PEBBLING ON SOME BRAID GRAPHS

A. LOURDUSAMY ${ }^{1}$, S. SARATHA NELLAINAYAKI ${ }^{2, \dagger, *}$
${ }^{1}$ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, India
${ }^{2}$ Department of Mathematics, St.Xavier's College (Autonomous), Manonmaniam Sundaranar University, Tirunelveli - 627 012, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Given a distribution of pebbles on the vertices of a connected graph, a pebbling move is defined as the removal of two pebbles from some vertex and the placement of one of those pebbles at an adjacent vertex. The pebbling number, $f(G)$ of a connected graph G, is the smallest positive integer such that from every placement of $f(G)$ pebbles, we can move a pebble to any specified vertex by a sequence of pebbling moves. In this paper, we find the pebbling number for some braid graphs.

Keywords: pebbling number; braid graphs.
2010 AMS Subject Classification: 57M15.

1. Introduction

Pebbling, one of the latest evolutions in graph theory proposed by Lakarias and Saks, has been the topic of vast investigation with significant observations. Having Chung [1] as the forerunner to familiarize pebbling into writings, many other authors too have developed this topic. Hulbert published a survey of graph pebbling [7].

[^0]Consider a connected graph with fixed number of pebbles distributed on its vertices. A pebbling move consists of the removal of two pebbles from a vertex and placement of one of those pebbles at an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number $f(G, v)$ such that for every placement of $f(G, v)$ pebbles, it is possible to move a pebble to v by a sequence of pebbling moves. Then the pebbling number of G is the smallest number, $f(G)$ such that from any distribution of $f(G)$ pebbles, it is possible to move a pebble to any specified target vertex by a sequence of pebbling moves. Thus $f(G)$ is the maximum value of $f(G, v)$ over all vertices v.

The pebbling number is known for many simple graphs including paths, cycles, and trees, [2], [3], [4], [6], [8], [9] but it is not known for most graphs and is hard to compute for any given graph that does not fall into one of these classes. Therefore, it is an interesting question if there is information we can gain about the pebbling number of more complex graphs from the knowledge of the pebbling number of some graphs for which we know.

In this paper, we find the pebbling number for some braid grpahs.

2. Preliminaries

We now introduce some definitions and notations which will be useful for the subsequent sections. For graph theoretic terminologies we refer to [5].

Definition 2.1. The Braid graph $B(n)$ is obtained from a pair of paths P_{n}^{\prime} and $P_{n}^{\prime \prime}$ by joining $i^{\text {th }}$ vertex of path P_{n}^{\prime} with $(i+1)^{\text {th }}$ vertex of the path $P_{n}^{\prime \prime}$ and the $i^{\text {th }}$ vertex of the path $P_{n}^{\prime \prime}$ with $(i+2)^{\text {th }}$ vertex of the path P_{n}^{\prime} for all $1 \leq i \leq n-2$.

Let the vertices of the path P_{n}^{\prime} be $u_{1}, u_{2}, \ldots, u_{n}$ and the vertices of the path $P_{n}^{\prime \prime}$ be $v_{1}, v_{2}, \ldots, v_{n}$.

Figure 2.1. $B(7)$
Theorem 2.2. [2] Let P_{n} be a path on n vertices. Then $f\left(P_{n}\right)=2^{n-1}$.
Theorem 2.3. [3] Let $K_{1, n}$ be a star graph, where $n>1$. Then $f\left(K_{1, n}\right)=n+2$.

3. Main Results

Remark 3.1. A distribution of pebbles on the vertices of the graph G is a function $p: V(G) \rightarrow$ $N \cup\{0\}$. Let $p(v)$ denote the number of pebbles on the vertex v and $p(A)$ denote the number of pebbles on the vertices of the set $A \subseteq V(G)$. Let v be a target vertex in the graph G. If $p(v)=1$ or $p(u) \geq 2$, where $u v \in E(G)$, then we can move a pebble to v easily. So we always assume that $p(v)=0$ and $p(u) \leq 1$ for all $u v \in E(G)$, when v is the target vertex.

Theorem 3.2. For the Braid graph $B(3), f(B(3))=6$.

Proof. Placing 3 pebbles on the vertex v_{3} and placing each pebble on both vertices v_{1} and u_{3}, we cannot reach the vertex u_{1}. Thus $f(B(3)) \geq 6$.

