Available online at http://scik.org
J. Math. Comput. Sci. 11 (2021), No. 3, 2768-2779
https://doi.org/10.28919/jmcs/5202
ISSN: 1927-5307

ANALYSIS ON PROPERTIES OF VECTOR SPACES OVER PRE A*-ALGEBRAS
JONNALAGADDA VENKATESWARA RAO ${ }^{1}$, T. NAGESWARA RAO ${ }^{2}$, S.R. RAVI KUMAR EMANI ${ }^{3}$, M.N. SRINIVAS ${ }^{4, *}$, B.J. BALAMURUGAN ${ }^{5}$
${ }^{1}$ Department of Mathematics, School of Science and Technology, United States International University, Nairobi, Kenya
${ }^{2}$ Department of Mathematics, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram-522502, Guntur, Andhra Pradesh, India
${ }^{3}$ V.R.Siddhartha Engineering College, Vijawawada, Andhra Pradesh, India
${ }^{4}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India
${ }^{5}$ Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai-600127, Tamilnadu, India

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. In this work the perception of vector space is initiated over Pre A*-algebras. This article discusses the basic properties of Pre A^{*}-vector spaces, the notion of norm and their worth while representations.

Keywords: pre A*-algebra; pre A*-vector space; normed pre A*-vector space; Boolean pre A*-ring; R-module; pre A*-metric space; Boolean semiring.

2010 AMS Subject Classification: 06E05, 06E25, 06E99, 06B10, 16P60, 54 E 35.

[^0]
1. Introduction and Preliminaries

Fernando et al. [1] originated the algebra of conditional logic and an equational 3-valued generality of Boolean algebra established on logic functions "or", "and" and "not". Manes [3] invented the Ada, in view of C-algebras. KoteswaraRao [2], started the idea of A*-algebra and contemplated its equality with [3], [1] and its connection with 3-ring. Venkateswara Rao [7] introduced the thought of Pre A*-algebra as reduct of [2], analogous to [1]. Satyanarayana et al. [4] well-thought-out the partial ordering. Venkateswara Rao, et al. [8] acknowledged the thought of Congruences. The idea of vector spaces over Boolean algebras started by Subrahmanyam [6] is the inspiration to the current examination. Further, Subrahmanyam [5] started the connection between the Boolean vector spaces with Boolean semirings. This manuscript imparts the vector spaces over Pre A^{*}-algebra. In other words simply, the vector space here is a vector space in which scalars are elements in Pre A^{*}-algebra.
Definition 1.1 [7]: A Pre A^{*}-algebra is a system ($\left.\mathrm{A}, \wedge, \vee,(-)^{\sim}\right)$ satisfying, for $\mathrm{x}, \mathrm{y} \mathrm{z}$ in A :
(a) $x^{\sim \sim}=\mathrm{x}$ (double tilde rule)
(b) $\mathrm{x} \wedge \mathrm{x}=\mathrm{x}$ (idempotent rule respecting \wedge)
(c) $\mathrm{x} \wedge \mathrm{y}=\mathrm{y} \wedge \mathrm{x}($ commutative rule respecting $\wedge)$
(d) $(x \wedge y)^{\sim}=x^{\sim} \vee y^{\sim}($ De Morgan's rule $)$
(e) $x \wedge(y \wedge z)=(x \wedge y) \wedge z$ (associative rule respecting $\wedge)$
(f) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)(\wedge$ is distributive over $\vee)$
(g) $\mathrm{x} \wedge \mathrm{y}=\mathrm{x} \wedge\left(x^{\sim} \vee \mathrm{y}\right)$ (representation).

Example 1.1 [7]: A three element Pre A^{*} algebra $(\mathbf{3}=\{0,1,2\})$ by means of $\wedge, \vee,(-)^{\sim}$ described as:

\wedge	0	1	2		\vee	0	1	2		x	x^{\sim}
0	0	0	2		0	0	1	2		0	1
1	0	1	2		1	1	1	2		1	0
2	2	2	2		2	2	2	2		2	2

Note 1.1 [7]: From the above (Example 1.1) we note the following: (a) 2 is merely the self-tilde element. (b) 1 is the \wedge identity element. (c) 0 is the \vee identity element. (d) 2 is the uncertain element.

Example 1.2 [7]: The two element Pre A* algebra $(2=\{0,1\})$ by means of $\wedge, \vee,(-)^{\sim}$ described as:

\wedge	0	1		\vee	0	1		x	x^{\sim}
0	0	0		0	0	1		0	1
1	0	1		1	1	1		1	0

2. Pre A*- Vector Spaces (Results and Discussions)

Definition 2.1: Let V be an abelian group under addition, also A be a Pre A^{*}-algebra. V is named a Pre A^{*}-vector space over A if there exists a mapping from, $A \times V \rightarrow V$ such that, $\forall \mathrm{u}$, $\mathrm{v} \in \mathrm{V}$ and a, b in A,
(i) $a \cdot(u+v)=a \cdot u+a \cdot v$
(ii) $\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{v})=(\mathrm{a} \wedge \mathrm{b}) \cdot \mathrm{v}$
(iii) If $\mathrm{a} \wedge \mathrm{b}=0$, then $(\mathrm{a} \vee \mathrm{b}) \cdot \mathrm{v}=\mathrm{a} \cdot \mathrm{v}+\mathrm{b} \cdot \mathrm{v}$
(iv) $1 . v=v$ for all $v \in V$.

Note 2.1: We note the product a v from the ordered pairs of the above as scalar multiplication.

