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Abstract. In this paper, we study λ -constacyclic codes over the ring R = Z3[u,v]/〈u2 − u,v2,uv,vu〉 for λ =

(1+ u),(2+ 2u) and 2. We introduce a Gray map from R to Z3
3 and show that the Gray image of a cyclic code

is a quasi-cyclic code of index 3. It is proved that the Gray image of λ -constacyclic code over R is permutation

equivalent to either quasi-cyclic or quasi-twisted code according to the value of λ . Moreover, we determine the

structure of (1+u)-constacyclic codes for an odd length n over R and give some suitable examples.
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1. INTRODUCTION

Cyclic codes are an important class of linear codes in coding theory and have been studied

extensively by mathematicians for the past few decades. Traditionally, cyclic codes have been

studied over finite fields. The discovery of some good non-linear codes over Z2 via Gray map

over Z4 in [9] had motivated the study of cyclic codes over the finite rings. Since then, there

are a lot of works about cyclic codes and their generalizations over finite rings. Some of these

works have been discussed in [1, 4, 15, 21].
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Constacyclic codes are one of the remarkable generalizations of cyclic codes and many times

it has been seen that some linear codes with better parameters are found by using consta-

cyclic codes. In [19], the authors studied linear (1+ u)-constacyclic codes and cyclic codes

over F2 + uF2, u2 = 0 and characterised codes over F2 which are the Gray images of (1+ u)-

constacyclic codes or cyclic codes over F2 +uF2. Later, Karadeniz and Yildiz [13] introduced

(1+ v)-constacyclic codes over F2 + uF2 + vF2 + uvF2 and constructed some optimal binary

codes as the Gray images of the (1+ v)-constacyclic codes over the ring. In [3], Bayram and

Siap introduced the finite ring Z3[v]/〈v3− v〉 and studied the algebraic structures of cyclic and

constacyclic codes over the ring. Later, Dertli, Cengellenmis and Eren [6] studied the struc-

tures of cyclic, constacyclic, quasi-cyclic and their skew codes over the finite commutative ring

Z3 + vZ3 + v2Z3, where v3 = v. They determined a sufficient condition for 1-generator skew

quasi-constacyclic codes to be free. We can refer to [2, 5, 11, 10, 12, 16, 17, 18] for more

studies on the topic.

Recently, Özkan, Dertli and Cengellenmis [17] introduced the finite commutative ring F2 +

u1F2 +u2F2, u2
1 = u1,u2

2 = 0,u1u2 = u2u1 = 0 and studied on (1+u2)-constacyclic codes over

the ring of odd length. It was shown that the Gray image of linear (1+u2)-constacyclic codes

over the ring of odd length is a quasi-cyclic code of index 4 and length 4n over F2.

Being motivated by the above listed works, in this paper we consider the commutative finite

non-chain ring R = Z3[u,v]/〈u2− u,v2,uv,vu〉 of order 27, which can be described as Z3 +

uZ3+vZ3 with u2 = u, v2 = 0, uv = vu = 0, Z3 = {0,1,2} and study λ -constacyclic codes over

the ring, where λ is a unit in R. The paper is organised as follows. In section 2, we give some

basic structures of the ring R and recall standard definitions of codes. Next, we introduce a Gray

map from R to Z3
3 and show that the Gray image of cyclic code is a quasi-cyclic code of index

3. In section 4, we prove that the Gray image of (1+u)-constacyclic and (2+2u)-constacyclic

codes over R are permutation equivalent to a quasi-cyclic and quasi-negacyclic codes over Z3,

respectively. The structure of (1+ u)-constacyclic code is discussed in Section 5 and provide

some suitable examples. Section 6 concludes the paper.
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2. PRELIMINARIES

Let R = Z3[u,v]/〈u2−u,v2,uv,vu〉 and Z3 = {0,1,2}. Then R = {a+ub+ vc | a,b,c ∈ Z3}

is a commutative ring with cardinality 27 and characteristic 3. The set of units of the ring is