Let D be any distribution of 6 pebbles on the vertices of the graph $B(3)$.
Case 1: Let u_{1} be the target vertex. Then clearly, $p\left(u_{1}\right)=0$ and $p\left(u_{2}\right) \leq 1, p\left(v_{2}\right) \leq 1$.
Subcase 1.1: Assume $p\left(u_{2}\right)=1$ and $p\left(v_{2}\right)=1$.
Then there will 4 pebbles distributed on the vertices u_{3}, v_{3} and v_{1}. Thus we are done as there will be at least two pebbles in any one of the vertices v_{1}, u_{3} or v_{3}. If u_{3} or v_{3} contains two pebbles then move a pebble to u_{2} and hence we are done. Otherwise v_{1} contains two pebbles. Moving a pebble from v_{1} to v_{2} we can reach the target.

Subcase 1.2: Assume $p\left(u_{2}\right)=1$ and $p\left(v_{2}\right)=0$.
Then there will be 5 pebbles distributed on the vertices v_{1}, v_{3} and u_{3}. Thus any one of these vertices will have at least two pebbles. If u_{3} or v_{3} have two pebbles then moving a pebble to u_{2}, we are done. Otherwise assume $p\left(u_{3}\right) \leq 1$ or $p\left(v_{3}\right) \leq 1$. Then atleast three pebbles will be placed on v_{1}. If u_{3} is occupied then we reach the target by using the path $P: v_{1}, u_{3}, u_{2}, u_{1}$. Otherwise v_{1} itself contains four pebbles and thus we can reach the target.

Subcase 1.3: Assume $p\left(u_{2}\right)=0$ and $p\left(v_{2}\right)=1$
Then there will be five pebbles distribtued on the vertices of v_{1}, u_{3} and v_{3}. Thus any one of these vertices may have at least two pebbles. If v_{1} or v_{3} contains at least two pebbles then we reach the target by moving a pebble to v_{2} and then to u_{1}. Otherwise assume $p\left(v_{1}\right) \leq 1$ and $p\left(v_{3}\right) \leq 1$. Then there are at least three remaining pebbles will be in u_{3}. If v_{1} is occupied then
we reach the target by moving a pebble to u_{3} and we hence we are done. Otherwise u_{3} contains four pebbles they by using the path $P: u_{3}, u_{2}, u_{1}$ can be reached.

Subcase 1.4: Assume $p\left(u_{2}\right)=0$ and $p\left(v_{2}\right)=0$
Then the six pebbles will be placed on the vertices v_{1}, u_{3}, v_{3}. If $p\left(u_{3}\right) \geq 4$ or $p\left(v_{3}\right) \geq 4$ or $p\left(v_{1}\right) \geq 4$ then we are done. Therefore assume that $p\left(u_{3}\right) \leq 3, p\left(v_{3}\right) \leq 3, p\left(v_{1}\right) \leq 3$. If $p\left(u_{3}\right) \geq 2$ and $p\left(v_{3}\right) \geq 2$ then we can reach the target by moving a pebble from u_{3} and v_{3} to u_{2} and then to u_{1}. Hence assume that $p\left(u_{3}\right) \leq 1$ and $p\left(v_{3}\right) \leq 1$. Then there will be remaining atleast four pebbles on v_{1}. Thus we are done by using the path $P: v_{1}, v_{2}, u_{1}$. If v_{3} is the target vertex, by symmetry, we are done.

Case 2: Let v_{1} be the target vertex. Clearly, $p\left(v_{1}\right)=0, p\left(v_{2}\right) \leq 1$ and $p\left(u_{3}\right) \leq 1$.
Subcase 2.1: Assume that $p\left(u_{3}\right)=1$ and $p\left(v_{2}\right)=1$.
Then there will be at least four pebbles placed on the vertices of u_{1}, u_{2} and v_{3}. Thus one of those vertex contains at least two pebbles. On moving a pebble from eihter u_{1} or v_{3} which contains two pebbles to v_{2}, we are done. Otherwise moving a pebble from u_{2} to u_{3} and hence to v_{1}, we reach our target.

