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Abstract: In this paper parameters involvedin a single server waiting line system with poisson arrivals and 

Inversegaussian service times are estimated. Also, the same result has been obtained when it is assumed that the 

service time distribution is a finite range model namely, Mukheerji-Islam model, which is a well-known life testing 

model. 
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1. INTRODUCTION 

The Inversegaussian family of distributions are often used in analyzing many of the realistic 

situations arising at life testing, economical analysis, insurance studies etc. The major advantage 

of this distribution is the interpretation of the inversegaussian random variable as the first 

passage time distribution of Brownian motion with positive drift.In textile industries the printing 

or bleaching processed are distribution approximately as Inversegaussian distribution . Here unit 

of cloth is to be taken as customer, the printing or bleaching is viewed as service. In spite of wide 

applicability of the inversegaussian distribution as approximate model of skewed data and having 

simple exact sampling theory. It has been not much utilized in analyzing waiting line systems.  
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2. QUEUEING MODEL WITH INVERSEGAUSSIAN SERVICE TIME DISTRIBUTION 

Consider a single server queueing with infinite capacity having FCFS (First Come First Serve) 

queue discipline. we assume that the arrivals are Poission with arrival rate 𝛌. The service time 

distribution of the process is aninversegaussian of the form. 

𝑓(𝑡; 𝜇, 𝜃) = (
𝜃

2𝜋𝑡3)
1

2⁄

𝑒𝑥𝑝 − {
𝜃(𝜇𝑡−1)2

2.𝑡
} ;  𝜇, 𝜃 ≥ 0; 0 ≤ 𝑡 < ∞    (1) 

       with mean = 
1

𝜇
   and Variance = 

1

𝜃𝜇3
 . 

2.1Maximum Likelihood Estimates 

The 𝜇 and 𝜃 are parameters involved in the service time distribution given in eqn.(1).Consider a 

random sample T1 , T2,……Tn from the population with p.d.feqn.(3)The likelihood function is 

given as     

     𝐿(𝑡; 𝜇, 𝜃) = ∏ 𝑓𝑖(𝑡𝑖; 𝜇, 𝜃)𝑛
𝑖=1  

                                                                 = ∏ (
𝜃

2𝜋𝑡𝑖
3)

1
2⁄

𝑒𝑥𝑝 − {
𝜃(𝜇𝑡𝑖 − 1)2

2. 𝑡𝑖
}

𝑛

𝑖=1

 

                                                  = (
𝜃

2𝜋
)

𝑛
2⁄

∏ (
1

𝑡𝑖
)

3
2⁄

𝑒𝑥𝑝 − {
𝜃

2
∑

(𝜇𝑡𝑖−1)2

𝑡𝑖

𝑛
𝑖=1 }𝑛

𝑖=1             (2) 

Taking logarithm both sides, we have  

 𝐿𝑜𝑔𝐿(𝑡; 𝜇, 𝜃) =
𝑛

2
𝑙𝑜𝑔𝜃 −

𝑛

2
log (2𝜋) −

3

2
∑ 𝑙𝑜𝑔𝑡𝑖 −

𝜃

2
∑

(𝜇𝑡𝑖−1)2

𝑡𝑖

𝑛
𝑖=1

𝑛
𝑖=1                    (3) 

Now, to obtain the maximum likelihood estimator of the parameter 𝜃  partially differentiating 

eqn.(3) with respect to𝜃and equating the resultant to zero, we get  

𝜕

𝜕𝜃
𝐿𝑜𝑔𝐿 = 0 

𝜕

𝜕𝜃
[
𝑛

2
𝑙𝑜𝑔𝜃 −

𝑛

2
log (2𝜋) −

3

2
∑ 𝑙𝑜𝑔𝑡𝑖 −

𝜃

2
∑

(𝜇𝑡𝑖 − 1)2

𝑡𝑖

𝑛

𝑖=1

𝑛

𝑖=1

] = 0 

𝑛

2. 𝜃
−

1

2
∑

(𝜇𝑡𝑖 − 1)2

𝑡𝑖

𝑛

𝑖=1

= 0 

(4) 

