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Abstract. In this paper, we introduce the notion of almost generalized Zs-contraction with rational expressions and

α-admissible almost generalized Zs-contraction with rational expressions using simulation functions in S-metric

spaces. We prove the existence of fixed points of such mappings in complete S-metric spaces. We give examples

in support of our results.

Keywords: S-metric space; Z -contraction; simulation function; Zs-contraction; almost generalized Zs-contraction

with rational expressions; α-admissible almost generalized Zs-contraction with rational expressions.

2010 AMS Subject Classification: 47H10, 54H25.

1. INTRODUCTION

In 1975, Dass and Gupta [14] introduced a contraction condition involving rational expres-

sions and established the existence of fixed points in complete metric spaces. Later, in 1977,
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Jaggi [19] introduced another contraction condition involving rational expressions which is dif-

ferent from Dass and Gupta’s contraction and proved fixed point results. For more works on

contraction conditions involving rational expressions, we refer [4], [8], [9], [13], [18]. In 2012,

Samet, Vetro, Vetro [25] introduced α-admissible maps to develop fixed results. After this,

various α-admissible contraction conditions were developed specifying its significance in de-

veloping fixed point results. Some of the references in this direction are [2], [5], [20], [21].

On the other hand, in 2012, Sedghi, Shobe and Aliouche [26] introduced S-metric space and

studied its properties. Later, various fixed point results on S-metric spaces were developed ([6],

[10], [15], [16], [24], [27]).

Recently, in 2015, Khojasteh, Shukla, and Radenović [22] introduced Z -contraction by us-

ing a new class of simulation functions which generalizes the Banach contraction. Following

this domain of research, many authors introduced Z -contractions involving simulation func-

tions and proved fixed point results in various metric spaces, for more works we refer to [1], [3],

[7], [12], [17]. Recently, in 2019, Mlaiki, Özgür, and Nihal Taş [23] introduced Zs-contraction

by using the simulation function and proved the existence and uniqueness of fixed points of

such mapping in complete S-metric spaces.

In Section 2, we present preliminaries that are required to develop our main results. Inspired

by the works of Khojasteh, Shukla, and Radenović [22], Mlaiki, Özgür, and Nihal Taş [23], in

Section 3, we introduce almost generalized Zs-contraction with rational expressions and prove

the existence and uniqueness of fixed points of such mappings. In Section 4, we introduce α-

admissible almost generalized Zs-contraction with rational expressions and prove the existence

of fixed points of such mappings in complete S-metric spaces. We draw some corollaries and

give examples in support of our results.

2. PRELIMINARIES

Khojasteh, Shukla and Radenović [22] introduced simulation functions and defined Z - con-

traction with respect to a simulation function as follows.

Definition 2.1. [22] Let ζ : [0,∞)× [0,∞)→ R be a mapping, then ζ is called a simulation

function if it satisfies the following conditions:
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(ζ1) ζ (0,0) = 0;

(ζ2) ζ (t,s)< s− t for all t,s > 0;

(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0,

then limsup
n→∞

ζ (tn,sn)< 0.

We denote the set of all simulation functions by Z . The following are examples of simulation

functions.

Example 2.2. ([7],[22],[23]) Let ζ : [0,∞)× [0,∞)→ R be defined by

(i) ζ (t,s) = λ s− t for all t,s ∈ [0,∞), where λ ∈ [0,1).

(ii) ζ (t,s) = s
1+s − t for all t,s ∈ [0,∞).

(iii) ζ (t,s) = s− kt for all t,s ∈ [0,∞), where k > 1.

(iv) ζ (s, t) = s
1+s − tet for all t,s ∈ [0,∞).

(v) ζ (t,s) = s− ϕ(s)− t for all s, t ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is a lower semi

continuous function such that ϕ(t) = 0 if and only if t = 0.

Definition 2.3. [26] Let X be a nonempty set. An S-metric on X is a function S : X3→ [0,∞)

that satisfies the following conditions: for each x,y,z,a ∈ X

(S1) S(x,y,z)≥ 0,

(S2) S(x,y,z) = 0 if and only if x = y = z and

(S3) S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a).

The pair (X ,S) is called an S-metric space.

Throughout this paper, we denote the set of all reals by R, the set of all natural numbers by

N.

Example 2.4. [26] Let (X ,d) be a metric space. Define S : X3→ [0,∞) by S(x,y,z) = d(x,y)+

d(x,z)+d(y,z) for all x,y,z∈ X . Then S is an S-metric on X and S is called the S-metric induced

by the metric d.

Example 2.5. [16] Let X = R and let S(x,y,z) = |y+ z− 2x|+ |y− z| for all x,y,z ∈ X . Then

(X ,S) is an S-metric space.
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Example 2.6. [27] Let R be the real line. Then S(x,y,z) = |x− z|+ |y− z| for all x,y,z ∈ R is

an S-metric on R. This S-metric is called the usual S-metric on R.

Lemma 2.7. [26] In an S-metric space, we have S(x,x,y) = S(y,y,x).

Lemma 2.8. [16] Let (X ,S) be an S-metric space. Then S(x,x,z)≤ 2S(x,x,y)+S(y,y,z).

Definition 2.9. [26] Let (X ,S) be an S-metric space.

(i) A sequence {xn} ⊆ X is said to converge to a point x ∈ X if S(xn,xn,x)→ 0 as n→ ∞.

That is, for each ε > 0, there exists n0 ∈ N such that for all n≥ n0, S(xn,xn,x)< ε and

we denote it by lim
n→∞

xn = x.

(ii) A sequence {xn} ⊆ X is called a Cauchy sequence if for each ε > 0, there exists n0 ∈N

such that S(xn,xn,xm)< ε for all n,m≥ n0.

(iii) An S-metric space (X ,S) is said to be complete if each Cauchy sequence in X is conver-

gent.

Lemma 2.10. [26] Let (X ,S) be an S-metric space. If the sequence {xn} in X converges to x,

then x is unique.

Lemma 2.11. [26] Let (X ,S) be an S-metric space. If there exist sequences {xn} and {yn} in X

such that lim
n→∞

xn = x and lim
n→∞

yn = y, then lim
n→∞

S(xn,xn,yn) = S(x,x,y).

Lemma 2.12. [10] Let (X ,S) be an S-metric space. Let {xn}, {yn} be two sequences in X and

{xn} converges to x in X . Then lim
n→∞

S(xn,xn,yn) = lim
n→∞

S(x,x,yn).

Definition 2.13. [26] Let (X ,S) be an S-metric space. A mapping F : X → X is said to be a

contraction if there exists a constant 0≤ K < 1 such that

(2.1) S(Fx,Fx,Fy)≤ KS(x,x,y), for all x,y ∈ X .

Theorem 2.14. [26] Let (X ,S) be a complete S-metric space and F : X → X a contraction.