U = {1,2,(1+u),(1+v),(1+2v),(2+v),(2+2u),(2+2v),(1+u+v),(1+u+2v),(2+2u+

v),(2+2u+2v)}. These units can be seen as U1 = {1,2,(1+u),(2+2u)}= {λ ∈U |λ 2 = 1}

and U2 = {(1+ v),(1+ 2v),(2+ v),(2+ 2v),(1+ u+ v),(1+ u+ 2v),(2+ 2u+ v),(2+ 2u+

2v)}= {λ ∈U |λ 2 6= 1}. In this work, we use units - 2,(1+u) and (2+2u) of the ring R in the

following discussions. The ideals of the ring R are

I0 = {0}, I1 = R, Iu = {0,u,2u}, Iv = {0,v,2v},

I1+2u = {0,v,2v,1+2u,2+u,1+2u+ v,1+2u+2v,2+u+ v,2+u+2v}, and

Iu+v = {0,u,v,2u,2v,u+ v,2u+ v,u+2v,2u+2v}.

Clearly, R is a semi-local ring with two maximal ideals I1+2u and Iu+v and it is a finite non-

chain ring. The ring R is isomorphic to the ring Z3 + uZ3 + vZ3 with u2 = u,v2 = 0 and uv =

vu = 0.

The following are some of the definitions that will be used in the sequel. For other ba-

sic terms and results not mentioned here, we refer [7, 14, 20]. A linear code C over R of

length n is a R-submodule of Rn. An element of C is called a codeword. A cyclic code

C of length n over R is a linear code with the property that if c = (c0,c1,c2, ...,cn−1) ∈ C,

then σ(c) = (cn−1,c0,c1, ...,cn−2) ∈ C. σ is called cyclic shift operator from Rn to Rn. A

linear code C of length n over R is λ -constacyclic code if c = (c0,c1,c2, ...,cn−1) ∈ C, then

γλ (c) = (λcn−1,c0,c1, ...,cn−2)∈C, where λ is a unit in R. γλ is called λ -constacyclic shift op-

erator from Rn to Rn. If λ =−1, then the constacyclic code is called a negacyclic code. We can

identify each codeword c = (c0,c1,c2, ...,cn−1) ∈C with a polynomial c(x) = c0+c1x+c2x2+

...+ cn−1xn−1 ∈ Rn = R[x]/〈xn− 1〉. With the help of this one-one correspondence between C

and Rn, we have the following results.

Proposition 2.1. A subset C of Rn is a cyclic code of length n if and only if its polynomial

representation is an ideal of Rn = R[x]/〈xn−1〉.
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Proposition 2.2. A subset C of Rn is a constacyclic code of length n if and only if its polynomial

representation is an ideal of Rn,λ = R[x]/〈xn−λ 〉.

Definition 2.3. [6] Let a∈Z3n
3 with a=(a0,a1, ...,an, ...,a2n, ...,a3n−1)= (a(0)|a(1)|a(2)), where

a(i) ∈ Zn
3 for i = 0,1,2 and “|” is the usual vector concatenation. Let ρ be a map from Z3n

3 to

Z3n
3 defined by ρ(a) = (σ(a(0))|σ(a(1))|σ(a(2))), where σ is a cyclic shift operator from Zn

3

to Zn
3. A code C of length 3n over Z3 is called a quasi-cyclic code (or QC code) of index 3 if

ρ(C) =C.

Similarly, a code C of length 3n over Z3 is called a quasi-negacyclic code of index 3 if η(C)=C,

where η(a) = (τ(a(0))|τ(a(1))|τ(a(2))) and τ is a negacyclic shift operator from Zn
3 to Zn

3.

3. GRAY MAP AND CYCLIC CODES OVER R

In this section, we introduce a Gray map φ on the ring R and consider the algebraic structures

of cyclic codes over the ring R.