Theorem 2.1:

Let A be Pre A^{*}-algebra. For all a, b in $A, a+b=\left(a \wedge b^{\sim}\right) \vee\left(a^{\sim} \wedge b\right)$ and $a . b=a \wedge b$.
Then (A, +, .) exists as Boolean Pre A*-ring.
Proof: By the expression,
$\left(\mathrm{a} \wedge \mathrm{b}^{\sim}\right) \vee\left(\mathrm{a}^{\sim} \wedge \mathrm{b}\right)=\left(\mathrm{a} \vee\left(\mathrm{a}^{\sim} \wedge \mathrm{b}\right)\right) \wedge\left(\mathrm{b}^{\sim} \vee\left(\left(\mathrm{b}^{\sim}\right)^{\sim} \wedge \mathrm{a}^{\sim}\right)\right)$
$=(\mathrm{a} \vee \mathrm{b}) \wedge(\mathrm{a} \wedge \mathrm{b})^{\sim}$
Hence, $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$, follows by above
Consider, $(\mathrm{a}+\mathrm{b})+\mathrm{c}=\left(\mathrm{a} \wedge \mathrm{b}^{\sim} \wedge \mathrm{c}^{\sim}\right) \vee\left(\mathrm{a}^{\sim} \wedge \mathrm{b} \wedge \mathrm{c}^{\sim}\right) \vee\left(\mathrm{a}^{\sim} \wedge \mathrm{b}^{\sim} \wedge \mathrm{c}\right) \vee(\mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c})$
The above is symmetric in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and therefore, + is associate and commutative.
For any $\mathrm{a} \in A$, consider $\mathrm{a}+0=\left(\mathrm{a} \wedge 0^{\sim}\right) \vee\left(\mathrm{a}^{\sim} \wedge 0\right)$
$=(a \wedge 1) \vee\left(a^{\sim} \wedge a\right)\left(\right.$ since,$\left.a^{\sim} \wedge 0=a^{\sim} \wedge a\right)$
$=\mathrm{a} \wedge\left(1 \vee \mathrm{a}^{\sim}\right)=\mathrm{a} \wedge\left(\mathrm{a}^{\sim} \vee 1\right)=\mathrm{a} \wedge 1$ (by representation $)=\mathrm{a}$.

Similarly, we can see that $0+\mathrm{a}=\mathrm{a}$. Hence, 0 is the additive identity in A .
Further, note that, $\mathrm{a}+\left(\mathrm{a} \wedge \mathrm{a}^{\sim}\right)=\left[\mathrm{a} \wedge\left(\mathrm{a} \wedge \mathrm{a}^{\sim}\right)^{\sim}\right] \vee\left[\mathrm{a}^{\sim} \wedge\left(\mathrm{a} \wedge \mathrm{a}^{\sim}\right)\right]$

$$
\begin{aligned}
& \left.=\left[a \wedge\left(a^{\sim} \vee a\right)\right] \vee\left[\left(a^{\sim} \wedge a^{\sim}\right) \wedge a\right)\right] \\
& =(a \wedge a) \vee\left(a^{\sim} \wedge a\right)=a \vee\left(a^{\sim} \wedge a\right)=a \vee a=a .
\end{aligned}
$$

This leads to $\mathrm{a}+\left(\mathrm{a} \wedge \mathrm{a}^{\sim}\right)=\mathrm{a}$ for each a in A .
Similarly, we can verify that $\left(\mathrm{a} \wedge \mathrm{a}^{\sim}\right)+\mathrm{a}=\mathrm{a}$ for each a in A .
By above, we conclude that $\mathrm{a}+0=\mathrm{a}=\mathrm{a}+\left(\mathrm{a} \wedge \mathrm{a}^{\sim}\right)$ and hence, $\mathrm{a} \wedge \mathrm{a}^{\sim}=0$, the additive identity for each a in A .

To prove that every element of A has additive inverse:
Consider, $\mathrm{a}+\mathrm{b}=\left(\mathrm{a} \wedge \mathrm{b}^{\sim}\right) \vee\left(\mathrm{a}^{\sim} \wedge \mathrm{b}\right)$. Put $\mathrm{b}=\mathrm{a}$.
Then, $\mathrm{a}+\mathrm{a}=\left(\mathrm{a} \wedge \mathrm{a}^{\sim}\right) \vee\left(\mathrm{a}^{\sim} \wedge \mathrm{a}\right)=\mathrm{a} \wedge \mathrm{a}^{\sim}=0$, the additive identity for each a in A (by above).
Hence, a is additive inverse of a in A . Therefore, $(\mathrm{A},+)$ is an abelian group.
Clearly, the multiplication is associative in A (since, \wedge is associative in A).
To prove verify the distributive laws in A.
Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$.
Consider, $a .(b+c)=a \wedge\left[\left(b \wedge c^{\sim}\right) \vee\left(b^{\sim} \wedge c\right)\right]$
$=\left[\mathrm{a} \wedge\left(\mathrm{b} \wedge \mathrm{c}^{\sim}\right)\right] \vee\left[\mathrm{a} \wedge\left(\mathrm{b}^{\sim} \wedge \mathrm{c}\right)\right]$
$\left.=\left[(\mathrm{a} \wedge \mathrm{b}) \wedge \mathrm{c}^{\sim}\right)\right] \vee\left[(\mathrm{a} \wedge \mathrm{c}) \wedge \mathrm{b}^{\sim}\right]$
On the other hand, let us consider,