Then F has a unique fixed point in X.
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Lemma 2.15. ([6], [15]) Let (X ,S) be an S-metric space and {xn} a

sequence in X such that

lim
n→∞

S(xn,xn,xn+1) = 0.

If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences {mk} and {nk}

of positive integers with mk > nk > k such that

S(xmk ,xmk ,xnk)≥ ε with S(xmk−1,xmk−1,xnk)< ε .

Also, we have the following:

(i) lim
k→∞

S(xmk ,xmk ,xnk) = ε (ii) lim
k→∞

S(xmk−1,xmk−1,xnk) = ε

(iii) lim
k→∞

S(xmk ,xmk ,xnk−1) = ε (iv) lim
k→∞

S(xmk−1,xmk−1,xnk−1) = ε .

3. ALMOST GENERALIZED Zs-CONTRACTIONS WITH RATIONAL EXPRESSIONS

Definition 3.1. Let (X ,S) be an S-metric space. Let T : X → X be a mapping. If there exist a

ζ ∈Z and L≥ 0 such that

(3.1) ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z))≥ 0

for all x,y,z ∈ X , where M(x,y,z) = max{S(x,y,z), S(y,y,Ty)[1+S(x,x,T x)]
1+S(x,y,z) , S(z,z,T z)[1+S(x,x,T x)]

1+S(x,y,z) ,

S(z,z,T z)[1+S(y,y,Ty)]
1+S(x,y,z) , S(y,y,T x)[1+S(x,x,Ty)]

1+S(x,y,z) , 1
3
[S(z,z,Ty)+S(y,y,T z)][1+S(z,z,T x)]

1+S(x,y,z) }

and N(x,y,z) = min{S(x,x,T x),S(y,y,T x),S(z,z,T x), S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) }. Then T is called an

almost generalized Zs-contraction with rational expressions.

Lemma 3.2. Let (X ,S) be an S-metric space. If T is an almost generalized Zs-contraction with

rational expressions and T has a fixed point, then the fixed point is unique.

Proof. Suppose that x,y ∈ X are two fixed points of T such that x 6= y. By using (3.1), we get

(3.2) 0≤ ζ (S(T x,T x,Ty),M(x,x,y)+LN(x,x,y)),

where

M(x,x,y)=max{S(x,x,y), S(x,x,T x)[1+S(x,x,T x)]
1+S(x,x,y) , S(y,y,Ty)[1+S(x,x,T x)]

1+S(x,x,y) , 1
3
[S(y,y,T x)+S(x,x,Ty)][1+S(y,y,T x)]

1+S(x,x,y) }

= max{S(x,x,y),0, 1
3
[S(y,y,x)+S(x,x,y)][1+S(y,y,x)]

1+S(x,x,y) }= S(x,x,y)

and N(x,x,y) = min{S(x,x,T x),S(y,y,T x), S(x,x,T x)[1+S(x,x,T x)]
1+S(x,x,y) }= 0.

Now from (3.2) and by using (ζ2), we get
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0≤ ζ (S(x,x,y),S(x,x,y))< S(x,x,y)−S(x,x,y) = 0,

a contradiction. Therefore x = y. �

Theorem 3.3. Let (X ,S) be a complete S-metric space and T : X→ X be an almost generalized

Zs-contraction with rational expressions with respect to ζ , then T has a unique fixed point in

X, and the sequence {xn} defined by xn = T xn−1 for all n ∈ N is Cauchy in X, lim
n→∞

xn = u (say)

in X and u is a fixed point of T in X.

Proof. Let x0 ∈ X and the sequence {xn} be defined as xn = T xn−1 for all n ∈ N.

If xn0 = xn0+1 = T xn0 for some n0, then xn0 is a fixed point of T .

Therefore we assume that xn 6= xn+1 i.e., S(xn,xn,xn+1)> 0 for all n≥ 0.

STEP 1: We now prove that lim
n→∞

S(xn,xn,xn+1) = 0.

From (3.1), we have

(3.3) 0≤ ζ (S(T xn−1,T xn−1,T xn),M(xn−1,xn−1,xn)+LN(xn−1,xn−1,xn)),

where

M(xn−1,xn−1,xn) = max{S(xn−1,xn−1,xn),
S(xn−1,xn−1,T xn−1)[1+S(xn−1,xn−1,T xn−1)]

1+S(xn−1,xn−1,xn)
,

S(xn,xn,T xn)[1+S(xn−1,xn−1,T xn−1)]
1+S(xn−1,xn−1,xn)

,

1
3
[S(xn,xn,T xn−1)+S(xn−1,xn−1,T xn)][1+S(xn,xn,T xn−1)]

1+S(xn−1,xn−1,xn)
}

= max{S(xn−1,xn−1,xn),S(xn,xn,xn+1),

1
3
[S(xn,xn,xn)+S(xn−1,xn−1,xn+1)][1+S(xn,xn,xn)]

1+S(xn−1,xn−1,xn)
}

= max{S(xn−1,xn−1,xn),S(xn,xn,xn+1),
1
3S(xn−1,xn−1,xn+1)}

≤max{S(xn−1,xn−1,xn),S(xn,xn,xn+1),

1
3 [2S(xn−1,xn−1,xn)+S(xn,xn,xn+1)]}

= max{S(xn−1,xn−1,xn),S(xn,xn,xn+1)}

and

N(xn−1,xn−1,xn) = min{S(xn−1,xn−1,T xn−1),S(xn,xn,T xn−1),

S(xn−1,xn−1,T xn−1)[1+S(xn−1,xn−1,T xn−1)]
1+S(xn−1,xn−1,xn)

}

= min{S(xn,xn,xn−1),S(xn,xn,xn),S(xn−1,xn−1,xn)}= 0.

If M(xn−1,xn−1,xn) = S(xn,xn,xn+1) for some n, then from (3.3) and by using (ζ2), we get

0≤ ζ (S(xn,xn,xn+1),S(xn,xn,xn+1))< S(xn,xn,xn+1)−S(xn,xn,xn+1) = 0,
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a contradiction. Therefore M(xn−1,xn−1,xn) = S(xn−1,xn−1,xn) for all n ∈ N. Then from (3.3)

and by using (ζ2), we get

0≤ ζ (S(xn,xn,xn+1),S(xn−1,xn−1,xn))< S(xn−1,xn−1,xn)−S(xn,xn,xn+1)

which implies that

(3.4) S(xn,xn,xn+1)< S(xn−1,xn−1,xn) for all n ∈ N.

Therefore the sequence {S(xn,xn,xn+1)} is decreasing and converges to some r ≥ 0. Assume

that r > 0. Let tn = S(xn,xn,xn+1) and sn = S(xn−1,xn−1,xn).

Since lim
n→∞

tn = lim
n→∞

sn = r > 0, by using (3.1) and the condition (ζ3),

we get 0≤ limsup
n→∞

ζ (S(xn,xn,xn+1),S(xn−1,xn−1,xn))< 0,

a contradiction. Therefore r = 0. That is

(3.5) lim
n→∞

S(xn,xn,xn+1) = 0.