Similarly, to obtain the maximum likelihood estimator of the parameter   𝜇  partially 

differentiating eqn.(3) with respect to𝜇   and equating the resultant to zero, we get  
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𝜕

𝜕𝜇
𝐿𝑜𝑔𝐿 = 0 

𝜕

𝜕𝜇
[
𝑛

2
𝑙𝑜𝑔𝜃 −

𝑛

2
log (2𝜋) −

3

2
∑ 𝑙𝑜𝑔𝑡𝑖 −

𝜃

2
∑

(𝜇𝑡𝑖 − 1)2

𝑡𝑖

𝑛

𝑖=1

𝑛

𝑖=1

] = 0 

−𝜃 ∑(𝜇𝑡𝑖 − 1)

𝑛

𝑖=1

= 0 

𝜇 ∑ 𝑡𝑖 − 𝑛

𝑛

𝑖=1

= 0 

�̂� =
𝑛

∑ 𝑡𝑖
𝑛
𝑖=1

=
1

�̅�
 

(5) 

 Now, substituting the maximum likelihood estimate of 𝜇 in eqn.(4) , we get 

𝜃 =
𝑛

∑
(𝜇𝑡𝑖−1)2

𝑡𝑖

𝑛
𝑖=1

 

=
𝑛�̅�2

∑
(𝜇𝑡𝑖−1)2

𝑡𝑖

𝑛
𝑖=1

 

   (6) 

2.2Analysis of the Model 

To analyze the model we will obtain probability generating function of 𝐻𝑛 , the probability that 

there are 𝑛 arrivals during the service time of a customer. 

Let 𝐻𝑛 be the probability that there are 𝑛 arrivals during the service time of a customer. Let 𝐻(𝑧) 

denotes the probability generating function (p.d.f) of 𝐻𝑛 given as  

𝐻(𝑧) = ∑ 𝐻𝑛𝑧𝑛

𝑛

𝑖=1

   ;     |𝑧| ≤ 1 

    (7) 

Following heuristic argument Kendall [12] and Gross and Hariss [9] , the probability 𝐻𝑛 that 

there are 𝑛 arrivals during the service time is given by  

𝐻𝑛 = ∫
𝑒−λt(λt)𝑛

𝑛!

∞

0

(
𝜃

2𝜋𝑡3
)

1
2⁄

𝑒𝑥𝑝 − {
𝜃(𝜇𝑡 − 1)2

2. 𝑡
} 𝑑𝑡 

(8) 
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Then the probability generating function of 𝐻𝑛 is   

𝐻(𝑧) = ∑ 𝑧𝑛

∞

𝑛=0

∫
𝑒−λt(λt)𝑛

𝑛!

∞

0

(
𝜃

2𝜋𝑡3
)

1
2⁄

𝑒𝑥𝑝 − {
𝜃(𝜇𝑡 − 1)2

2. 𝑡
} 𝑑𝑡 

                                    = (
𝜃

2𝜋
)

1
2⁄

∫ 𝑒−λt

∞

0

∑
(λzt)𝑛

𝑛!

∞

𝑛=0

(
1

𝑡3 2⁄
) . 𝑒𝑥𝑝 −

𝜃𝜇2

2
{

𝑡2 +
1

𝜇2 −
2𝑡

𝜇

𝑡
} 𝑑𝑡 

                        = (
𝜃

2𝜋
)

1
2⁄

∫ 𝑒−λt𝑒λzt

∞

0

(
1

𝑡3 2⁄
) . 𝑒𝑥𝑝 −

𝜃𝜇2

2
{

𝑡2 +
1

𝜇2 −
2𝑡

𝜇

𝑡
} 𝑑𝑡 

                                    = (
𝜃

2𝜋
)