Subcase 2.2: Assume $p\left(u_{3}\right)=1$ and $p\left(v_{2}\right)=0$.
Then among the remaining five pebbles placed on the vertices u_{1}, u_{2} and v_{3}, any one vertex contains at least two pebbles. If u_{2} contains at least two pebbles then moving a pebble to u_{3} and hence to v_{1}, we are done. Thus assume that $p\left(u_{2}\right) \leq 1$. If u_{2} is occupied then the remaining four pebbles are placed on u_{1} and v_{3}. If $p\left(u_{1}\right) \leq 1$ then we can reach the target by moving a pebble from the path $P: v_{3}, u_{2}, u_{3}, v_{1}$. If $2 \leq p\left(u_{1}\right) \leq 3$, then we are done by using the path $P: u_{1}, u_{2}, u_{3}, v_{1}$. Otherwise we can reach the target by moving pebbles from u_{1} to v_{2} and then to v_{1}. If u_{2} is unoccupied then we can easily move two pebbles from either u_{1} or v_{3} and hence we are done.

Subcase 2.3: Assume $p\left(u_{3}\right)=0$ and $p\left(v_{2}\right)=1$.
Then among the five pebbles placed on u_{1}, u_{2} and v_{3} at least one vertex contains at least two pebbles. If u_{1} or v_{3} contains at least two pebbles then moving a pebble to v_{2} and then to v_{1}, we are done. Thus assume $p\left(u_{1}\right) \leq 1$ and $p\left(v_{3}\right) \leq 1$. Then u_{2} contains at least three pebbles. If u_{1}
is occupied we can reach the target using the path $P: u_{2}, u_{1}, v_{2}, v_{1}$. Suppose u_{1} is unoccupied then u_{2} contains exactly four pebbles and thus we are done using the path $P: u_{2}, u_{3}, v_{1}$.

Subcase 2.4: Assume $p\left(v_{2}\right)=0$ and $p\left(u_{3}\right)=0$.
Then all the six pebbles will be placed on the vertices u_{1}, u_{2} and v_{3}. If any of these vertices contains at least four pebbles then we are done as the distance from these vertices to the target is two. Thus assume $p\left(u_{1}\right) \leq 3, p\left(u_{2}\right) \leq 3$ and $p\left(v_{3}\right) \leq 3$. If $p\left(u_{1}\right) \geq 2$ and $p\left(v_{3}\right) \geq 2$ then moving a pebble to v_{2} from both u_{1} and v_{3} we are done. Thus assume $p\left(u_{1}\right) \leq 1$ and $p\left(v_{3}\right) \leq 1$. Thus u_{2} contains at least four pebbles. By using the path $P: u_{2}, u_{3}, v_{1}$ we can reach the target. If u_{3} is the target vertex, by symmetry, we are done.

Case 3: Let u_{2} be the target vertex. Clearly, $p\left(u_{2}\right)=0, p\left(u_{1}\right) \leq 1, p\left(u_{3}\right) \leq 1$ and $p\left(v_{3}\right) \leq 1$.
Then there are at least three remaining pebbles are distributed on the verices v_{1} and v_{2}. Suppose v_{2} contains at least two pebbles and if u_{1} or v_{3} is occupied then we are done by moving a pebble from v_{2} to u_{1} or v_{3}. Otherwise assume that $p\left(u_{1}\right)=0=p\left(v_{3}\right)$. Suppose $p\left(v_{2}\right) \geq 4$ or $p\left(v_{1}\right) \geq 4$ we are done. Thus assume $p\left(v_{1}\right) \leq 3$ and $p\left(v_{2}\right) \leq 3$. Now using the pebbles in the spanning path $P: v_{2}, v_{1}, u_{3}, u_{2}$ we can reach the target vertex. By symmetry we can reach the vertex v_{2}.

Theorem 3.3. For the Braid graph $B(4), f(B(4))=10$.
Proof. Placing 7 pebbles on the vertex v_{4} and each pebble on the vertices u_{4} and v_{1}, we cannot reach the vertex u_{1}. Thus $f(B(4)) \geq 10$.

Now we prove the sufficient part. Let D be any distribution of 10 pebbles on the vertices of the graph $B(4)$.

Case 1: Let u_{1} be the target vertex.
Clearly, $p\left(u_{1}\right)=0, p\left(v_{2}\right) \leq 1$ and $p\left(u_{2}\right) \leq 1$.If $p\left(u_{4}\right) \geq 4$ or $p\left(v_{4}\right) \geq 8$, we can reach the target as $d\left(u_{1}, u_{4}\right)=2$ and $d\left(u_{1}, v_{4}\right)=3$. Thus assume that $p\left(u_{4}\right) \leq 3$ and $p\left(v_{4}\right) \leq 7$. Let $G_{1}=G-<\left\{u_{4}, v_{4}\right\}>$. If G_{1} contains at least six pebbles then we can reach the target since G_{1} is isomorphic to $B(3)$ and $f(B(3))=6$. Thus we assume that $p\left(G_{1}\right) \leq 5$.