STEP 2: We now prove that {xn} is a Cauchy sequence.

On the contrary, suppose that {xn} is not Cauchy. Then there exist an ε > 0 and sequence of

positive integers {mk} and {nk} with mk > nk ≥ k such that S(xmk ,xmk ,xnk)≥ ε and

S(xmk−1,xmk−1,xnk)< ε . Then by Lemma 2.15, we have

(3.6) lim
k→∞

S(xmk ,xmk ,xnk) = ε

and

(3.7) lim
k→∞

S(xmk−1,xmk−1,xnk−1) = ε.

Now, we have

S(xmk−1,xmk−1,xnk−1)≤M(xmk−1,xmk−1,xnk−1)

= max{S(xmk−1,xmk−1,xnk−1),
S(xmk−1,xmk−1,T xmk−1)[1+S(xmk−1,xmk−1,T xmk−1)]

1+S(xmk−1,xmk−1,xnk−1)
,

S(xnk−1,xnk−1,T xnk−1)[1+S(xmk−1,xmk−1,T xmk−1)]

1+S(xmk−1,xmk−1,xnk−1)
,

1
3 [S(xnk−1,xnk−1,T xmk−1)

+S(xmk−1,xmk−1,T xnk−1)]
[1+S(xnk−1,xnk−1,T xmk−1)]

1+S(xmk−1,xmk−1,xnk−1)
}

= max{S(xmk−1,xmk−1,xnk−1),
S(xmk−1,xmk−1,xmk )[1+S(xmk−1,xmk−1,xmk )]

1+S(xmk−1,xmk−1,xnk−1)
,
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S(xnk−1,xnk−1,xnk )[1+S(xmk−1,xmk−1,xmk )]

1+S(xmk−1,xmk−1,xnk−1)
,

1
3 [S(xnk−1,xnk−1,xmk)+S(xmk−1,xmk−1,xnk)]

[1+S(xnk−1,xnk−1,xmk )]

1+S(xmk−1,xmk−1,xnk−1)
}

≤max{S(xmk−1,xmk−1,xnk−1),
S(xmk−1,xmk−1,xmk )[1+S(xmk−1,xmk−1,xmk )]

1+S(xmk−1,xmk−1,xnk−1)
,

S(xnk−1,xnk−1,xnk )[1+S(xmk−1,xmk−1,xmk )]

1+S(xmk−1,xmk−1,xnk−1)
,

1
3 [2S(xnk−1,xnk−1,xnk)+S(xnk ,xnk ,xmk)+2S(xmk−1,xmk−1,xmk)

+S(xmk ,xmk ,xnk)]
[1+2S(xmk ,xmk ,xmk−1)+S(xmk−1,xmk−1,xnk−1)]

1+S(xmk−1,xmk−1,xnk−1)
}.

On letting k→ ∞, and by using (3.5), (3.6) and (3.7), we have

ε ≤ lim
k→∞

M(xmk−1,xmk−1,xnk−1)≤ ε . That is

(3.8) lim
k→∞

M(xmk−1,xmk−1,xnk−1) = ε.

We have

N(xmk−1,xmk−1,xnk−1) = min{S(xmk−1,xmk−1,T xmk−1),S(xnk−1,xnk−1,T xmk−1),
S(xmk−1,xmk−1,T xmk−1)[1+S(xmk−1,xmk−1,T xmk−1)]

1+S(xmk−1,xmk−1,xnk−1)
}

= min{S(xmk−1,xmk−1,xmk),S(xnk−1,xnk−1,xmk),
S(xmk−1,xmk−1,xmk )[1+S(xmk−1,xmk−1,xmk )]

1+S(xmk−1,xmk−1,xnk−1)
}.

On letting k→ ∞ and by using (3.5), we get

(3.9) lim
k→∞

N(xmk−1,xmk−1,xnk−1) = 0.

Let t ′k = S(xmk ,xmk ,xnk) and s′k =M(xmk−1,xmk−1,xnk−1)+LN(xmk−1,xmk−1,xnk−1) and by using

(3.5)-(3.9), we obtain that lim
k→∞

t ′k = lim
k→∞

s′k = ε > 0 for all k.

Now, by (3.1) and by (ζ3), we have

0≤ limsup
k→∞

ζ (S(T xmk−1,T xmk−1,T xnk−1),M(xmk−1,xmk−1,xnk−1)+LN(xmk−1,xmk−1,xnk−1))

< 0, a contradiction.

Therefore {xn} is a Cauchy sequence. Since (X ,S) is a complete S-metric space, there exists

a u ∈ X such that lim
n→∞

xn = u.

STEP 3: We now prove that u is a fixed point of T . Suppose that Tu 6= u. Then S(u,u,Tu)> 0.

Let t ′n = S(T xn,T xn,Tu) = S(xn+1,xn+1,Tu) and s′n = M(xn,xn,u)+LN(xn,xn,u), where

M(xn,xn,u) = max{S(xn,xn,u),
S(xn,xn,T xn)[1+S(xn,xn,T xn)]

1+S(xn,xn,u)
, S(u,u,Tu)[1+S(xn,xn,T xn)]

1+S(xn,xn,u)
,

1
3
[S(u,u,T xn)+S(xn,xn,Tu)][1+S(u,u,T xn)]

1+S(xn,xn,u)
}
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= max{S(xn,xn,u),
S(xn,xn,xn+1)[1+S(xn,xn,xn+1)]

1+S(xn,xn,u)
, S(u,u,Tu)[1+S(xn,xn,xn+1)]

1+S(xn,xn,u)
,

1
3
[S(u,u,xn+1)+S(xn,xn,Tu)][1+S(u,u,xn+1)]

1+S(xn,xn,u)
}.

On letting n→ ∞, we have lim
n→∞

M(xn,xn,u) = S(u,u,Tu).

We have

N(xn,xn,u) = min{S(xn,xn,T xn),S(u,u,T xn),
S(xn,xn,T xn)[1+S(xn,xn,T xn)]

1+S(xn,xn,u)
}

= min{S(xn,xn,xn+1),S(u,u,xn+1),
S(xn,xn,xn+1)[1+S(xn,xn,xn+1)]

1+S(xn,xn,u)
}.

On letting n→ ∞, we have lim
n→∞

N(xn,xn,u) = 0.