$$
\begin{aligned}
& a \cdot b+a \cdot c=(a \wedge b)+(a \wedge c) \\
& =\left[(a \wedge b) \wedge(a \wedge c)^{\sim}\right] \vee\left[(a \wedge b)^{\sim} \wedge(a \wedge c)\right] \\
& =\left[(a \wedge b) \wedge\left(a^{\sim} \vee c^{\sim}\right)\right] \vee\left[\left(a^{\sim} \vee b^{\sim}\right) \wedge(a \wedge c)\right] \\
& =\left[(a \wedge b) \wedge a^{\sim}\right] \vee\left[(a \wedge b) \wedge c^{\sim}\right] \vee\left[(a \wedge c) \wedge a^{\sim}\right] \vee\left[(a \wedge c) \wedge b^{\sim}\right] \\
& =\left[\left(a \wedge a^{\sim}\right) \wedge b\right] \vee\left[(a \wedge b) \wedge c^{\sim}\right] \vee\left[\left(a \wedge a^{\sim}\right) \wedge c\right] \vee\left[(a \wedge c) \wedge b^{\sim}\right] \\
& =[(a \wedge 0) \wedge b] \vee\left[(a \wedge b) \wedge c^{\sim}\right] \vee[(a \wedge 0) \wedge c] \vee\left[(a \wedge c) \wedge b^{\sim}\right]\left(\text { since }, a \wedge a^{\sim}=a \wedge 0\right) \\
& =[(a \wedge b) \wedge 0] \vee\left[(a \wedge b) \wedge c^{\sim}\right] \vee[(a \wedge c) \wedge 0] \vee\left[(a \wedge c) \wedge b^{\sim}\right] \\
& =\left\{\left[(a \wedge b) \wedge(a \wedge b)^{\sim}\right] \vee\left[(a \wedge b) \wedge c^{\sim}\right]\right\} \vee\left\{\left[(a \wedge c) \wedge(a \wedge c)^{\sim}\right] \vee\left[(a \wedge c) \wedge b^{\sim}\right]\right\} \\
& \left(\text { since }, a \wedge 0=a \wedge a^{\sim}\right) \\
& =\left[(a \wedge b) \wedge\left((a \wedge b)^{\sim} \vee c^{\sim}\right)\right] \vee\left[(a \wedge c) \wedge\left((a \wedge c)^{\sim} \vee b^{\sim}\right)\right]
\end{aligned}
$$

$=\left[(a \wedge b) \wedge c^{\sim}\right] \bigvee\left[(a \wedge c) \wedge b^{\sim}\right]$
 distributive law. Thus, $(\mathrm{A},+,$.$) is a Pre \mathrm{A}^{*}$-ring with identity 1.

Since, $\mathrm{a} . \mathrm{a}=\mathrm{a} \wedge \mathrm{a}=\mathrm{a}$ for all a in $\mathrm{A},(\mathrm{A},+,$.$) is a Boolean Pre \mathrm{A}^{*}$-ring in which 0 and 1 as required.

Example 2.1: Let A be any Pre A^{*}-algebra and V be the additive group of the resultant Pre A^{*}-ring as in the 2.1 theorem. Then V is an A-vector space if for $a \in A$ and $v \in V$, av in A.

Theorem 2.2: Let R be any ring with 1. Suppose that there is defined a subset A of R as $A=\{r$ $\in R / r^{2}=r$ and $r s=s r$ for all $\left.s \in R\right\}$, set of central idempotents. Then, $\left(A, \vee, \wedge,(-)^{\sim}\right)$ stands as Pre A^{*}-algebra, through operations: $x \vee y=x+y-x . y ; x \wedge y=x . y$ and $x^{\sim}=1-x$, for all $x, y \in A$.

Proof: For that entire x, y in A, we verify the postulates as required.
(i) $\mathrm{x}^{\sim \sim}=\left(\mathrm{x}^{\sim}\right)^{\sim}=(1-\mathrm{x})^{\sim}=1-(1-\mathrm{x})=1-1+\mathrm{x}=\mathrm{x}$.
(ii) and (iii) are clear.
(iv) $(x \wedge y)^{\sim}=(x . y)^{\sim}=1-x . y$.

Also consider $\mathrm{x}^{\sim} \vee \mathrm{y}^{\sim}=(1-\mathrm{x})+(1-\mathrm{y})-(1-\mathrm{x})(1-\mathrm{y})=1-\mathrm{x} y$.
(v) Clearly \wedge is associative.
(vi) Consider, $x \wedge(y \vee z)=x . y+x . z-x . y . z$

Also consider, $(x \wedge y) \vee(x \wedge z)=(x . y) \vee(x . z)=x y+x z-x y z$
(since $\mathrm{x}^{2}=\mathrm{x}$).
Hence, by (I) and (II), the result follows as required.
(vii) Consider, $x \wedge\left(x^{\sim} \vee y\right)=x .(1-x)+x \cdot y-x(1-x) y$. Hence, the result follows as required. Therefore, $\left(\mathrm{A}, \vee, \wedge,(-)^{\sim}\right)$ is an algebra as required.

Illustration 2.2: Let us consider the Pre A^{*}-algebra A and R as in the above 2.2 theorem. If V is the additive group of the ring R, then V is a Pre A^{*} - vector space over $\left(A, \vee, \wedge,(-)^{\sim}\right)$ with the similar scalar product as discussed above.

Illustration 2.3: Let $\left(\mathrm{A}=\mathrm{P}(\mathrm{S}), \wedge, \vee,(-)^{\sim}\right)$ be the Pre A^{*}-algebra of all subsets of a set $\mathrm{S}(\mathrm{A}$ $=P(S)$, power set of $S)$ and $V=\{\mathrm{v} / \mathrm{v}: \mathrm{S} \rightarrow \mathrm{G}\}$, the functions of S into a group G with respect to addition; any $u, v \in V ; a \in A(a=$ subset of $S)$, define, $(u+v)(p)=u(p)+v(p)$ for all $p \in S$
and (av) (p) $=\mathrm{v}$ p if $\mathrm{p} \in \mathrm{a}$; (av) (p) $=0$ if $\mathrm{p} \notin \mathrm{a}$. At that juncture V is a Pre A^{*}-vector space over A.

Illustration 2.4: An illustration of a Pre A^{*} - vector space is $L_{n}(A)=A^{n}$, where, $A^{n}=A \times \cdots \times A$ (n factors). In this instance, we define, the vector addition and scalar multiplication defined as follows:
(i) $\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(\left(a_{1} \wedge b_{1}^{\sim}\right) \vee\left(a_{1}^{\sim} \wedge b_{1}\right), \ldots,\left(a_{n} \wedge b_{n}^{\sim}\right) \vee\left(a_{n}^{\sim} \wedge b_{n}\right)\right)$ for all $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$ and
(ii) $a \cdot\left(b_{1}, \ldots b_{n}\right)=\left(a \wedge b_{1}, \ldots, a \wedge b_{n}\right)$, for all $a \in A$ and $\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$.