Subcase 1.1: $p\left(G_{1}\right)=5$.
Then $p\left(v_{4}\right) \geq 2$. Thus we can move a pebble from v_{4} to G_{1} and hence $p\left(G_{1}\right)=6$. Since G_{1} is isomorphic to $B(3)$ and $f(B(3))=6$, we are done.

Subcase 1.2: $p\left(G_{1}\right)=4$
Then $3 \leq p\left(v_{4}\right) \leq 6$. If $p\left(v_{4}\right) \geq 4$, we can move at least two pebbles from v_{4} to G_{1} and thus we are done as $p\left(G_{1}\right)=6$. If $p\left(v_{4}\right)=3$ then one pebble can be moved from v_{4} and the another from u_{4}. Thus $p\left(G_{1}\right)=6$ and hence we can reach the target.

Subcase 1.3: $p\left(G_{1}\right)=3$

Then $4 \leq p\left(v_{4}\right) \leq 7$. If $p\left(v_{4}\right) \geq 6$, then three pebbles can be moved to G_{1} and hence we are reached. If $4 \leq p\left(v_{4}\right) \leq 5$, then two pebbles can be moved from v_{4} and another pebble can be moved from u_{4} to G_{1}. Thus $p\left(G_{1}\right)=6$ and hence we are done.

Subcase 1.4: $p\left(G_{1}\right)=2$
Then $5 \leq p\left(v_{4}\right) \leq 8$. If $2 \leq p\left(u_{4}\right) \leq 3$ then moving a pebble from u_{4} and another from v_{4} to V_{2} we can reach the target. If $p\left(u_{4}\right)=1$ and v_{2} is occupied then we can reach the target by moving the second pebble from v_{4}. Suppose $p\left(v_{1}\right) \leq 1$ or v_{2} is unoccupied then any other vertices u_{2}, u_{3} or v_{3} will be occupied and hence we can reach the target by using the path through that vertex.

Subcase 1.5: $p\left(G_{1}\right) \leq 1$
If $p\left(u_{4}\right) \leq 1$ then $p\left(v_{4}\right) \geq 8$ and hence we are done. Thus assume $2 \leq p\left(u_{4}\right) \leq 3$. Moving a pebble from u_{4} and another pebble from v_{4} to v_{2}, we can reach the target. If v_{4} is the target vertex, by symmetry we are done.

Case 2: Let v_{1} be the target vertex.
Clearly, $p\left(v_{1}\right)=0, p\left(v_{2}\right) \leq 1$ and $p\left(u_{3}\right) \leq 1$. First let us assume that $p\left(v_{2}\right)=1$. If $p\left(u_{1}\right) \geq 2$ then we can move a pebble and hence we reach the target. Thus asuume that $p\left(u_{1}\right) \leq 1$. Let $G_{1}=G-<\left\{u_{1}, v_{1}\right\}>$. Thus 9 pebbles will be placed on the vertices of G_{1} and since G_{1} is isomorphic to $B(3)$ and $f(B(3))=6$, using 6 pebbles we can move another pebble to v_{2} and hence we are done. Thus assume $p\left(v_{2}\right)=0$. If $p\left(u_{1}\right) \geq 4$, we are done. If $2 \leq p\left(u_{1}\right) \leq 3$, then we can move a pebble from u_{1} to v_{2} and since G_{1} contains at least 7 pebbles, we can move another pebble to v_{2} and hence we can reach the target. Thus assume $p\left(u_{1}\right) \leq 1$. If $p\left(v_{3}\right) \geq 4$, we can reach the target. Hence assume $p\left(v_{3}\right) \leq 3$. Thus the remaining six pebbles will be distributed on the vertices u_{2}, u_{3}, u_{4} and v_{4}. We can see that $<\left\{u_{2}, u_{3}, u_{4}, v_{1}, v_{4}\right\}>$ is a spanning subgraph of $K_{1,4}$ and since $f\left(K_{1,4}\right)=6$ we can pebble the target. By symmetry if u_{4} is the target we are done.