In order to connect the structure of the ring R with Z3
3, we define the Gray map φ

φ : R→ Z3
3

by φ(a+ub+ vc) = (a+2b, b, c),

where a+ub+ vc ∈ R and a,b,c ∈ Z3.

From the definition, we observe that

φ(0)= (0,0,0),φ(1)= (1,0,0),φ(2)= (2,0,0),φ(u)= (2,1,0),φ(v)= (0,0,1),φ(2u)= (1,2,0),

φ(2v)= (0,0,2),φ(1+u)= (0,1,0),φ(1+v)= (1,0,1),φ(2+u)= (1,1,0),φ(2+v)= (2,0,1),

φ(1 + 2u) = (2,2,0),φ(1 + 2v) = (1,0,2),φ(2 + 2u) = (0,2,0),φ(2 + 2v) = (2,0,2),φ(u +

v) = (2,1,1),φ(2u+ v) = (1,2,1),φ(u+2v) = (2,1,2),φ(2u+2v) = (1,2,2),φ(1+u+ v) =

(0,1,1),φ(1+2u+v) = (2,2,1),φ(1+u+2v) = (0,1,2),φ(1+2u+2v) = (2,2,2),φ(2+u+

v) = (1,1,1),φ(2+2u+ v) = (0,2,1),φ(2+u+2v) = (1,1,2) and φ(2+2u+2v) = (0,2,2).

It can be easily checked that φ is bijective. The map φ can be extended in a natural way to

Rn component-wise. For p = (p0, p1, ..., pn−1) ∈ Rn, φ can be defined as follows:

φ : Rn→ Z3n
3
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by

φ(p0, p1, ..., pn−1) = (a0 +2b0,a1 +2b1, ...,an−1 +2bn−1,b0,b1, ...,bn−1,c0,c1, ...,cn−1),(1)

where pi = ai +ubi + vci ∈ R and ai,bi,ci ∈ Z3 for i = 0,1, ...,n−1.

Let C be a linear code of length n over R. For any r = (r0,r1, ...,rn−1) ∈ C the Hamming

weight wH(r) is defined as the number of non-zero components in r. The minimum Ham-

ming weight wH(C) of a code C is the smallest weight among all its non-zero codewords.

For r = (r0,r1, ...,rn−1) and r′ = (r′0,r
′
1, ...,r

′
n−1) in C, the Hamming distance between r and

r′ is defined by dH(r,r′) = wH(r− r′) and the Hamming distance for a code C is defined by

dH(C) = min{dH(r,r′) |r,r′ ∈C}.

The Lee weight of any element r = (r0,r1, ...,rn−1) ∈ Rn is defined by wL(r) =
n−1

∑
i=0

wL(ri),

where wL(ri) = wH(ai+2bi,bi,ci) for ri = ai+ubi+vci ∈ R, i = 0,1, ...,n−1. The Lee distance

for the code C is defined by dL(C) = min{dL(r,r′) |r 6= r′,∀r,r′ ∈C}, where dL(r,r′) is the Lee

distance between r and r′ defined by dL(r,r′) = wL(r− r′).

Theorem 3.1. The Gray map φ : Rn → Z3n
3 is a distance preserving Z3-linear map from Rn

(with respect to Lee distance, dL) to Z3n
3 (with respect to Hamming distance, dH).

Proof. Let p = (p0, p1, ..., pn−1), q = (q0,q1, ...,qn−1) ∈ Rn, where pi = ai +ubi + vci,

qi = ei +u fi + vgi ∈ R for i = 0,1, ...,n−1 and α ∈ Z3. Then

φ(p+q) =φ(p0 +q0, p1 +q1, ..., pn−1 +qn−1)

=(a0 + e0 +2(b0 + f0), ...,an−1 + en−1 +2(bn−1 + fn−1),b0 + f0,

...,bn−1 + fn−1, c0 +g0, ...,cn−1 +gn−1)

=(a0 +2b0, ...,an−1 +2bn−1,b0, ...,bn−1,c0, ...,cn−1)

+(e0 +2 f0, ...,en−1 +2 fn−1, f0, ..., fn−1,g0, ...,gn−1)

=φ(p)+φ(q).
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And,

αφ(p) =α(a0 +2b0, ...,an−1 +2bn−1,b0, ...,bn−1,c0, ...,cn−1)

=(αa0 +2αb0, ...,αan−1 +2αbn−1,αb0, ...,αbn−1,αc0, ...,αcn−1)

=φ(α p).