1
2⁄

𝑒θμ ∫ 𝑒𝑥𝑝 − {(λ − λz)𝑡}

∞

0

(
1

𝑡3 2⁄
) . 𝑒𝑥𝑝 −

𝜃𝜇2

2
{𝑡 +

1

𝑡𝜇2
} 𝑑𝑡 

                             = (
𝜃

2𝜋
)

1
2⁄

𝑒θμ ∫ (
1

𝑡3 2⁄
)

∞

0

. 𝑒𝑥𝑝 −
𝜃𝜇2

2
{

2(λ − λz)𝑡

𝜃𝜇2
+ 𝑡 +

1

𝑡𝜇2
} 𝑑𝑡 

                                    = (
𝜃

2𝜋
)

1
2⁄

𝑒θμ ∫ (
1

𝑡3 2⁄
)

∞

0

. 𝑒𝑥𝑝 −
𝜃𝜇2

2
{(1 +

2(λ − λz)𝑡

𝜃𝜇2
) 𝑡 +

1

𝑡𝜇2
} 𝑑𝑡 

On further simplification, we get 

𝐻(𝑧) = 𝑒𝑥𝑝 {θμ [1 − (1 +
2(λ − λz)𝑡

𝜃𝜇2
)

1
2⁄

]} 

(9) 

The average number of arrivals during the service time is 

𝐻′(𝑧)⃒𝑧=1 =
λ

𝜇
 

(10)       

Let 𝑃𝑛 be the probability that are 𝑛 customers in the system that are steady state. Let 𝑃(𝑧) be the 

probability generating function of 𝑃𝑛.Therefore, 

  𝑃(𝑧) =
(1−

λ

𝜇
)(1−𝑧)𝑒𝑥𝑝{θμ[1−(1+

2(λ−λz)𝑡

𝜃𝜇2 )

1
2⁄

]}

𝑒𝑥𝑝{θμ[1−(1+
2(λ−λz)𝑡

𝜃𝜇2 )

1
2⁄

]}−𝑧

     (11) 
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By expanding 𝑃(𝑧) and collecting the coefficients of  𝑧𝑛 , we get 𝑃𝑛 be the probability that are 𝑛 

customers in the system. 

The probability that the system is empty is 

                                                          𝑃𝑜 = 1 −
λ

𝜇
                                                                       (12) 

The maximum likelihood estimate of the parameter 𝜇 is given in equation (5). 

After substituting estimated value of 𝜇 in equation (12), we can obtain 𝑃𝑜  for various values of 

λ . we also observe that  𝑃𝑜 is independent of θ i.e.  𝑃𝑜 is not influenced by the variability of the 

service time. 

The average number of customers in the system can be obtained as   

𝐿 = 𝑃′(𝑧)⃒𝑧=1 

                                                                      =
λ[λ+θμ(2μ−λ)]

2(μ−λ)𝜃𝜇2                      (13) 

From the equation (13) it can be observe that the average number of customers in the system 

influenced by θ . The value of L can be computed by uing estimated values of μand θ from 

equation (5) and (6) and various values of λ . 

The variability of the system size can be obtained by using the formula. 

𝑉 = [𝑃′′(𝑧) + 𝑃′(𝑧) − (𝑃′(𝑧))
2

] ⃒𝑧=1 

                                            =
3𝐴2 + (𝜌 − 1)(2𝜌 − 3). 𝐴 − 4. 𝐵 − 6𝜌(2𝜌 − 1)(𝜌 − 1)

12(𝜌 − 1)2
 

(14)                                                                                                                                                  

Where 

𝐴 =
λ2

μ2
(

1

θμ
+ 1) 

𝐵 =
λ3

μ3
(

3

𝜃𝜇2
+

3

θμ
+ 1) 

                 and                                             𝜌 =
λ

𝜇
 

The coefficient of variation (C.V.) of the system size will be  

𝐶. 𝑉 =
√𝑉

𝐿
× 100      (15) 