Here, + is a binary operation on A^{n} and. (scalar multiplication) is a map from $A \times A^{n} \rightarrow A^{n}$.

Verification: Left to the reader as it is straight forward verification.
Theorem 2.3: Let A^{n} be a Pre A^{*} - vector space over A. Then A^{n} is a Pre A^{*}-algebra.
Proof: Let $u, v \in L_{n}(A)$.
Define, " $u \vee v=\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right) \vee\left(v_{1}, v_{2}, \ldots \ldots, v_{n}\right)=\left(u_{1} \vee v_{1}, u_{2} \vee v_{2}, \ldots \ldots, u_{n} \vee v_{n}\right)$;
$\mathrm{u} \wedge \mathrm{v}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}\right) \wedge\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}\right)=\left(\mathrm{u}_{1} \wedge \mathrm{v}_{1}, \mathrm{u}_{2} \wedge \mathrm{v}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{n}} \wedge \mathrm{v}_{\mathrm{n}}\right)$ and

$$
(\mathbf{u})^{\sim}=\left(\mathbf{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}\right)^{\sim}=\left(\mathbf{u}_{1}^{\sim}, \mathrm{u}_{2}^{\sim}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}^{\sim}\right) .
$$

(1) Consider $u^{\sim \sim}=\left(u^{\sim}\right)^{\sim}=\left(\left(u_{1} \sim, u_{2}^{\sim}, \ldots \ldots, u_{n}^{\sim}\right)\right)^{\sim}=\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)=u$, for all $u \in A^{n}$.
(2) Consider $u \wedge u=\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right) \wedge\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)=\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)=u$, for all u $\in \mathrm{A}^{\mathrm{n}}$.
(3) Let $u, v \in L_{n}(A)$. Consider $u \wedge v=\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right) \wedge\left(v_{1}, v_{2}, \ldots \ldots, v_{n}\right)$
$=\left(v_{1}, v_{2}, \ldots \ldots, v_{n}\right) \wedge\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)=v \wedge u$, for all $u, v \in L_{n}(A) .$.
(4) Consider, $(u \wedge v)^{\sim}$

$$
=\left(\mathrm{u}_{1}^{\sim}, \mathrm{u}_{2}^{\sim}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}^{\sim}\right) \vee\left(\mathrm{v}_{1}^{\sim}, \mathrm{v}_{2}^{\sim}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}^{\sim}\right)
$$

$=u^{\sim} \vee v^{\sim}$, for all $u, v \in A^{n}$.
(5) Consider, $\mathrm{u} \wedge\left(\mathrm{v} \wedge \mathrm{w}=\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}\right) \wedge\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}\right)\right) \wedge\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \ldots, \mathrm{w}_{\mathrm{n}}\right)\right.$ $=(u \wedge v) \wedge w$, for all $u, v, w \in A^{n}$.
(6) Consider, $u \wedge(v \vee w)=\left(u_{1}, u_{2}, \ldots ., u_{n}\right) \wedge\left(\left(v_{1}, v_{2}, \ldots \ldots, v_{n}\right) \vee\left(w_{1}, w_{2}, \ldots \ldots, w_{n}\right)\right)$

$$
=\left(\left(u_{1}, u_{2}, \ldots . ., u_{n}\right) \wedge\left(v_{1}, v_{2}, \ldots . ., v_{n}\right)\right) \vee\left(\left(v_{1}, v_{2}, \ldots . ., v_{n}\right) \wedge\left(w_{1}, w_{2}, \ldots . ., w_{n}\right)\right)
$$

$=(u \wedge v) \vee(u \wedge w)$, for all $u, v, w \in A^{n}$.
(7) Consider, $\mathrm{u} \wedge\left(\mathrm{u}^{\sim} \vee \mathrm{v}\right)=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}\right) \wedge\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}\right)^{\sim} \vee\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}\right)\right)$
$=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{n}}\right) \wedge\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{u} \wedge \mathrm{v}$.
Thus, $\left(\mathrm{A}^{\mathrm{n}}, \wedge, \vee,(-)^{\sim}\right)$ is an algebra as required.
Lemma 2.1: Let V be an arbitrary Pre A^{*}-vector space over a Pre A^{*}-algebra. For all v in V and a in $\mathrm{A}, 0 \mathrm{v}=0$ and $\mathrm{a} 0=0$.

Proof: Let us consider $v=1 v=(0 \vee 1) v=0 v+1 v=0 v+v$. Hence, as required.
Also the second result is obvious. Hence, a $0=0$.
Lemma 2.2: Let V be an arbitrary Pre A^{*}-vector space over A .
Then, $a(-v)=-a v$ for all a in A and v in V.
Proof: Consider $0=\mathrm{a} 0=\mathrm{a}(\mathrm{v}+(-\mathrm{v}))=\mathrm{a} \mathrm{v}+\mathrm{a}(-\mathrm{v})$. Hence, as required.
Note 2.2 [8]: Henceforth, to enable the subsequent consequences, we consider $a, b \in A$ such that $\mathrm{a} \vee \mathrm{b}=1$ (so that $\mathrm{a} \vee \mathrm{a}^{\sim}=1$ and $\mathrm{a} \wedge \mathrm{a}^{\sim}=0$ in A).

Lemma 2.3: Let V be an arbitrary Pre A^{*}-vector space over A. If $a, b \in A$ such that $a \vee b=1$ and $v \in V$, then (i) $a^{\sim} v=v-a v$ and (ii) $(a \vee b) v=a v+b v-a b v$.

