0L2

µCpGr1/2

)
Pr
(
=

µCp
k

)
and Ec

(
= ν2Gr

Cp(T w−T ∞)L2

)
are the magnetic field parameter, electric field parameter, heat generation/absorption parameter,

Prandtl number, and Eckert number, respectively.

From Eq. (10), it can be noticed that along y-direction the pressure gradient will be O(Gr−1/4),

which means that an inviscid flow solution should be used to evaluate the lowermost order of

pressure gradient along x-direction, which leads to ∂ p/∂x= 0, for details see [6]. Excluding the

terms of the pressure gradient in both Eqs. (9) and (10), thus it is reduced to a single equation

(13) u
∂u
∂x

+ v
∂u
∂y

+
δxδxx

1+δ 2
x

u2 =

(
1+

1
α

)(
1+δ

2
x
) ∂ 2u

∂y2 −
M

1+δ 2
x

u(E +u)+
1−δx tanγ

1+δ 2
x

θ .

Now, to constringe governing Eqs. (11) and (13) to an opportune form, the following transfor-

mations are announced

(14) ψ = x3/4r f (x,η), θ = θ(x,η) andalso η = x−1/4y, r = xsinγ,

herein ψ is the stream function while η is the pseudo-similarity variable that fulfills Eq. (8) and

is realized by

(15) u =
1
r

∂ψ

∂y
, v =−1

r
∂ψ

∂x
.

On the substitution Eq. (14) in Eqs. (11) and (13), we have

x1/2 ∂ f
∂η

∂

∂x

(
x1/2 ∂ f

∂η

)
−
(

7
4

f + x
∂ f
∂x

)
∂ 2 f
∂η2 +

δxδxx

1+δ 2
x

x
(

∂ f
∂η

)2

=

(
1+

1
α

)(
1+δ

2
x
) ∂ 3 f

∂η3 −
M

1+δ 2
x

x1/2 ∂ f
∂η

(
E + x1/2 ∂ f

∂η

)
+

1−δx tanγ

1+δ 2
x

θ ,(16)

(17) x
(

∂ f
∂η

∂θ

∂x
− ∂ f

∂x
∂θ

∂η

)
− 7

4
f

∂θ

∂η
=

1+δ 2
x

Pr
∂ 2θ

∂η2 +M Ec x
∂ f
∂η

(
E + x1/2 ∂ f

∂η

)2

+Qx1/2
θ .

In addition, the boundary conditions in Eq. (12) take the the next formula

∂ f
∂η

= 0, 7 f +4x
∂ f
∂η

= 0, θ = 1 at η = 0,

∂ f
∂η

= 0, p = 0, θ = 0 at η −→ ∞.(18)



ELECTRO-THERMO-CONVECTION FLOW OF CONDUCTING NON-NEWTONIAN FLUID 483

The important physical quantities are the local coefficient of skin friction, C f x, and also the local

heat transfer rate in form of the local Nusselt number, Nux, and they are defined respectively as

(19) C f x =
2τw

ρU2 , Nux =
xqw

k (Tw−T∞)
,

in which U = µGr1/2/ρL is characteristic velocity, τw and qw are the shear stress and heat flux

at the wall which they are provided respectively by

(20) τw = µ

(
1+

1
α

)(
∂u
∂y

+
∂v
∂x

)∣∣∣∣
y=σ(x)

, qw =−k

√(
∂T
∂x

)2

+

(
∂T
∂y

)2
∣∣∣∣∣∣
y=σ(x)

.

Applying the non-dimensional quantities (7) and the non-similar transformation (14) on Eq.

(20), the local coefficient of skin friction, C f x, and also the local heat transfer rate, Nux, can be

evidenced by

C f x

(
Gr
x

)1/4

= 2
(

1+
1
α

)(
1−σ

2
x
) ∂ 2 f

∂η2 (x,0),

Nux

( x
Gr

)1/4
= −x

(
1+σ

2
x
)1/2 ∂θ

∂η
(x,0).(21)

3. NUMERICAL PROCEDURE

Local, not similar, partial differential Eqs. (16) and (17) are integrated along with the bound-

ary conditions (18) by combining the implicit finite difference approximation upon Keller-box

method described by Keller [38, 39], Keller and Cebeci [40], Cebeci and Bradshaw [41], and

Vajravelu and Prasad [42]. This method is widely used in solving the physical problems, see

for example the work of Swalmeh et al. [43] and Ahmad et al. [44].

First, Eqs.(16), (17) and (18) are mutated to a set of a five-order system of equations accord-

ingly these equations are formulated in finite-difference procedures with a second- Newton ’s

approach is used to linearize nonlinear algebraic equations resulting and has been represented

in matrix-vector notation. Resolution of these equations and their boundary conditions through

the Thomas algorithm for the block tridiagonal systems. The solution starts at x = 0, with the

right step size ∆η , including interval 0 ≤ η ≤ η∞ by iteration, and continues to an iteration of

x > 0 position with the appropriate step size ∆x. The step sizes are ∆η = 0.02, and ∆x = 0.04,

further, the boundary thickness is η∞ = 5. The iterative process was stopped when the error
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in computing the wall shear stress parameter fηη(x,0) in the next procedure convergent crite-

ria 10−5. Furthermore, the technique followed here is unconditionally stable besides realizes

extraordinary precision, converges rapidly, and awards stable numerical meshing functionality.