To various values of λ and estimated values of 𝜇and  , the values of variability of the system size 

and the coefficient can be computed. 
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It has been seen by Murty (1993) that the variability of the system size decreases as 𝜇 increases 

for fixed value of λ and 𝜃. As λ increases the variability of the system size increases fixed value 

of  𝜃 and 𝜇. Further, it has been observed that the coefficient of variation increases as 𝜇 increases 

for fixed value of λ and 𝜃 . As λ increases the coefficient of variation decreases for fixed value 

of  and λ  . As 𝜃 increases the coefficient of variation decreases for fixed value of λ and 𝜃 . For 

given arrival and service rates, the mean value length of M/M/1 and M/1G/1 model are compared 

and it has been observed that when  
1

𝜇
≤ 𝜃 , the mean queue length of M/1G/1 is less than that of 

the M/M/1 model. 

It means that by controlling ′𝜃′ we can control the mean queue length of M/1G/1 model, which 

has influence on the optimal operating policies of the system. Further we can analyze the model 

in a better by using estimated values of 𝜃 and 𝜇 in place of hypothetical value of 𝜃 and. In this 

model we have used only hypothetical value to λ . 

1.3 QUEUEING MODEL WITH MUKHEERJI – ISLAM SERVICE TIME 

       DISTRIBUTION 

Again consider a single server queueing with infinite capacity having FCFS (First Come First 

Serve) queue discipline. we assume that the arrivals are poission with arrival rate 𝛌. But the 

service time distribution of the process is a new finite range probability distribution which is 

introduced by Mukheerji-Islam  (1983) as a life testing model . 

𝑓(𝑡; 𝜇, 𝜃) = (𝑝 𝜃𝑝⁄ )𝑡𝑝−1;    𝑝, 𝜃 ≥ 0; 𝑡 ≥ 0    (16) 

The above model is monotonic decreasing and highly skewed to the right. The graph is J-shaped 

thereby showing the unimodel feature. The distribution function of above model will be 

                                                𝐹(𝑡) = [𝑡 𝜃⁄ ]𝑝                  (17) 

                                   with     𝑚𝑒𝑎𝑛 =
𝑝

𝑝+1
. 𝜃 

                                     and    𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
𝑝

(𝑝+1)2(𝑝+2)
. 𝜃2 

1.3.1 MAXIMUM LIKELIHOOD ESTIMATES 

Under the same consideration as in section 1.2.1 the likelihood function for the model (16) 

is given by 

𝐿(𝑡; 𝜃, 𝑝) = 𝑝𝑛𝜃−𝑛𝑝 ∏ 𝑡𝑖
𝑝−1𝑛

𝑖=1      (18) 

Taking  𝑙𝑜𝑔  onboth the sides, we get  

𝑙𝑜𝑔𝐿 = 𝑛 𝑙𝑜𝑔𝑝 − 𝑛𝑝𝑙𝑜𝑔𝜃 + (𝑝 − 1) ∑ 𝑙𝑜𝑔𝑡𝑖   (19) 
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Differentiating the equation (19) partially with respect to 𝑝 and equating it to zero, 

𝜕𝑙𝑜𝑔𝐿(𝑡)

𝜕𝑝
=

𝑛

𝑝
− 𝑛𝑙𝑜𝑔𝜃 + ∑ 𝑙𝑜𝑔𝑡𝑖 = 0 

The M.L.E of 𝑝 is finally obtained as  

�̂� =
𝑛

𝑛𝑙𝑜𝑔𝜃−∑ 𝑙𝑜𝑔𝑡𝑖
      (20) 

Again, differentiating partially the equation (19) with respect to  𝜃and equating it to zero to 

obtain the M.L.E of 𝜃 

𝜕𝑙𝑜𝑔𝐿(𝑡)

𝜕𝜃
=

𝑛𝑝

𝜃
= 0 

In the solution for M.L.E of 𝜃 the traditional method is not applicable. The M.L.E is obtained 

through order statistic technique. Since the upper limit of the model is , it is convincing to take 