Case 3: Let u_{2} be the target vertex.
Assume $p\left(u_{2}\right)=0, p\left(u_{1}\right) \leq 1, p\left(u_{3}\right) \leq 1$ and $p\left(v_{3}\right) \leq 1$. If $p\left(v_{1}\right) \geq 4$, or $p\left(u_{1}\right) \geq 2$ then we are done. Therefore assume that $p\left(v_{1}\right) \leq 3$ and $p\left(u_{1}\right) \leq 1$. Then there are at least 6 pebbles are distributed on the vertices of the graph $G_{1}=G-\left\{u_{1}, v_{1}\right\}$. Since $f\left(G_{1}\right)$ is isomorphic to $B(3)$ and $f\left(B(3)=6\right.$ we are done. By symmetry if v_{3} is the target, we are done.

Case 4: Let v_{2} be the target vertex.
Assume $p\left(v_{2}\right)=0, p\left(u_{1}\right) \leq 1, p\left(u_{4}\right) \leq 1, p\left(v_{1}\right) \leq 1$ and $p\left(v_{3}\right) \leq 1$. Since $p\left(G_{1}\right)=p(G-<$ $\left.\left\{u_{1}, v_{1}\right\}>\right)$ have at least eight pebbles and $p\left(G_{1}\right) \geq f(B(3))$ we can reach our target. By symmetry if u_{3} is the target, we are done.

We now consider the braid graphs obtained by the paths of length $3 m+1$.
Theorem 3.4. For the Braid graph $B(3 m+1), f(B(3 m+1))=2^{\left\lceil\frac{2(3 m+1)}{3}\right\rceil}+2$.
Proof. Placing $2\left\lceil^{\left\lceil\frac{2(3 m+1)}{3}\right\rceil}-1\right.$ pebbles on the vertex $v_{3 m+1}$ and each pebble on the vertices v_{1} and $u_{3 m+1}$, we cannot reach the vertex u_{1}. Thus $f(B(3 m+1)) \geq 2^{\left\lceil\frac{2(3 m+1)}{3}\right\rceil}+2$.

Let D be any distribution of $2{ }^{\left.\frac{2(3 m+1)}{3}\right\rceil}+2$ pebbles on the vertices of the graph $G=B(3 m+1)$. We now prove the sufficient part by induction on m.

Let $G_{1}=G-<\left\{u_{3 m-1}, u_{3 m}, u_{3 m+1}, v_{3 m-1}, v_{3 m}, v_{3 m+1}\right\}>$ and $p_{1}=p\left(G_{1}\right)$ and let $G_{2}=<$ $\left\{u_{3 m-1}, u_{3 m}, u_{3 m+1}, v_{3 m-1}, v_{3 m}, v_{3 m+1}\right\}>$ and $p_{2}=p\left(G_{2}\right)$.

Case 1: Let u_{1} be the target vertex.
Suppose $p_{1}=0$ then $2^{\left\lceil\frac{2(3 m+1)}{3}\right\rceil}+2$ pebbles will be distributed on the vertices of the graph G_{2}. Since G_{2} is isomorphic to $B(3)$ and $f(B(3))=6$, using 6 pebbles in G_{2} we can move a pebble to $u_{3 m-1}$. Also the distance between the $u_{3 m-1}$ to any vertex in G_{2} is at most two, using at a cost of at most 4 pebbles we can move a pebble to $u_{3 m-1}$. Further since,

$$
\frac{2^{\left\lceil\frac{2(3 m+1)}{3}\right\rceil_{+2-6}}}{4} \geq 2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}-1
$$

we can move $2{ }^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}-1$ additional pebbles to $u_{3 m-1}$. Also the distance from $u_{3 m-1}$ to the target is $\left\lceil\frac{2(3 m-2)}{3}\right\rceil$ we are done.

Also, G_{1} is isomorphic to $B(3(m-1)+1)$ if $p_{1} \geq 2^{\left.\frac{2(3 m-2)}{3}\right\rceil}+2$ then by induction we can reach the target. Hence assume that $1 \leq p_{1} \leq 2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}+1$.