Hence, φ is a Z3-linear map.

Since φ is a linear map, we have φ(p−q) = φ(p)−φ(q), for any p, q∈ Rn. By the definition

of the Lee distance, we have dL(p,q) = wL(p− q) = wH(φ(p− q)) = wH(φ(p)− φ(q)) =

dH(φ(p),φ(q)). This shows that φ is a distance preserving Z3-linear map. �

Theorem 3.2. If C is a linear code of length n over R with cardinality |C|= 3k and Lee distance

dL, then the Gray image φ(C) is a [3n,k,dH ] linear code over Z3.

Proof. Since C is a linear code of length n over R with |C|= 3k, p+q∈C and α p ∈ C for any

p, q ∈ Rn, α ∈ Z3. Let φ(p), φ(q) ∈ φ(C) and α ∈ Z3. Then φ(p)+φ(q) = φ(p+q) ∈ φ(C)

as p+q ∈C and αφ(p) = φ(α p) ∈ φ(C) as α p ∈ C. So, φ(C) is a linear code.

From the definition of φ and Theorem 3.1, we observe that φ(C) is a [3n,k,dH ] linear code

over Z3 with dL = dH . �

Example 3.3. If C = {(0,0,0),(v,v,v),(2v,2v,2v),(u,0,0),(2u,0,0),(u+ v,v,v),(u+2v,v,v),

(2u+ v,v,v),(2u+2v,2v,2v)}, then C is a linear code of length 3 over R and φ(C) is a [9,2,2]

linear code over Z3.

Theorem 3.4. Let φ be the Gray map from Rn to Z3n
3 . Let σ be the cyclic shift operator and ρ

be the quasi-cyclic shift operator as defined in the preliminaries. Then φσ = ρφ .

Proof. Let p = (p0, p1, ..., pn−1) ∈ Rn, where pi = ai +ubi + vci ∈ R and ai,bi,ci ∈ Z3, for i =

0,1, ...,n−1. Now, φ(p) = (a0+2b0,a1+2b1, ...,an−1+2bn−1,b0,b1, ...,bn−1,c0,c1, ...,cn−1).

Applying ρ on both sides, we get

ρφ(p) =ρ(a0 +2b0,a1 +2b1, ...,an−1 +2bn−1,b0,b1, ...,bn−1,c0,c1, ...,cn−1)

=(an−1 +2bn−1,a0 +2b0, ...,an−2 +2bn−2,bn−1,b0, ...,bn−2,cn−1,c0, ...,cn−2).
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On the other hand, we have

φσ(p) =φ(pn−1, p0, ..., pn−2)

=(an−1 +2bn−1,a0 +2b0, ...,an−2 +2bn−2, bn−1,b0, ...,bn−2, cn−1,c0, ...,cn−2).

∴ φσ = ρφ . �

Corollary 3.5. Let C be a subset of Rn. Then C is a cyclic code of length n over R if and only if

the Gray image φ(C) is a quasi-cyclic code of index 3 over Z3 with length 3n.

Proof. Suppose C is a cyclic code of length n over R. Then σ(C) = C. Applying φ on both

sides, we get φσ(C) = φ(C). Also, by Theorem 3.4, ρφ(C) = φσ(C) = φ(C). This shows that

φ(C) is a quasi-cyclic code of index 3 over Z3 with length 3n.