Proof: (i) Consider $\mathrm{v}=1 \mathrm{v}=\left(\mathrm{a} \vee \mathrm{a}^{\sim}\right) \mathrm{v}=\mathrm{av}+\mathrm{a}^{\sim} \mathrm{v}$. Hence, the result follows.
(ii) Consider, $(\mathrm{a} \vee \mathrm{b}) \mathrm{v}=\left[\mathrm{a} \vee\left(\mathrm{b} \wedge \mathrm{a}^{\sim}\right)\right] \mathrm{v}\left(\right.$ since, $\left.\mathrm{a} \vee \mathrm{b}=\mathrm{a} \vee\left(\mathrm{b} \wedge \mathrm{a}^{\sim}\right)\right)$
$=a v+\left(b \wedge a^{\sim}\right) v\left(\right.$ since, $\left.a \wedge\left(b \wedge a^{\sim}\right)=0\right)$
$=a v+b\left(a^{\sim} v\right)=a v+b(v+(-a v))=a v+b v-a b v$.
Hence, result as required.
Theorem 2.4:Let V be a Pre A^{*}-vector space over a A, such that $\mathrm{a} \vee \mathrm{b}=1$, for all a, b in A ; and let $\mathrm{R}=(\mathrm{R},+,$.$) be a Boolean Pre \mathrm{A}^{*}$-ring corresponding to A . Then the necessary and sufficient condition for V is a module over R is $\mathrm{v}+\mathrm{v}=0$ for all $\mathrm{v} \in \mathrm{A}$.

Proof: Let $a, b \in R$ and $v \in V$. Let us observe, $(a+b) v=\left(a b^{\sim} \vee a^{\sim} b\right) v=a b^{\sim} v+a^{\sim} b v$ $=a(v-b v)+b(v-a v)=a v+b v-2 a b v$.

Successively, V is an R -module equivalently $2 \mathrm{ab} v=0$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$ and $\mathrm{v} \in \mathrm{V}$, or correspondingly, $\mathrm{v}+\mathrm{v}=0$ for all $\mathrm{v} \in \mathrm{A}$.

Definition 2.2: A Pre A*-vector space V over A is said to be Pre-A*-normed if and only if there exists a mapping $\|\cdot\|: V \rightarrow$ A such that (1) $\|v\|=0$ if and only if $v=0$ and (2) $\|\mathrm{av}\|=\mathrm{a}\|\mathrm{v}\|$ for all $\mathrm{a} \in \mathrm{A}$ and $\mathrm{v} \in \mathrm{V}$.

Note 2.3: The Pre A*-vector spaces of above examples 2.1 and 2.3 are normed.
Theorem 2.5: For a Pre A^{*}-vector space V over A (with $a \vee b=1$ for all a, b in A), the subsequent are equivalent: (1) V is Pre A^{*}-normed (2) To each $v \in V$, there relates an element $a_{v} \in A$ such that (i) $a_{v} v=v$ and (ii) if $b \in A$ and $b v=v$, then $b a_{v}=a_{v}$. (a_{v}, for a specified a, is exceptional).

Proof: Suppose that (1) holds. So V is A-normed. Let $\mathrm{a}_{\mathrm{v}}=\|\mathrm{v}\|$.
(i) Consider, $\left\|v-a_{v} v\right\|=\left\|a_{v}{ }^{\sim} v\right\|=a_{v}{ }^{\sim}\|v\|=a_{v}{ }^{\sim} a_{v}=0$. Hence, $a_{v} v=v$.
(ii) Let $\mathrm{b} \in \mathrm{A}$ and $\mathrm{b} v=\mathrm{v}$. Consider, $\mathrm{a}_{\mathrm{v}}=\|\mathrm{v}\|=\|\mathrm{b} v\|=\mathrm{b}\|\mathrm{v}\|=\mathrm{b} \mathrm{a}_{\mathrm{v}}$. Hence, $\mathrm{b} \mathrm{a}_{\mathrm{v}}=\mathrm{a}_{\mathrm{v}}$.

Suppose that (2) holds.
Suppose $c \in A, v \in V$ and $c v=0$. Then consider, $c^{\sim} v=v-c v=v(\operatorname{asc} v=0)$. Hence, $c^{\sim} v=v$. Then, $c^{\sim} a_{v}=a_{v}$ (By hypothesis). This indicates, $c^{c}{ }^{\sim} a_{v}=c a_{v}$. Hence, $c a_{v}=0\left(\operatorname{asc} c^{\sim} a_{v}=0\right)$. Hence, if $\mathrm{b} \in \mathrm{A}$ and $\mathrm{b}(\mathrm{c} v)=\mathrm{c} v$, then, $\mathrm{b}^{\sim}(\mathrm{c} v)=\mathrm{c} v-\mathrm{b}(\mathrm{c} v)=\mathrm{c} v-\mathrm{c} v=0(\operatorname{as} \mathrm{~b}(\mathrm{c} v)=\mathrm{c}$ v). Therefore, $b^{\sim}(c \mathrm{v})=0$ and hence, $\mathrm{b}^{\sim} \mathrm{c} \mathrm{a}_{\mathrm{v}}=0$.

Consider $\left(\mathrm{c} \mathrm{a}_{\mathrm{v}}\right)(\mathrm{c} v)=\mathrm{cc} \mathrm{a}_{\mathrm{v}} \mathrm{v}=\mathrm{c} v$. Thus, $\left(\mathrm{c} \mathrm{a}_{\mathrm{v}}\right)(\mathrm{c} v)=\mathrm{c} \mathrm{v}$
Also, consider, ($\mathrm{a}_{\mathrm{c} v}$) (c v) $=\mathrm{c} \mathrm{v}$
We conclude that $a_{c} v=c a_{v}$.
Let us define $\|v\|=a_{v}$. By above, $a_{c ~}=\|c v\|$ and $c a_{v}=c\|v\|$.
So therefore, the mapping, $\|\cdot\|$ describes as required.
Corollary 2.1: If V is a Pre A^{*}-normed vector space (over A), then $\|u+v\| \leq\|u\| V\|v\|$ for all $u, v \in V$.