Since G_{2} is isomorphic to $B(3), f(B(3))=6$ and the distance from either $u_{3 m-2}$ or $v_{3 m-3}$ to any vertex in G_{2} is at most three, we can move a pebble at a cost of at most 8 pebbles. Thus we can move at least

$$
\frac{\left.2 \int^{\left\lceil\frac{2(3 m+1)}{3}\right.}\right\rceil}{+2-2} \frac{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}{} \frac{1-6}{8}+1
$$

pebbles from G_{2} to either $u_{3 m-2}$ or $v_{3 m-3}$. Since,

$$
\frac{\left.\left.2^{\left\lceil\frac{2(3 m+1)}{3}\right.}\right\rceil_{+2-2} 2^{\frac{2(3 m-2)}{3}}\right\rceil_{+1-6}}{8}+1 \geq 2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}-1
$$

using these pebbles, we can reach either u_{2} or v_{2}. If $p\left(v_{1}\right) \geq 2$, then a pebble from v_{1} to v_{2} and hence we are done. Thus assume $p\left(v_{1}\right) \leq 1$. After moving as many pebbles as possible from G_{2} to either $v_{3 m-3}$ or $u_{3 m-2}$. Now we can consider the following paths $P_{A}: u_{1}, u_{2}, v_{3}, u_{5}, v_{6}, \ldots, v_{3 m-3}$ and $P_{B}: u_{1}, v_{2}, u_{4}, v_{5}, u_{7}, \ldots u_{3 m-2}$ of lengths $\left\lceil\frac{2(3 m-2)}{3}\right\rceil-1$. Without loss of generality let us assume that $p\left(P_{A}\right) \geq p\left(P_{B}\right)$. Suppose that $p\left(P_{A}\right) \geq 2^{\left.\frac{2(3 m-2)}{3}\right]-1}$ then we are done. Otherwise $p\left(P_{A}\right) \leq 2^{\left.\frac{2(3 m-2)}{3}\right\rceil-1}-1$ and $p\left(P_{B}\right) \leq 2^{\left.\frac{2(3 m-2)}{3}\right\rceil-1}-1$. Now the remaining pebbles will be distributed on the $u_{3}, v_{4}, u_{6}, v_{7}, \ldots, u_{3 m-3}, v_{3 m-2}$. The pebbles remain in these vertices creates a spanning path to the target, otherwise by moving as many pebbles as possible from these vertices and from the P_{B} to the neighbouring vertices that is on the path $P_{A}, p\left(P_{A}\right) \geq 2^{\left.\frac{2(3 m-2)}{3}\right\rceil-1}$. Thus we can easily reach the target. By symmetry, if $v_{3 m+1}$ is the target, we are done.

Case 2: Let v_{1} be the target vertex.
Suppose $p_{1}=0$ then $2{ }^{\left\lceil\frac{2(3 m+1)}{3}\right\rceil}+2$ pebbles will be distributed on the vertices of the graph G_{2}. Since G_{2} is isomorphic to $B(3)$ and $f\left(B(3)=6\right.$, using 6 pebbles in G_{2} we can move a pebble to $u_{3 m-1}$. Also the distance between the $u_{3 m-1}$ to any vertex in G_{2} is at most two, using at a cost of at most 4 pebbles we can move a pebble to $u_{3 m-1}$.

And we can move $2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}-1$ additional pebbles to $u_{3 m-1}$. Also the distance from $u_{3 m-1}$ to the target is $\left\lceil\frac{2(3 m-2)}{3}\right\rceil$ we are done. Also since G_{1} is isomorphic to $B(3(m-1)+1)$ if $p_{1} \geq 2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}+2$ then by induction we can reach the target. Hence assume that $1 \leq p_{1} \leq$ $2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}+1$.

Since G_{2} is isomorphic to $B(3), f(B(3))=6$ and the distance from either $u_{3 m-2}$ or $v_{3 m-2}$ to any vertex in G_{2} is at most three, we can move a pebble at a cost of at most 8 pebbles. Thus we can move at least

$$
\frac{2\left\lceil^{\left\lceil\frac{2(3 m+1)}{3}\right.}\right\rceil+2-2\left\lceil^{\left\lceil\frac{2(3 m-2)}{3}\right.}\right\rceil+1-6}{8}+1
$$

pebbles from G_{2} to either $u_{3 m-2}$ or $v_{3 m-3}$. Since,

$$
\frac{\left.2^{\left\lceil\frac{2(3 m+1)}{3}\right.}\right]_{+2-2}\left\lceil^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}+1-6\right.}{8}+1 \geq 2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}-1
$$