Therefore we have lim
n→∞

t ′n = lim
n→∞

s′n = S(u,u,Tu)> 0 and by (ζ2) and (ζ3),

0≤ limsup
k→∞

ζ (S(T xn,T xn,Tu),M(xn,xn,u)+LN(xn,xn,u))< 0,

a contradiction. Therefore u = Tu. By Lemma 3.2, this fixed point u is unique. �

Corollary 3.4. Let (X ,S) be a complete S-metric space and ζ ∈Z . Suppose that there exists

L≥ 0 such that

(3.10) ζ (S(T x,T x,Ty),M(x,x,y)+LN(x,x,y))≥ 0

for all x,y ∈ X, where M(x,x,y) = max{S(x,x,y), S(x,x,T x)[1+S(x,x,T x)]
1+S(x,x,y) ,

S(y,y,Ty)[1+S(x,x,T x)]
1+S(x,x,y) , 1

3
[S(y,y,T x)+S(x,x,Ty)][1+S(y,y,T x)]

1+S(x,x,y) }

and N(x,x,y) = min{S(x,x,T x),S(y,y,T x), S(x,x,T x)[1+S(x,x,T x)]
1+S(x,x,y) }. Then T has a unique fixed

point in X.

Proof. By choosing y = x and z = y in the inequality (3.1), proof of this corollary follows from

Theorem 3.3. �

Corollary 3.5. Let (X ,S) be a complete S-metric space and T : X × X → X be a mapping

satisfying the following condition:

(3.11) S(T x,Ty,T z)≤ λM(x,y,z)

for all x,y,z∈ X, where M(x,y,z) is defined as in the inequality (3.1). Then T has a unique fixed

point in X.

Proof. If we choose simulation function ζ as ζ (t,s) = λ s− t for all s, t ≥ 0, where λ ∈ [0,1),

then the inequality (3.11) is a special case of the inequality (3.1) so that from Theorem 3.3, the

conclusion of this corollary follows.
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�

Remark 3.6. Theorem 2.14 follows as a corollary to Corollary 3.5.

Corollary 3.7. Let (X ,S) be a complete S-metric space and T : X × X → X be a mapping

satisfying

(3.12) S(T x,Ty,T z)≤M(x,y,z)−ϕ(M(x,y,z))

for all x,y,z ∈ X, where ϕ : [0,∞)→ [0,∞) is a lower semi continuous function with ϕ(t) = 0 if

and only if t = 0, and M(x,y,z) is defined as in the inequality (3.1). Then T has a unique fixed

point in X.

Proof. Follows by choosing ζ (t,s) is as in the Example 2.2 (v), L = 0 in the inequality (3.1)

and by applying Theorem 3.3. �

The following example is in support of Theorem 3.3.

Example 3.8. Let X = [1
4 ,

1
2 ]. We define S : X3→ [0,∞) by

S(x,y,z) =

 0 if x = y = z

max{x,y,z} otherwise.

We define T : X → X by

T x =

 4x2 if x ∈ [1
4 ,

1
3 ]

1
3 if x ∈ (1

3 ,
1
2 ].

We define ζ : [0,∞)× [0,∞)→ R by ζ (t,s) = 1
2s− t, s, t ≥ 0. Then ζ is a simulation function.

Let x,y,z ∈ X . We now verify the inequality (3.1).

i.e., ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z))≥ 0.

Case (i): Let x,y,z ∈ [1
4 ,

1
3 ].

We assume without loss of generality, we assume that x > y > z.

We have S(T x,Ty,T z) = 4x2, S(x,y,z) = x, S(x,x,T x) = 4x2, S(y,y,T x) = 4x2, S(z,z,T x) = 4x2,
S(y,y,T x)[1+S(x,x,Ty)]

1+S(x,y,z) = 4x2[1+S(x,x,4y2)]
1+x = 4x2[1+max{x,4y2}]

1+x and

N(x,y,z) = min{4x2, 4x2[1+max{x,4y2}]
1+x }= 4x2.

We consider
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ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(4x2))−4x2 ≥ 0 for any L≥ 2.

In this case, the inequality (3.1) holds for any L≥ 2.

Case (ii): Let x,y,z ∈ (1
3 ,

1
2 ]. We assume that x > y > z.

S(T x,Ty,T z) = 0 so that the inequality (3.1) holds trivially for any L≥ 0 in this case.

Case (iii): Let x ∈ [1
4 ,

1
3 ] and y,z ∈ (1

3 ,
1
2 ]. We assume that y > z.

We have S(T x,Ty,T z)=max{4x2, 1
3}, S(x,y,z)= y, S(x,x,T x)= 4x2, S(y,y,T x)=max{y,4x2},

S(z,z,T x)=max{z,4x2} and S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) =max{y,4x2} [1+max{x, 1

3}]
1+y = 4

3(1+y) max{y,4x2}.

Subcase (i):If y > z≥ 4x2 then we have

S(y,y,T x) = y, S(z,z,T x) = z, S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4y

3(1+y) and

N(x,y,z) = min{4x2,y,z, 4y
3(1+y)}= min{4x2, 4y

3(1+y)}.

If N(x,y,z) = 4x2 and S(T x,Ty,T z) = 4x2 then the inequality (3.1) holds for any L≥ 2. (similar

as in Case (i)).

If N(x,y,z) = 4x2 and S(T x,Ty,T z) = 1
3 , then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(4x2))− 1

3 > 0 for any L≥ 4.

If N(x,y,z) = 4y
3(1+y) and S(T x,Ty,T z) = 4x2 then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(y+L( 4y

3(1+y)))−4x2 > 0 for any L≥ 4.

If N(x,y,z) = 4y
3(1+y) and S(T x,Ty,T z) = 1

3 then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(y+L( 4y

3(1+y)))−
1
3 > 0 for any L≥ 4.

Therefore in this case the inequality (3.1) holds for any L≥ 4.

Subcase (ii): If z < y≤ 4x2 then we have

S(T x,Ty,T z) = 4x2, S(y,y,T x) = 4x2, S(z,z,T x) = 4x2, S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4x2( 4

3(1+y)), and
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N(x,y,z) = min{4x2,4x2( 4
3(1+y))}= 4x2( 4

3(1+y)).

We have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(4x2( 4

3(1+y))))−4x2 > 0 for any L≥ 4.

Subcase (iii): If z≤ 4x2 < y then we have

S(T x,Ty,T z) = 4x2, S(y,y,T x) = y, S(z,z,T x) = 4x2, S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4y

3(1+y)

and N(x,y,z) = min{4x2,y, 4y
3(1+y)}= min{4x2, 4y

3(1+y)}.

In this case the inequality (3.1) holds for any L≥ 4 as in Subcase(i) of Case (iii).

Case (iv): Let x,y ∈ [1
4 ,

1
3 ] and z ∈ (1

3 ,
1
2 ]. We assume that x > y.

We have S(T x,Ty,T z) = S(4x2,4y2, 1
3) = max{4x2, 1

3}, S(x,y,z) = z, S(x,x,T x) = 4x2,

S(y,y,T x) = 4x2, S(z,z,T x) = max{z,4x2}, and S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4x2 [1+max{x,4y2}]

1+z .

Subcase (i): If x≥ 4y2 and z≤ 4x2 then

we have S(T x,Ty,T z) = 4x2, S(z,z,T x) = 4x2, S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4x2(1+x

1+z )

and N(x,y,z) = min{4x2,4x2(1+x
1+z )}= 4x2(1+x

1+z ).