MATLAB software (R2018b) provides computations and graphical analyses.

4. RESULTS AND DISCUSSION

In the existence of internal heat generation/ absorption, and Ohmic dissipation, the influence

of electric field on forced convection of the electrically incompressible Casson fluid with vari-

able electrical conductivity adjacent to a uniformly heated vertical cone-waved surface were

investigated. In an interpretation of the results, numerical calculations for unlike values of the

aforementioned five parameters have been carried out using the Keller box method. In the cur-

rent research problem, we are concentrating our prominence on the influence of magnetic field

parameter M, electric field parameter E, Casson fluid parameter α , heat generation/absorption

parameter Q, and Eckert number Ec on the velocity, temperature, local skin friction coefficient

C f x and local rate of heat transfer Nux. It should be mentioned that the value of Prandtl number

is fixed at Pr = 7.2 for the upcoming figures through this research.

Figs. 2(a) and (b) demonstrate the magnetic parameter M effectiveness on velocity profiles

and temperature distributions, respectively. It is observable that M values decrease velocity,

while the temperature rises as M increases. It is also seen that at the boundary wall the velocity

is zero, where the velocity reaches the highest value as η growths and the velocity finally

approaches the asymptotic value. It is well understood that the current passes through the

moving fluid by producing a resistive force and therefore this force reduces fluid movement and

rises the thermal boundary layer thickness.

Figs. 3(a) and (b) show the behaviors of the velocity profiles and temperature distributions,

respectively, for distinctive values of the electric field parameter E. It is noticed from Fig. 3(a)

that u dwindles with a growth in E which is consequence of the momentum boundary layer

thickness reduces. Truth be told that the Lorentz force grows with increased electrical strength,

which makes the fluid flow resistant and thus shrinkages the velocity. Also, from Fig. 3(b), it is

depicted that the temperature distributions enhance for expansion for E due to the thickness of

thermal boundary heightens by raising of Lorentz force.
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(a) (b)

0,1,3,5M =

0,1,3,5M =

FIGURE 2. The drawing of effectiveness for M on (a) u(x,η) and (b) θ(x,η)
when a = 0.2, α = 1, E = 0.3, γ = π/4, Ec = 5 and Q = 0.4.

(a) (b)

1, 0.3,0,0.3,1E = − −

1, 0.3,0,0.3,1E = − −

FIGURE 3. The drawing of effectiveness for E on (a) u(x,η) and (b) θ(x,η)
when a = 0.2, α = 0.5, M = 1, γ = π/4, Ec = 3 and Q = 0.4.

In the Figs. 4(a) and (b), the impacts on velocity profiles and temperature distributions of

the various Casson fluid parameter α values, respectively, are demonstrated. As α rises, the

yield stress shrinkages and the thickness of the velocity boundary layer grows accordingly. The

velocity is increased in the neighborhood of the wavy surface with an increase in α . This is

because a buildup in α yields a reduction in the stress of the Casson fluid. From Fig. 4(b), it is

evident that buildups α, the thermal thickness of the boundary layer shrinks and therefore the

temperature inside the boundary layer.
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(a) (b)

0.2,0.5,1,1.5α =

0.2,0.5,1,1.5α =

FIGURE 4. The drawing of effectiveness for α on (a) u(x,η) and (b) θ(x,η)
when a = 0.1, M = 1, E = 0.3, γ = π/4, Ec = 5 and Q = 0.4.

Figs. 5(a) and (b) explain the change of velocity profiles and temperature distributions on

growing the value of heat generation/absorption parameter Q. We can observe from Fig. 5(a)

that u decays rapidly to its asymptotic estimates and oncoming to zero in the stream region.

Moreover, the velocity achieved to its extreme value away from the wavy surface when Q

growths. It is also evident that the thickness of momentum increases and the velocity. Fig.

5(b) reveals that the temperature distribution slightly increase versus the variable values of Q.

(a) (b)

5, 0.5,0,0.4,0.8Q = − −

5, 0.5,0,0.4,0.8Q = − −

FIGURE 5. The drawing of effectiveness for Q on (a) u(x,η) and (b) θ(x,η)
when a = 0.1, α = 1, M = 1, E = 0.3, γ = π/4 and Ec = 5.

Figs. 6(a) and (b) demonstrate the impact of the Eckert number Ec upon the velocity profiles

and temperature distributions, respectively. It is noted from Fig. 6(a) that growing value of Ec
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rises u. This is because the growing value of Ec elevates thermal energy inside the boundary

layer owing to fluid friction which visibly increases convection and eventually increase velocity.