using these pebbles, we can reach either u_{2} or v_{2}. Suppose $p\left(u_{1}\right) \geq 2$. After moving pebbles from G_{2} we can reach v_{2} and an another pebble can be moved from u_{1} and hence we can reach the target. Suppose $p\left(u_{2}\right) \geq 2$. After moving pebbles from G_{2} we can reach u_{3} and the second pebble can be moved from u_{2} and hence we can reach the target. Therefore assume that $p\left(u_{1}\right) \leq$ 1 and $p\left(u_{2}\right) \leq 1$. Consider the paths $P_{A}: v_{1}, v_{2}, u_{4}, v_{5}, \ldots, u_{3 m-2}$ and $P_{B}: v_{1}, u_{3}, v_{4}, \ldots u_{3 m-2}$ of lengths $\left\lceil\frac{2(3 m-2)}{3}\right\rceil-1$. Without loss of generality, let us assume that $p\left(P_{A}\right) \geq p\left(P_{B}\right)$. After moving as many pebbles as possible from G_{2} to $u_{3 m-2}$ suppose $p\left(P_{A}\right) \geq 2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil-1}$. Then we can reach the target. Suppose $p\left(P_{A}\right) \leq 2^{\left[\frac{2(3 m-2)}{3}\right]-1}-1$ and $p\left(P_{B}\right) \leq 2^{\left.\frac{2(3 m-2)}{3}\right]-1}-1$. Then there exists a spanning path with the vertices $v_{3(m-1)}, u_{3(m-1)-1}, \ldots, v_{3}, v_{2}, v_{1}$ consisting of the remaining pebbles and thus we can reach the target. Otherwise by moving as many pebbles as possible from these vertices and from the P_{B} to the neighbouring vertices that is on the path P_{A}, $p\left(P_{A}\right) \geq 2^{\left.\frac{2(3 m-2)}{3}\right]-1}$. Thus we can easily reach the target. By symmetry, if $u_{3 m+1}$ is the target then we are done.

Case 3: Let x be any target vertex otherthan $G_{1}-\left\{u_{1}, v_{1}\right\}$.
Suppose $p_{1} \geq 2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}+2$ then we can reach the target by induction. Thus assume $p_{1} \leq$ $2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}+1$. Therefore as discussed in the earlier cases, we can move $2^{\left\lceil\frac{2(3 m-2)}{3}\right\rceil}-1$ pebbles from G_{2} to $u_{3 m-2}$ or $v_{3(m-1)}$ and hence we can reach any vertex in $G_{1}-\left\{u_{1}, v_{1}\right\}$. By symmetricity, we can reach any vertex in the graph $B(3 m+1)$.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2(4) (1989), 467-472.
[2] J. A. Foster, H. S. Snevily, The 2-pebbling property and a conjecture of Graham's, Graphs Comb. 16 (2000), 231-244.
[3] R. Feng, J. Y. Kim, Graham's pebbling conjecture of production complete bipartite graph, Sci. China Ser. A, 44(2001), 817-822.
[4] R. Feng, J. Y. Kim, Pebbling numbers of some graphs, Sci. China Ser. A, 45(2002), 470-478.
[5] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& digraphs, Fourth edition, CRC Press, Boca Raton, 2005.
[6] D.S. Herscovici and A.W. Higgins, The Pebbling Number of $C_{5} \times C_{5}$, Discrete Math. 187(1-3) (1998), 123-135.
[7] G.H. Hurlbert, A survey of graph pebbling, Congr. Numerantium, 139 (1999), 41-64.
[8] A. Lourdusamy and A. P. Tharani, On t-pebbling graphs, Utilitas Math. 87(2012), 331-342.
[9] A. Lourdusamy, A.P. Tharani, t-pebbling conjecture on the products of complete r-partite graphs, Ars Combin. 102 (2011), 201-212.
[10] N. B. Rathod, K.K. Kanani, k-cordial labeling of Triangular Belt, Alternate Triangular Belt, Braid Graph and $Z-P_{n}$, Int. J. Math. Appl. 5(4) (2017), 655-662.
[11] S. S. Wang, Pebbling and Graham's Conjecture, Discrete Math. 226(2001), 431-438.

[^0]: *Corresponding author
 E-mail address: sarathanellai@ gmail.com
 ${ }^{\dagger}$ Reg. No: 12412
 Received November 6, 2020