Proof: By above results, we are considering $\|v\|=a_{v}$ (so that $\|v\| v=a_{v} v=v$).
Observe that $(\|u\| \vee\|v\|)(u+v)=\|u\|(u+v)+\|v\|(u+v)-(\|u\| \wedge\|v\|)(u+v)$

$$
=\|\mathbf{u}\| \mathrm{u}+\|\mathrm{u}\| \mathrm{v}+\|\mathrm{v}\| \mathrm{u}+\|\mathrm{v}\| \mathrm{v}-\|\mathrm{u}\|(\|\mathrm{v}\|(\mathrm{u})+\|\mathrm{v}\|(\mathrm{v}))
$$

$=u+\|u\| v+\|v\| u+v-\|v\| u-\|u\| v=u+v$.
Therefore, $\|\mathrm{u}+\mathrm{v}\|=\|(\|\mathrm{u}\| \vee\|\mathrm{v}\|)(\mathrm{u}+\mathrm{v})\|=(\|\mathrm{u}\| \vee\|\mathrm{v}\|)\|(\mathrm{u}+\mathrm{v})\|$.
Here, by the partial order on the Pre A*-algebra A [4], we can observe as required.

Corollary 2.2: If V is a Pre A^{*}-normed vector space, then $d(u, v)=\|u-v\|$ defines Pre A^{*} metric on V .

Proof: (i) Suppose that $d(u, v)=0$ if and only if $\|u-v\|=0$ if and only if $u-v=0$ if and only if $\mathrm{u}=\mathrm{v}$.
(ii) Consider, $\mathrm{d}(\mathrm{u}, \mathrm{v})=\|\mathrm{u}-\mathrm{v}\|=\|(-1)(\mathrm{v}-\mathrm{u})\|=\left\|(\mathrm{v}-\mathrm{u})-(-1)^{\sim}(\mathrm{v}-\mathrm{u})\right\|$
(Since, $a v=v-a^{\sim} v$, for all $a \in A$ and $v \in V$, by above lemma)
$=\|v-u\|=d(v, u)$. Hence, $d(u, v)=d(v, u)$ for all $u, v \in V$.
As the two expressions are symmetric in u and v. Hence, $d(u, v)=d(v, u)$.
(iii) Consider $\mathrm{d}(\mathrm{u}, \mathrm{w})=\|\mathrm{u}-\mathrm{w}\| \leq\|\mathrm{u}-\mathrm{v}\| \vee\|\mathrm{v}-\mathrm{v}\|=\mathrm{d}(\mathrm{u}, \mathrm{v}) \vee \mathrm{d}(\mathrm{v}, \mathrm{w})$.

Thus, d becomes a metric as required.
Definition 2.3 [5]: A system ($\mathrm{R},+,$.) is called a Boolean semiring if it satisfies:
(i) $(\mathrm{R},+)$ is an additive abelian group.
(ii) $(R$, .) is a semigroup of idempotents in the sense, $a \mathrm{a}=\mathrm{a}$, for all $\mathrm{a} \in \mathrm{R}$
(iii) $\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})=\mathrm{a} \cdot \mathrm{b}+\mathrm{a} \cdot \mathrm{c}$ and
(iv) $\mathrm{abc}=\mathrm{b} \mathrm{ac}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$.

Theorem 2.6: Let V be a normed Pre A^{*}-vector space over A and let, for u, v in $V, u v=\|u\|$
v . Then $(\mathrm{V},+,$.$) is a Boolean semiring.$
Proof: $(\mathrm{V},+,$.$) is a Boolean semiring because of the following:$
(1) Note that $(\mathrm{V},+)$ is an additive abelian group;
(2) To verify that ($\mathrm{V},$.$) is a semigroup of idempotents:$

For any $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{V}$, consider ($\mathrm{u} v \mathrm{v}) \mathrm{w}=\|\mathrm{u} v\| \mathrm{w}=\|\mathrm{u}\|\|\mathrm{v}\| \mathrm{w}$.
Also consider, $u(v, w)=\|u\|(v w)=\|u\|\|v\|$ w. Hence, $(u v) w=u(v w)$ for all $u, v, w \in V$.
For any $u \in V, u, u=\|u\| u=u$
(as by previous lemma, $\mathrm{a}_{\mathrm{v}} \mathrm{v}=\mathrm{v}$, and by $\mathrm{a}_{\mathrm{v}}=\|\mathrm{v}\|,\|\mathrm{v}\| \mathrm{v}=\mathrm{v}$).
(3) For any $u, v, w \in V$, let us consider, $u .(v+w)=\|u\| v+\|u\| w$.

Also $u v+u w=\|u\| v+\|u\| w$. Hence, $u .(v+w)=u v+u w$ for all $u, v, w \in V$.
(4) For any $u, v, v \in V$, consider ($u v$) $w=\|u v\| w=\|u\|\|v\|$ w.Also consider, ($v u) w$ $=\|\mathrm{v} \mathbf{u}\| \mathrm{w}=\|\mathrm{v}\|\|\mathrm{u}\| \mathrm{w}=\|\mathrm{u}\|\|\mathrm{v}\| \mathrm{w}$ (since, $\|\mathrm{u}\|,\|\mathrm{v}\| \in \mathrm{A}$ implies, $\|\mathrm{u}\| \wedge\|\mathrm{v}\|=\|\mathrm{v}\| \wedge\|\mathrm{u}\|$ and hence, we follow that $\|\mathrm{u}\|\|\mathrm{v}\|=\|\mathrm{v}\|\|\mathrm{u}\|)$.

Theorem 2.7: If $v \in V$, uniquely as $v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$, where $v_{1}, v_{2}, \ldots, v_{n} \in V$ and $a_{1}, a_{2}, \ldots, a_{n} \in A$, then $a=a_{1} \vee a_{2} \vee \ldots . . \vee a_{n}\left(\right.$ where $a_{i} \wedge a_{j}=a_{i}$ if $i=j$ and is 0 if $i \neq j$) is the duplicator of v such that $a_{i}=b a_{i}$.