In this case, we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(4x2(1+x

1+z )))−4x2 > 0 for any L≥ 4.

Subcase (ii): If x≥ 4y2 and z≥ 4x2 then

we have S(z,z,T x) = z, S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4x2[1+x]

(1+z)

and N(x,y,z) = min{4x2,z,4x2(1+x
1+z )}= 4x2(1+x

1+z ).

If S(T x,Ty,T z) = 4x2 then the inequality holds as in Subcase(i) of Case (iv).

If S(T x,Ty,T z) = 1
3 then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(z+L(4x2(1+x

1+z )))−
1
3 > 0 for any L≥ 5.

In this case the inequality (3.1) holds for any L≥ 5.

Subcase (iii): If x≤ 4y2 and z≥ 4x2
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then S(z,z,T x) = z, S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4x2(1+4y2

1+z )

and N(x,y,z) = min{4x2,z,4x2(1+4y2

1+z )}= 4x2(1+4y2

1+z ).

If S(T x,Ty,T z) = 4x2 then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(4x2(1+4y2

1+z )))−4x2 > 0 for any L≥ 4.

If S(T x,Ty,T z) = 1
3 then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(4x2(1+4y2

1+z )))− 1
3 > 0 for any L≥ 4.

Subcase (iv): If x≤ 4y2 and z≤ 4x2,

we have S(T x,Ty,T z) = 4x2, S(z,z,T x) = 4x2, S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4x2(1+4y2

1+z )

and N(x,y,z) = min{4x2,4x2(1+4y2

1+z )}.

If N(x,y,z) = 4x2 then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)≥ 0 for any L≥ 2.

If N(x,y,z) = 4x2(1+4y2

1+z ) then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(4x2(1+4y2

1+z )))−4x2 > 0 for any L≥ 4.

In this case the inequality (3.1) holds for any L≥ 4.

Case (v): Let x,z ∈ [1
4 ,

1
3 ] and y ∈ (1

3 ,
1
2 ]. We assume that x < z.

In this case, we have S(T x,Ty,T z) = S(4x2, 1
3 ,4z2) = max{1

3 ,4z2},

S(x,x,T x) = 4x2, S(y,y,T x) = max{y,4x2}, S(z,z,T x) = max{z,4x2} and
S(y,y,T x)[1+S(x,x,Ty)]

1+S(x,y,z) = max{y,4x2} [1+max{x, 1
3}]

1+y = max{y,4x2} 4
3(1+y) .

Subcase (i): Let y≤ 4x2 and 1
3 ≤ 4z2.

In this case, we have S(T x,Ty,T z) = 4z2, S(y,y,T x) = 4x2, S(z,z,T x) = 4x2,
S(y,y,T x)[1+S(x,x,Ty)]

1+S(x,y,z) = 4x2( 4
3(1+y)), and N(x,y,z) = min{4x2,4x2( 4

3(1+y))}=
16x2

3(1+y) .

We consider
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ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)

= 1
2(L(

16x2

3(1+y)))−4z2 ≥ 0 for any L≥ 4.

Subcase (ii): Let 4x2 ≤ z < y and 1
3 ≥ 4z2.

In this case, we have S(T x,Ty,T z) = 1
3 , S(y,y,T x) = y, S(z,z,T x) = z,

S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4y

3(1+y) and N(x,y,z) = min{4x2,y,z, 4y
3(1+y)}= min{4x2, 4y

3(1+y)}.

If N(x,y,z) = 4x2 then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(y+L(4x2))− 1

3 > 0 for any L≥ 4.

If N(x,y,z) = 4y
3(1+y) then we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(y+L( 4y

3(1+y)))−
1
3 > 0 for any L≥ 4.

Subcase (iii): Let z≤ 4x2 < y and 4z2 ≤ 1
3 .

In this case, we have S(T x,Ty,T z) = 1
3 , S(y,y,T x) = y, S(z,z,T x) = 4x2,

S(y,y,T x)[1+S(x,x,Ty)]
1+S(x,y,z) = 4y

3(1+y) and N(x,y,z) = min{4x2,y, 4y
3(1+y)} = min{4x2, 4y

3(1+y)}. We have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z))> 0 (similar as in Subcase (ii) of Case (v)).

Subcase (iv): Let y≥ 4x2 and 1
3 ≤ 4z2.

In this case, we have S(T x,Ty,T z) = 4z2 and N(x,y,z) = min{4x2, 4y
3(1+y)}.

We consider

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(y+LN(x,y,z))−4z2 > 0 for any L≥ 4.

Case (vi): Let z ∈ [1
4 ,

1
3 ] and x,y ∈ (1

3 ,
1
2 ]. We assume that x > y.

S(T x,Ty,T z) = max{1
3 ,4z2}, S(x,y,z) = x; S(x,x,T x) = x, S(y,y,T x) = y, S(z,z,T x) = 1

3 ,
S(y,y,T x)[1+S(x,x,Ty)]

1+S(x,y,z) =
y[1+max{x, 1

3}]
1+x = y, and N(x,y,z) = min{x,y, 1

3}=
1
3 .

In this case, we have

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)
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≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(y+L(1

3))−S(T x,Ty,T z)> 0 for any L≥ 4.

Case (vii): Let y ∈ [1
4 ,

1
3 ] and x,z ∈ (1

3 ,
1
2 ]. We assume that z > x.

S(T x,Ty,T z) = max{1
3 ,4y2}, S(x,y,z) = z, S(x,x,T x) = x,

S(y,y,T x) = 1
3 , S(z,z,T x) = z and S(y,y,T x)[1+S(x,x,Ty)]

1+S(x,y,z) = 1
3(

[1+max{x,4y2}]
1+z ).

Subcase (i): If 1
3 < 4y2 ≤ x < z then

we have S(T x,Ty,T z) = 4y2 and N(x,y,z) = min{x, 1
3 ,z,

1
3(

1+x
1+z )}=

1
3(

1+x
1+z ).

In this case,

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(z+L(1

3(
1+x
1+z )))−4y2 > 0 for any L≥ 4.

Subcase (ii): If 1
3 < x≤ 4y2 < z then

S(T x,Ty,T z) = 4y2 and N(x,y,z) = min{x, 1
3 ,z,

1
3(

1+4y2

1+z )}= 1
3(

1+4y2

1+z ).

We consider

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(z+L(1

3(
1+4y2

1+z )))−4y2 > 0 for any L≥ 4.

Subcase (iii): If 1
3 < x < z≤ 4y2 then

we have S(T x,Ty,T z) = 4y2 and N(x,y,z) = min{x, 1
3 ,z,

1
3(

1+4y2

1+z )}= 1
3 .

We consider

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(S(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

= 1
2(z+L(1

3))−4y2 > 0 for any L≥ 4.

Subcase (iv): If 4y2 ≤ 1
3 < x < z then

we have S(T x,Ty,T z) = 1
3 and N(x,y,z) = min{x, 1

3 ,z,
1
3(

1+x
1+z )}=

1
3(

1+x
1+z ).