The effectiveness of separate Ec on θ is indicated in Fig. 6(b). Likewise contrasted with

the instance no viscous dissipation, it comprehends that the temperature may be enhanced for

enhancing those Eckert number to every one sorts of fluids. Because of viscous heating, those

enhanced in the temperature will be improved and calculable for higher value of Ec. In different

words, enhancing those Eckert number prompts a cooling of the surface. Moreover, a transfer

of heat into the fluid happens which causes an ascent in the temperature.

(a) (b)

0,5,10,15Ec =

0,5,10,15Ec =

FIGURE 6. The drawing of effectiveness for Ec on (a) u(x,η) and (b) θ(x,η)
when a = 0.2, α = 1, M = 3, E = 0.3, γ = π/4 and Q = 0.4.

Figs. 7(a) and (b) exhibit the impact of magnetic field parameter M on local coefficient of

skin friction C f x and local heat transfer rate Nux, respectively. It is observed that a fall in C f x

and local rate of heat transfer due to the reinforcement of M. Similar behavior is noted when

the electric field parameter E increases, as shown in Figs. 8(a) and (b).

Figs. 9(a) and (b) present the local coefficient of skin friction C f x and local rate of heat

transfer Nux for variation in the Casson fluid parameter α. It is detected from Fig. 9(a) that

the growth in α produces a decline in C f x. This is forasmuch the enlargement in α causes an

intension in the fluid motion. Fig. 9(b) exhibits that the local rate of heat transfer Nux rises

inasmuch an increase in α. It is because the thickness of thermal boundary layer reduces with

α causing the temperature gradient at the cone surface to increase. The influence of the heat
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(a) (b)

0,1,3,5M =

0,1,3,5M =

FIGURE 7. The drawing of effectiveness for M on (a) C f x and (b) Nux when
a = 0.2, α = 1, E = 0.3, γ = π/4, Ec = 5 and Q = 0.4.

(a) (b)

1, 0.3,0,0.3,1E = − −

1, 0.3,0,0.3,1E = − −

FIGURE 8. The drawing of effectiveness for E on (a) C f x and (b) Nux when
a = 0.2, α = 0.5, M = 1, γ = π/4, Ec = 3 and Q = 0.4.

generation/absorption parameter Q on C f x and local heat transfer rate Nux is characterized in

Figs. 10(a) and (b), respectively. From those, it is depicted that growth in Q leads up to raise the

local coefficient of skin friction C f x and reduce Nux. These occur due to a change in frictional

surface force, and the fluid temperature rise as a result of heat generation/absorption parameter

Q values enhance and then surface/fluid temperature difference turn out to be lower and the rate

heat transfer rate also reduces.

Figs. 11(a) and (b) elucidate the impact of Eckert number Ec upon local coefficient of skin

friction C f x and local heat transfer rate Nux. The results of that the excessive value of Ec
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(a) (b)

0.2,0.5,1,1.5α =
0.2,0.5,1,1.5α =

FIGURE 9. The drawing of effectiveness for α on (a) C f x and (b) Nux when
a = 0.1, M = 1, E = 0.3, γ = π/4, Ec = 5 and Q = 0.4.

(a) (b)

2, 0.5,0,0.4,0.8Q = − −
2, 0.5,0,0.4,0.8Q = − −

FIGURE 10. The drawing of effectiveness for Q on (a) C f x and (b) Nux when
a = 0.2, α = 0.5, M = 1, E = 0.3, γ = π/4 and Ec = 3.

accelerates the fluid flow and enhances the temperature so from those figures it is detected that

Ec, C f x enhances on the upstream orientation of the surface to increase Ec and reduces the local

heat transfer rate.

5. CONCLUSIONS

In the existent study, concerted influences of electrohydrodynamic and magnetohydrody-

namic on Casson fluid and heat transfer characters in a variable electric conductivity with the

internal heat generation/absorption besides Ohmic dissipation are scrutinized. The governing
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(a) (b)

0,5,10,15Ec =

0,5,10,15Ec =

FIGURE 11. The drawing of effectiveness for Ec on (a) C f x and (b) Nux when
a = 0.2, α = 1, M = 3, E = 0.3, γ = π/4 and Q = 0.4.

nonlinear partial differential equations to this problem were simplified via the similarity trans-

formations so they could be solved numerically via Keller-box finite difference method. The

graphs are structured to analyze the impact of the relevant flow parameters, overall the magnetic

field parameter, electric field parameter, Casson fluid parameter, heat generation/absorption pa-

rameter, and also Eckert number. The main results have indicated that

• Increasing the electric field parameter and magnetic field parameter, shrink the velocity,

local coefficient of skin friction, and local heat transfer rate, further, it elevates the

temperature.

• Growing the Casson fluid parameter affords more significantly physically affected, it

strongly raises the velocity and local heat transfer rate near the surface but decelerates

the temperature and local coefficient of skin friction far away the surface.

• Rising the Eckert number and also the heat generation/absorption parameter enhances

the velocity, temperature and local coefficient of skin friction, however, they reduce the

local heat transfer rate.

• The velocity is lower when the fluid flows over the rough surface (a 6= 0) compared

to the fluid flow over the flat surface (a = 0) while this behavior is reflected with the

temperature.
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