𝑡(𝑛)i.e. maximum 𝑡𝑖 as the M.L.E for the parameter 𝜃  

𝑖. 𝑒.        𝜃 = 𝑡(𝑛) = 𝑚𝑎𝑥(𝑡1, 𝑡2, … … … … . . 𝑡𝑛)  (21) 

1.3.2   ANALYSIS OF THE MODEL 

To analyze the model we will obtain probability generating function of 𝐻𝑛 , the probability that 

there are 𝑛 arrivals during the service time of a customer. 

Let 𝐻𝑛 be the probability that there are 𝑛 arrivals during the service time of a customer. Let 𝐻(𝑧) 

denotes the probability generating function (p.d.f) of 𝐻𝑛 given as  

𝐻(𝑧) = ∑ 𝐻𝑛𝑧𝑛

𝑛

𝑖=1

   ;     |𝑧| ≤ 1 

Following heuristic argument Kendall [12] and Gross and Hariss [9] , the probability 𝐻𝑛 that 

there are 𝑛 arrivals during the service time is given by  

𝐻𝑛 = ∫
𝑒−λt(λt)𝑛

𝑛!

𝜃

0
(

𝑝

𝜃𝑝) 𝑡𝑝−1𝑑𝑡    (22)                                                                           

Then the probability generating function of 𝐻𝑛 is  

𝐻(𝑧) = ∑ 𝑧𝑛

∞

𝑛=0

∫
𝑒−λt(λt)𝑛

𝑛!

𝜃

0

(
𝑝

𝜃𝑝
) 𝑡𝑝−1𝑑𝑡 

= (
𝑝

𝜃𝑝
) ∫ ∑ 𝑧𝑛

∞

𝑛=0

𝑒−λt(λt)𝑛

𝑛!

𝜃

0

𝑡𝑝−1𝑑𝑡 
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= (
𝑝

𝜃𝑝
) ∫ 𝑒−λt ∑

(λzt)𝑛

𝑛!

∞

𝑛=0

𝜃

0

𝑡𝑝−1𝑑𝑡 

= (
𝑝

𝜃𝑝
) ∫ 𝑒−λt𝑒λzt

𝜃

0

𝑡𝑝−1𝑑𝑡 

= (
𝑝

𝜃𝑝
) ∫ 𝑒−(λ−λz)t

𝜃

0

𝑡𝑝−1𝑑𝑡 

            = (
𝑝

𝜃𝑝
) ∫ ∑

(−(λ − λz)t)𝑗

𝑗!

∞

𝑗=0

𝜃

0

𝑡𝑝−1𝑑𝑡 

                = (
𝑝

𝜃𝑝
) ∑

(−(λ − λz)t)𝑗

𝑗!

∞

𝑗=0

∫ 𝑡𝑝+𝑗−1

𝜃

0

𝑑𝑡 

            𝐻(𝑧)  = 𝑝. ∑
(−(λ − λz)t)𝑗

𝑗!

∞

𝑗=0

𝜃𝑗

𝑝 + 𝑗
 

  (23) 

The average number of arrivals during the service time is 

𝐻′(𝑧)⃒𝑧=1 =
p

𝑝+1
. 𝜃. 𝝀     (24) 

Let we denote that  𝜇 =
p

𝑝+1
. 𝜃 (the reciprocal of the mean)then 

𝐻′(𝑧)⃒𝑧=1 =
λ

𝜇
      (25) 

Now, let 𝑃𝑛 be the probability that are ′𝑛′customers in the system at the steady state and 𝑃(𝑧) be 

the probability generating function of 𝑃𝑛.Then by expanding 𝑃(𝑧) and collecting the coefficient 

of 𝑧𝑛, we get 𝑃𝑛. 

Furthermore, the analysis can be carried out in the same manner as in the section 1.2 for 

inversegaussian service time distribution system. 
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