We consider

ζ (S(T x,Ty,T z),M(x,y,z)+LN(x,y,z)) = 1
2(M(x,y,z)+LN(x,y,z))−S(T x,Ty,T z)

≥ 1
2(LN(x,y,z))−S(T x,Ty,T z)
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= 1
2(L(

1+x
1+z ))−

1
3 > 0 for any L≥ 4.

In this case the inequality (3.1) holds for any L≥ 4.

Therefore T is an almost generalized Zs-contraction with rational expressions and T satisfies

all the hypothesis of Theorem 3.3 for any L≥ 5 and T has a unique fixed point 1
4 .

Here we prove that the inequality (2.1) fails to hold, for x = 1
4 , y = 1

3 in (2.1), we have

S(T x,T x,Ty) = S(1
4 ,

1
4 ,

4
9) =

4
9 and S(x,x,y) = S(1

4 ,
1
4 ,

1
3) =

1
3 .

In this case, we have

S(T x,T x,Ty) = 4
9 � λ (1

3) = λS(x,x,y) for any 0 ≤ λ < 1. Hence by Remark 3.6, we have

Theorem 3.3 is a generalization of Theorem 2.14.

4. α -ADMISSIBLE ALMOST GENERALIZED Zs-CONTRACTIONS WITH RATIONAL EX-

PRESSIONS

Definition 4.1. [11] Let (X ,S) be an S-metric space. Let T : X→ X and α : X×X×X→ [0,∞).

We say that T is α-admissible, if x,y,z ∈ X , α(x,y,z)≥ 1 =⇒ α(T x,Ty,T z)≥ 1.

Definition 4.2. Let (X ,S) be an S-metric space. An α-admissible mapping T on X is said to be

triangular α-admissible if

α(x,x,z)≥ 1 and α(z,z,y)≥ 1 implies α(x,x,y)≥ 1.

Lemma 4.3. Let T : X → X be a triangular α-admissible mapping. Assume that there exists

x0 ∈ X such that α(x0,x0,T x0) ≥ 1. Define a sequence {xn} by xn = T xn−1 for each n ∈ N .

Then we have α(xm,xm,xn)≥ 1 for all m,n ∈ N with m < n.

Proof. Let x0 ∈ X such that α(x0,x0,T x0)≥ 1. Since T is α-admissible, we have

α(T x0,T x0,T x1)≥ 1. That is α(x1,x1,x2)≥ 1.

On continuing this process, we get α(xn,xn,xn+1)≥ 1, for n = 0,1,2, ... .

Now suppose that m < n. We have α(xm,xm,xm+1)≥ 1.

Again since T is α-admissible, we have α(T xm,T xm,T xm+1)≥ 1.

That is α(xm+1,xm+1,xm+2)≥ 1.

Since T is triangular α-admissible, we have α(xm,xm,xm+2)≥ 1.

Also, we have α(xm+2,xm+2,xm+3)≥ 1.
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Since T is triangular α-admissible, we have α(xm,xm,xm+3)≥ 1.

Now α(xm+2,xm+2,xm+3)≥ 1 and since T is triangular α-admissible, we have

α(xm,xm,xm+3)≥ 1. On continuing this process, we get α(xm,xm,xn)≥ 1, for all m,n ∈N with

m < n. �

Definition 4.4. Let (X ,S) be an S-metric space. Let T : X → X be an α-admissible mapping. If

there exists a ζ ∈Z and L≥ 0 such that

(4.1) ζ (α(x,y,z)S(T x,Ty,T z),M(x,y,z)+LN(x,y,z))≥ 0,

for all x,y,z ∈ X with x 6= y 6= z, where

M(x,y,z) = max{S(x,y,z), S(x,x,T x)S(y,y,Ty)
S(x,y,z) , S(x,x,T x)S(z,z,T z)

S(x,y,z) , S(y,y,Ty)S(z,z,T z)
S(x,y,z) , S(x,x,Ty)S(y,y,T x)

S(x,y,z) ,

S(y,y,T z)S(z,z,Ty)
S(x,y,z) , S(z,z,T x)S(x,x,T z)

S(x,y,z) , S(y,y,Ty)S(x,x,Ty)
S(x,y,z) , S(x,x,T x)S(x,x,Ty)

S(x,y,z) , S(z,z,T z)S(z,z,T x)
S(x,y,z) }

and N(x,y,z) = min{S(x,x,T x),S(y,y,T x),S(z,z,T x)}. Then T is called an α-admissible al-

most generalized Zs-contraction with rational expressions.

Theorem 4.5. Let (X ,S) be a complete S-metric space and T : X → X be an α-admissible

almost generalized Zs-contraction with rational expressions. Suppose that

(i) T is triangular α-admissible

(ii) there exists x0 ∈ X such that α(x0,x0,T x0)≥ 1

(iii) either T is continuous or

whenever {xn} is a sequence in X such that α(xn,xn,xn+1)≥ 1 for all n and xn→ x ∈ X

as n→ ∞, then there exists a subsequence {xnk} of {xn} such that α(xnk ,xnk ,x)≥ 1 for

all k.

Then there exists u ∈ X such that Tu = u.

Proof. Let x0 ∈ X and the sequence {xn} be defined as xn = T xn−1 for all n ∈ N.

If xn0 = xn0+1 = T xn0 for some n0, then xn0 is a fixed point of T .

Therefore we assume that xn 6= xn+1, i.e., S(xn,xn,xn+1)> 0 for all n≥ 0.

STEP 1: We now prove that lim
n→∞

S(xn,xn,xn+1) = 0.

By (ii) there exists x0 ∈ X such that α(x0,x0,T x0)≥ 1.

That is α(x0,x0,x1)≥ 1. Since T is α-admissible, we get α(x1,x1,x2)≥ 1. On continuing this
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process, we obtain

(4.2) α(xn,xn,xn+1)≥ 1 for all n.

From (4.1) and (4.2), we have

(4.3) 0≤ ζ (α(xn,xn,xn+1)S(T xn,T xn,T xn+1),M(xn,xn,xn+1)+LN(xn,xn,xn+1)).

Here M(xn,xn,xn+1) = max{S(xn,xn,xn+1),S(xn+1,xn+1,xn+2)} and N(xn,xn,xn+1) = 0.

If M(xn,xn,xn+1) = S(xn+1,xn+1,xn+2) for some n, then from (4.3) and by using (ζ2), we get

0≤ ζ (α(xn,xn,xn+1)S(xn+1,xn+1,xn+2),S(xn+1,xn+1,xn+2))

< S(xn+1,xn+1,xn+2)−α(xn,xn,xn+1)S(xn,xn,xn+1)

which implies that

S(xn+1,xn+1,xn+2)≤ α(xn,xn,xn+1)S(xn,xn,xn+1)< S(xn+1,xn+1,xn+2), a contradiction.