Proof: To verify that a $\mathrm{v}=\mathrm{v}$. Consider, $\mathrm{a} v=\left(\mathrm{a}_{1} \vee \mathrm{a}_{2} \vee \ldots . \mathrm{a}_{\mathrm{n}}\right)\left(\mathrm{a}_{1} \mathrm{v}_{1}+\mathrm{a}_{2} \mathrm{v}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)$

$$
=\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) a_{1} \vee_{1}+\cdots+\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) a_{n} v_{n}
$$

$=a_{1}\left(a_{1} v_{1}\right)+a_{2}\left(a_{1} v_{1}\right)+\ldots a_{n}\left(a_{1} v_{1}\right)+\ldots+a_{1}\left(a_{n} v_{n}\right)+a_{2}\left(a_{n} v_{n}\right)+\ldots a_{n}\left(a_{n} v_{n}\right)$
$=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}\left(a_{i} \wedge a_{j}=a_{i}\right.$ if $i=j$ and is 0 if $\left.i \neq j\right)=v$. Hence, $a v=v$.
Suppose that $\mathrm{b} v=\mathrm{v}$ for some $\mathrm{b}=\mathrm{b}_{1} \vee \mathrm{~b}_{2} \vee \ldots . \mathrm{b}_{\mathrm{n}}$, similarly taken as $\mathrm{a}=\mathrm{a}_{1} \vee \mathrm{a}_{2} \vee \ldots . \mathrm{a}_{\mathrm{n}}$. Then, $\mathrm{v}=\mathrm{bv}=\mathrm{b} \mathrm{a}_{1} \mathrm{v}_{1}+\mathrm{b} \mathrm{a}_{2} \mathrm{v}_{2}+\ldots .+\mathrm{b} \mathrm{a}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$.
This implies, $a_{i}=b a_{i}$ for all i (by the uniqueness of v).
Definition 2.4: A finite subset of nonzero elements $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\} \in \mathrm{V}$ is named linearly independent over A if and only if $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0$ and $a_{1}, a_{2}, \ldots, a_{n} \neq 0$ imply that $\mathrm{v}_{1}+\mathrm{v}_{2}+\ldots+\mathrm{v}_{\mathrm{n}}=0$. A subset of nonzero elements of V is called linearly independent over A if and only if every limited subset of S is linearly independent.

Definition 2.5: A subset S of V spans V if and only if each $v \in V$ can be written as a finite sum $\mathrm{v}=\sum_{\mathrm{g}} \in \mathrm{S} \mathrm{a}_{\mathrm{g}} \mathrm{g}, \mathrm{a}_{\mathrm{g}} \mathrm{a}_{\mathrm{h}}=0$ for g different from h and $\mathrm{a}_{\mathrm{g}}=0$ for nearly all g in S .

Definition 2.6: A basis of V is (i) linearly independent subset of V ; and (ii) spans V .
Example 2.5:Let V be a Pre A*-vector space over A as in 2.3 example. Let K be the set of all nonzero constant maps in V. Then, K is a basis of V. Let $K=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\} \subseteq V$. To verify that $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is linearly independent. Suppose that $f_{1} a_{1}+f_{2} a_{2}+\ldots+f_{n} a_{n}=0$ and $\mathrm{f}_{1} . \mathrm{f}_{2} \ldots . \mathrm{f}_{\mathrm{n}} \neq 0$. Then, $\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\mathrm{n}}=0$ (as each f_{i} is a constant function).
Hence, $K=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is linearly independent. Let $v_{1} \in V$ and $a_{v} \in A$ such that $a_{v} u=v$ if $\mathrm{u}=\mathrm{v}$ and 0 if $\mathrm{u} \neq \mathrm{v}$. Then we can see that $\mathrm{v}_{1}=\mathrm{a}_{\mathrm{v}_{1}} \mathrm{v}_{1}+\mathrm{a}_{\mathrm{v}_{2}} \mathrm{v}_{1}+\ldots \mathrm{a}_{\mathrm{v}_{\mathrm{n}}} \mathrm{v}_{1}$. Therefore, K is a basis of V .

Lemma 2.4: Let V be a normed Pre A^{*}-vector space and G^{*} be a basis of V. If $g \in G^{*}$, then, (i) $-\mathrm{g} \in \mathrm{G}^{*}$, (ii) if $\mathrm{g}, \mathrm{h} \in \mathrm{G}^{*}$ in addition $\mathrm{g}+\mathrm{h} \neq 0, \mathrm{~g}+\mathrm{h} \in \mathrm{G}^{*}$.
Proof: As G^{*} spans $V,-g=\sum_{k \in G^{*}} a_{k} k$, where, $a_{k} a_{h}=0$ for $k \neq h$ also $a_{k}=0$, nearby all k $\in G^{*}$. As, $g \neq 0, a_{k} \neq 0$ for some $k(=m$, say $)$ in G^{*}. At that point $-a_{m} g=a_{m}(-g)=a_{m} m$.

Hence, $\mathrm{a}_{\mathrm{m}}(\mathrm{g}+\mathrm{m})=0$. As, $\mathrm{g}, \mathrm{m} \in \mathrm{G}^{*}, \mathrm{a}_{\mathrm{m}} \neq 0$, in addition to G^{*} is independent, $\mathrm{g}+\mathrm{m}=0$ and therefore, $-\mathrm{g}=\mathrm{m} \in \mathrm{G}^{*}$.

If $\mathrm{g}, \mathrm{h} \in \mathrm{G}^{*}$ in addition to $\mathrm{g}+\mathrm{h} \neq 0$, we similarly observe that $\mathrm{a}_{\mathrm{k}}(\mathrm{g}+\mathrm{h})=\mathrm{a}_{\mathrm{k}} \mathrm{k}$ for some $\mathrm{k} \in \mathrm{G}^{*}$ plus $\mathrm{a}_{\mathrm{k}} \neq 0$. This implies $\mathrm{a}_{\mathrm{k}} \mathrm{g}+\mathrm{a}_{\mathrm{k}} \mathrm{h}+\mathrm{a}_{\mathrm{k}}(-\mathrm{k})=0$. As, $\mathrm{k} \in \mathrm{G}^{*}$ infers, $-\mathrm{k} \in \mathrm{G}^{*}, \mathrm{~g}+\mathrm{h}=\mathrm{k} \in \mathrm{G}^{*}$.

Theorem 2.8: If G^{*} is a basis of V , then G^{*} is an additive subgroup G of V .
Lemma 2.5: If $\mathrm{g} \in \mathrm{G}^{*}$, then $\|\mathrm{g}\|=1$.
Proof:If $\|\mathrm{g}\|=\mathrm{a}$, then $\mathrm{a}^{\sim} \mathrm{g}=\mathrm{g}-\mathrm{a} \mathrm{g}=\mathrm{g}-\|\mathrm{g}\| \mathrm{g}=\mathrm{g}-\mathrm{g}=0$. This implies, $\mathrm{a}^{\sim} \mathrm{g}=0$. Since, g $\neq 0$, we must have $\mathrm{a}^{\sim}=0$. Then by above, $0 \mathrm{~g}=\mathrm{g}-\mathrm{ag}$, so, $\mathrm{a} \mathrm{g}=\mathrm{g}$. From this, it follows that a $=1$ and hence, $\|\mathrm{g}\|=1$.

Lemma 2.6: If $u=\sum_{i=1}^{n} a_{i} u_{i}$, where $a_{i} a_{j}=0$ for $i \neq j$, then $\|u\|=\bigvee_{i=1}^{n} a_{i}\left\|u_{i}\right\|$.
Proof: If $n=1$, then $u=a_{1} u_{1}$ and $\|u\|=\left\|a_{1} u_{1}\right\|=a_{1}\left\|u_{1}\right\|$.
Suppose that the result is true for $n-1$. Let $v=\sum_{i=2}^{n} a_{i} u_{i}$ and $b=\|v\|$.
Then $\mathrm{b}=\left\|\sum_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right\|=\bigvee_{\mathrm{i}=2}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}\left\|\mathrm{u}_{\mathrm{i}}\right\|$ and $\mathrm{u}=\mathrm{a}_{1} \mathrm{u}_{1}+\mathrm{v}\left(\right.$ since, $\mathrm{u}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$).
Also, $a_{1} v=a_{1}\left(\sum_{i=2}^{n} a_{i} u_{i}\right)=a_{1} a_{2} u_{2}+a_{1} a_{3} u_{3}+\cdots+a_{1} a_{n} u_{n}=0\left(a_{i} a_{j}=0\right.$ for $\left.i \neq j\right)$.
Hence, $a_{1} u=a_{1} u_{1}$ (by above, since, $a v=0$).
Then, $\|v\|=\left\|\mathbf{u}-\mathrm{a}_{1} \mathbf{u}_{1}\right\|=\left\|\mathbf{u}-\mathrm{a}_{1} \mathbf{u}\right\|\left(\right.$ since, $\left.\mathrm{a}_{1} \mathbf{u}=\mathrm{a}_{1} \mathbf{u}_{1}\right)=\left\|\mathrm{a}_{1} \sim \mathbf{u}\right\|=\mathrm{a}_{1} \sim\|\mathbf{u}\|$.
Hence, $\|v\|=a_{1} \sim\|u\|$.
Thus, $\|\mathrm{u}\|=1\|\mathrm{u}\|=\left(\mathrm{a}_{1} \vee \mathrm{a}_{1}{ }^{\sim}\right)\|\mathrm{u}\|=\mathrm{a}_{1}\|\mathrm{u}\| \vee \mathrm{a}_{1} \sim\|\mathrm{u}\|=\mathrm{a}_{1}\left\|\mathrm{u}_{1}\right\| \vee \mathrm{b}=\bigvee_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}\left\|\mathrm{u}_{\mathrm{i}}\right\|$.
Corollary 2.3: If $u=\sum_{i=1}^{n} a_{i} u_{i}$, where, where $a_{i} a_{j}=0$ for $i \neq j$ and $u_{1}, u_{2}, \ldots u_{n} \in G^{*}$, then $\|u\|=\bigvee_{i=1}^{n} a_{i}$.
Proof: By above results, the proof is immediate.

CONCLUDING REMARKS

This work made a stand to study vector spaces over algebra and its useful characterizations as well. The Pre A^{*}-vector space is initiated and observed its various representations. An nfactored set $\mathrm{L}_{\mathrm{n}}(\mathrm{A})\left(=\mathrm{A}^{\mathrm{n}}=\mathrm{A} \times \mathrm{A} \times \cdots \times \mathrm{A}\right.$ (n -factors) $)$ is observed as a vector space over A and such a Pre A*-vector space is identified as a Pre A*-algebra as well. The notion of normed Pre A^{*}-vector space is initiated and studied its properties. The method of construction of a Boolean semiring from a normed Pre A^{*}-vector space is obtained. It is noted that the basis of the Pre A^{*}-vector space forms a subgroup of the Pre A^{*}-vector space.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] F. Guzmán, C.C. Squier, The algebra of conditional logic, Algebra Univ. 27 (1990), 88-110.
[2] P. KoteswaraRao, A*-Algebra, an If-Then-Else structures, Ph.D. Thesis, Nagarjuna University, India, 1994.
[3] E.G. Manes, Adas and the equational theory of if-then-else, Algebra Univ. 30 (1993), 373-394.
[4] A. Satyanarayana, J. VenkateswaraRao, V. Ramabhadram, P. NirmalaKumari, Partial Orders Fascinating on Pre A*-algebras, Asian J. Math. Stat. 6 (2013), 23-32.
[5] N.V. Subrahmanyam, Boolean semirings, Math. Ann. 148 (1962), 395-401.
[6] N.V. Subrahmanyam, Boolean vector spaces I, Math. Z. 83 (1964), 422-433,
[7] J. VenkateswaraRao, On A*-algebras, Ph.D. Thesis, Nagarjuna University, India, 2000.
[8] J. Venkateswara Rao, K. Srinivasa Rao, Congruence on Pre A*-Algebra, Reflections des ERA-J. Math. Sci. 4(4) (2009), 295-312.

[^0]: *Corresponding author
 E-mail address: mnsrinivaselr@gmail.com
 Received November 13, 2020