Therefore M(xn,xn,xn+1) = S(xn,xn,xn+1) for all n ∈N. Then from (4.3) and by using (ζ2), we

get

0≤ ζ (α(xn,xn,xn+1)S(xn+1,xn+1,xn+2),S(xn,xn,xn+1))

< S(xn,xn,xn+1)−α(xn,xn,xn+1)S(xn+1,xn+1,xn+2) which implies that

S(xn+1,xn+1,xn+2)≤ α(xn,xn,xn+1)S(xn+1,xn+1,xn+2)< S(xn,xn,xn+1)(4.4)

for all n = 0,1,2, ... . Therefore the sequence {S(xn,xn,xn+1)} is decreasing and converges to

some s≥ 0. Assume that s > 0.

Let pn = α(xn,xn,xn+1)S(xn+1,xn+1,xn+2) and qn = S(xn,xn,xn+1).

Since lim
n→∞

pn = lim
n→∞

qn = s > 0, by using (4.1) and the condition (ζ3), we have

0≤ limsup
n→∞

ζ (α(xn,xn,xn+1)S(xn+1,xn+1,xn+2),S(xn,xn,xn+1)< 0,

a contradiction. Therefore s = 0. That is

(4.5) lim
n→∞

S(xn,xn,xn+1) = 0.

STEP 2: We now prove that {xn} is Cauchy.

On the contrary, suppose that {xn} is not Cauchy. Then there exist an ε > 0 and sequence of

positive integers {mk} and {nk} with mk > nk ≥ k such that S(xmk ,xmk ,xnk)≥ ε and
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S(xmk−1,xmk−1,xnk)< ε . Then by Lemma 2.15, we have

(4.6) lim
k→∞

S(xmk ,xmk ,xnk) = ε

and

(4.7) lim
k→∞

S(xmk+1,xmk+1,xnk+1) = ε.

Now, we have

S(xnk ,xnk ,xmk)≤M(xnk ,xnk ,xmk)

= max{S(xnk ,xnk ,xmk),
S(xnk ,xnk ,T xnk )S(xnk ,xnk ,T xnk )

S(xnk ,xnk ,xmk )
,

S(xnk ,xnk ,T xnk )S(xmk ,xmk ,T xmk )

S(xnk ,xnk ,xmk )
,

S(xnk ,xnk ,T xmk )S(xmk ,xmk ,T xnk )

S(xnk ,xnk ,xmk )
,

S(xmk ,xmk ,T xnk )S(xnk ,xnk ,T xmk )

S(xnk ,xnk ,xmk )
,

S(xmk ,xmk ,T xmk )S(xmk ,xmk ,T xnk )

S(xnk ,xnk ,xmk )
}

= max{S(xnk ,xnk ,xmk),
S(xnk ,xnk ,xnk+1)S(xnk ,xnk ,xnk+1)

S(xnk ,xnk ,xmk )
,

S(xnk ,xnk ,xnk+1)S(xmk ,xmk ,xmk+1)

S(xnk ,xnk ,xmk )
,

S(xnk ,xnk ,xmk+1)S(xmk ,xmk ,xnk+1)

S(xnk ,xnk ,xmk )
,

S(xmk ,xmk ,xnk+1)S(xnk ,xnk ,xmk+1)

S(xnk ,xnk ,xmk )
,

S(xmk ,xmk ,xmk+1)S(xmk ,xmk ,xnk+1)

S(xnk ,xnk ,xmk )
}.

On letting k→ ∞, and by using (4.5), (4.6) and (4.7), we have

ε ≤ lim
k→∞

M(xnk ,xnk ,xmk)≤ ε . That is

(4.8) lim
k→∞

M(xnk ,xnk ,xmk) = ε.

Also, N(xnk ,xnk ,xmk) = min{S(xnk ,xnk ,T xnk),S(xmk ,xmk ,T xnk)}.

On letting k→ ∞ and by using (4.5), we have

(4.9) lim
k→∞

N(xnk ,xnk ,xmk) = 0.

By Lemma 4.3, we have α(xnk ,xnk ,xmk)≥ 1. Now, by using (3.1), we have

0≤ ζ (α(xnk ,xnk ,xmk)S(T xnk ,T xnk ,T xmk),M(xnk ,xnk ,xmk)+LN(xnk ,xnk ,xmk))

< M(xnk ,xnk ,xmk)+LN(xnk ,xnk ,xmk)−α(xnk ,xnk ,xmk)S(xnk+1,xnk+1,xmk+1).

That is

S(xnk+1,xnk+1,xmk+1)≤α(xnk ,xnk ,xmk)S(xnk+1,xnk+1,xmk+1)<M(xnk ,xnk ,xmk)+LN(xnk ,xnk ,xmk).

Let pk = α(xnk ,xnk ,xmk)S(xnk+1,xnk+1,xmk+1) and sk = M(xnk ,xnk ,xmk)+LN(xnk ,xnk ,xmk) and

by using (4.5)-(4.9), we obtain that lim
k→∞

pk = lim
k→∞

sk = ε > 0 for all k.

Now, by (4.1) and by (ζ3), we have
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0≤ limsup
k→∞

ζ (α(xnk ,xnk ,xmk)S(xnk+1,xnk+1,xmk+1),M(xnk ,xnk ,xmk)+LN(xnk ,xnk ,xmk))< 0,

a contradiction. Thus ε = 0.

Therefore {xn} is a Cauchy sequence. Since (X ,S) is a complete S-metric space, there exists a

u ∈ X , such that lim
n→∞

xn = u.

STEP 4: We now prove that u is a fixed point of T . Suppose that (i) holds. Then we have

u = lim
n→∞

xn+1 = lim
n→∞

T xn = T ( lim
n→∞

xn) = Tu.

Therefore u = Tu.

Now assume that (ii) holds. Then there exists a subsequence {xnk} of {xn} such that

α(xnk ,xnk ,u)≥ 1 for all k. By (4.1), we have

(4.10) 0≤ ζ (α(xnk ,xnk ,u)S(T xnk ,T xnk ,Tu),M(xnk ,xnk ,u)+LN(xnk ,xnk ,u)).

Here M(xnk ,xnk ,u) = max{S(xnk ,xnk ,u),
S(xnk ,xnk ,T xnk )S(xnk ,xnk ,T xnk )

S(xnk ,xnk ,u)
,

S(xnk ,xnk ,T xnk )S(u,u,Tu)
S(xnk ,xnk ,u)

,

S(xnk ,xnk ,Tu)S(u,u,T xnk )

S(xnk ,xnk ,u)
,

S(u,u,T xnk )S(xnk ,xnk ,Tu)
S(xnk ,xnk ,u)

,
S(u,u,Tu)S(u,u,T xnk )

S(xnk ,xnk ,u)
}

= max{S(xnk ,xnk ,u),
S(xnk ,xnk ,xnk+1)S(xnk ,xnk ,xnk+1)

S(xnk ,xnk ,u)
,

S(xnk ,xnk ,xnk+1)S(u,u,Tu)
S(xnk ,xnk ,u)

,

S(xnk ,xnk ,Tu)S(u,u,xnk+1)

S(xnk ,xnk ,u)
,

S(u,u,xnk+1)S(xnk ,xnk ,Tu)
S(xnk ,xnk ,u)

,
S(u,u,Tu)S(u,u,xnk+1)

S(xnk ,xnk ,u)
}.

On letting n→ ∞, we get lim
n→∞

M(xnk ,xnk ,u) = 0.

Also, lim
n→∞

N(xn,xn,u) = 0. Now, by (4.10), we have

0≤ ζ (α(xnk ,xnk ,u)S(xnk+1,xnk+1,Tu),M(xnk ,xnk ,u)+LN(xnk ,xnk ,u))

< M(xnk ,xnk ,u)+LN(xnk ,xnk ,u)−α(xnk ,xnk ,u)S(xnk+1,xnk+1,Tu)

which implies that

S(xnk+1,xnk+1,Tu) = S(T xnk ,T xnk ,Tu)

≤ α(xnk ,xnk ,u)S(xnk+1,xnk+1,Tu)

< M(xnk ,xnk ,u)+LN(xnk ,xnk ,u).

On letting k→ ∞, we get that S(u,u,Tu)≤ 0. Thus u = Tu. �

Corollary 4.6. Let (X ,S) be a complete S-metric space and ζ ∈Z . Suppose that there exists

L≥ 0 such that

(4.11) ζ (α(x,x,y)S(T x,T x,Ty),M(x,x,y)+LN(x,x,y))≥ 0
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for all x,y ∈ X, where M(x,x,y) and N(x,x,y) are obtained from (4.1). Assume that (i), (ii) and

(iii) of Theorem 4.5 hold. Then T has a fixed point in X.

Proof. By choosing y = x and z = y in the inequality (4.1), proof of this corollary follows from

Theorem 4.5. �

Corollary 4.7. Let (X ,S) be a complete S-metric space and T : X → X be a mapping satisfying

(4.12) α(x,y,z)S(T x,Ty,T z)≤ λM(x,y,z)

for all x,y,z ∈ X, where M(x,y,z) is defined as in the inequality (4.1). Assume that (i), (ii) and

(iii) of Theorem 4.5 hold. Then T has a fixed point in X.

Proof. If we choose simulation function ζ as ζ (t,s) = λ s− t for all s, t ≥ 0, where λ ∈ [0,1),

then the inequality (4.12) is a special case of the inequality (4.1) so that from Theorem 4.5, the

conclusion of this corollary follows.

�

Corollary 4.8. Let (X ,S) be a complete S-metric space and T : X → X be a mapping satisfying

(4.13) α(x,y,z)S(T x,Ty,T z)≤M(x,y,z)−ϕ(M(x,y,z))

for all x,y,z ∈ X, where ϕ : [0,∞)→ [0,∞) is a lower semi continuous function with ϕ(t) = 0 if

and only if t = 0 and M(x,y,z) is defined as in the inequality (4.1). Assume that (i), (ii) and (iii)

of Theorem 4.5 hold. Then T has a fixed point in X.

Proof. Follows by choosing ζ (t,s) is as in the Example 2.2 (v), L = 0 in the inequality (4.1)

and by applying Theorem 4.5. �

The following example is in support of Theorem 4.5.

Example 4.9. Let X = [1
4 ,1]. We define S : X3→ [0,∞) by

S(x,y,z) =

 0 if x = y = z

max{x,y,z} otherwise.
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We define T : X → X by

T x =

 1− x2 if x ∈ [1
4 ,

31
50)

1 if x ∈ [31
50 ,1].

We define ζ : [0,∞)× [0,∞)→R by ζ (t,s) = s−2t for all t,s ∈ [0,∞). Then ζ ∈Z . We define

α : X×X×X → [0,∞) by

α(x,y,z) =

 1 if 31
50 ≤ x,y≤ 1, 31

50 < z≤ 1; or x = y = z = 31
50

0 otherwise.

Here T is α-admissible. For, assume that α(x,y,z))≥ 1.

Then we have either x,y ∈ [31
50 ,1], z ∈ (31

50 ,1] or x = y = z = 31
50 .

If x,y ∈ [31
50 ,1] and z ∈ (31

50 ,1] then α(T x,Ty,T z) = α(1,1,1) = 1.

If x = y = z = 31
50 then α(T x,Ty,T z) = α(1,1,1) = 1.

Also, T is triangular α-admissible. Let α(x,x,y)≥ 1 and α(y,y,z)≥ 1.

Subcase (i) Let 31
50 ≤ y≤ 1, 31

50 < z≤ 1 and x = y = 31
50 . Then we have α(x,x,z) = 1.

Subcase (ii) Let 31
50 ≤ x≤ 1, 31

50 < y≤ 1 and 31
50 ≤ y≤ 1, 31

50 < z≤ 1. Then α(x,x,z) = 1.

Subcase (iii) Let x = y = 31
50 and y = z = 31

50 then we have α(x,x,z) = 1.

Let x,y,z ∈ X . We now verify that

ζ (α(x,y,z)S(T x,Ty,T z),M(x,y,z)+LN(x,y,z))≥ 0.

Let x,y,z ∈ [31
50 ,1]. If 1

2 < z≤ 1 then we have

2α(x,y,z)S(T x,Ty,T z) = 2S(1,1,1) = 0. We consider

ζ (α(x,y,z)S(T x,Ty,T z),M(x,y,z)+LN(x,y,z))=M(x,y,z)+LN(x,y,z)−2α(x,y,z)S(T x,Ty,T z)

= M(x,y,z)+LN(x,y,z)≥ 0 for any L≥ 0..

In all the remaining cases, the inequality (4.1) holds trivially for any L≥ 0.

Therefore T is an α-admissible almost generalized Zs-contraction with rational expressions.

For x0 = 1, we have α(x0,x0,T x0) = 1.

Suppose that {xn} is a sequence in [31
50 ,1] such that α(xn,xn,xn+1) = 1 and xn→ x.

If x 6= 31
50 , then we have α(xn,xn,x) = 1.

If x = 31
50 , then we choose subsequence {xnk} of {xn} such that xnk =

31
50 for each k. Then we

have α(xnk ,xnk ,x) = 1. Therefore T satisfies all the hypotheses of Theorem 4.5 for any L ≥ 0

and T has two fixed points 1, −1+
√

5
2 .
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Here we prove that the inequality (2.1) fails to hold, for x = 1
4 , y = 1 in (2.1), we have

S(T x,T x,Ty) = S(15
16 ,

15
16 ,1) = 1 and S(x,x,y) = S(1

4 ,
1
4 ,1) = 1.

In this case, we have S(T x,T x,Ty) = 1� λ (1) = λS(x,x,y) for any 0≤ λ < 1.
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