Conversely, let us assume that the Gray image φ(C) of C is a quasi-cyclic code of index 3

over Z3 with length 3n. Then ρφ(C) = φ(C). By Theorem 3.4, φσ(C) = ρφ(C) = φ(C). Since

φ is injective, it follows that σ(C) = C. This shows that C is a cyclic code of length n over

R. �

We can consider the permutation version φπ of the Gray map φ defined on Rn→ Z3n
3 as

φπ(p0, p1, ..., pn−1) = (φ(p0),φ(p1), ...,φ(pn−1))

= (a0 +2b0,b0,c0,a1 +2b1,b1,c1, ...,an−1 +2bn−1,bn−1,cn−1),

where pi = ai +ubi + vci ∈ R and ai,bi,ci ∈ Z3 for i = 0,1,2, ...,n−1.

Using the above permutation version of the Gray map, we obtain the following results.

Theorem 3.6. Let φ be the Gray map from Rn to Z3n
3 , σ be the cyclic shift operator and φπ be

the permutation version of the Gray map φ as given before. Then φπσ = σ3φπ .

Proof. For any p = (p0, p1, ..., pn−1) ∈ Rn, where pi = ai +ubi + vci ∈ R and ai,bi,ci ∈ Z3 for

i = 0,1,2, ...,n−1. We have, σ(p) = (pn−1, p0, p1, ..., pn−2). Applying φπ , we get

φπ σ(p) = φπ(pn−1, p0, p1, ..., pn−2)

= (φ(pn−1),φ(p0),φ(p1), ...,φ(pn−2))

= (an−1 +2bn−1,bn−1,cn−1,a0 +2b0,b0,c0, ...,an−2 +2bn−2,bn−2,cn−2).
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On the other hand, we have

φπ(p) = (a0 +2b0,b0,c0,a1 +2b1,b1,c1, ...,an−1 +2bn−1,bn−1,cn−1)

σ φπ(p) = (cn−1,a0 +2b0,b0,c0,a1 +2b1,b1,c1, ...,an−1 +2bn−1,bn−1)

σ
2

φπ(p) = (bn−1,cn−1,a0 +2b0,b0,c0,a1 +2b1,b1,c1, ...,an−1 +2bn−1)

σ
3
φπ(p) = (an−1 +2bn−1,bn−1,cn−1,a0 +2b0,b0,c0, ...,an−2 +2bn−2,bn−2,cn−2).

∴ φπσ = σ3φπ . �

Corollary 3.7. Let C be a subset of Rn. Then C is a cyclic code of length n over R if and only if

φπ(C) is equivalent to a 3-quasi-cyclic code of length 3n over Z3.

Proof. We recall that a linear code C over the ring R is a s-quasi-cyclic if it is invariant under

the cyclic shift σ s, i.e., σ s(C) =C, where σ is a cyclic shift on Rn.

Suppose C is a cyclic code of length n over R. Then σ(C) =C. On applying φπ on both sides

and using Theorem 3.6, we get, σ3φπ(C) = φπ(C). This shows that φπ(C) is equivalent to a

3-quasi-cyclic code of length 3n over Z3.

Conversely, let φπ(C) be a 3-quasi-cyclic code of length 3n over Z3. Then σ3φπ(C) = φπ(C).

By Theorem 3.6, φπσ(C) = φπ(C). This shows that C is a cyclic code of length n over R. �

4. CONSTACYCLIC CODES OVER R

In this section, we discuss the algebraic properties of λ -constacyclic codes of length n over R

with λ = (1+u),(2+2u) and 2. After thorough investigation, the following results are obtained

according to the value of the units in R.

Theorem 4.1. Let φ be the Gray map defined in equation (1), γ(1+u) be the (1+u)-constacyclic

shift operator and ρ be the quasi-cyclic shift operator as defined in the preliminaries. Then

φγ(1+u) = δρφ , where δ is a permutation of Z3n
3 defined by

δ (x1,x2, ....,xn, ...,x2n, ...,x3n) = (xβ (1), ...,xβ (n), ...,xβ (2n), ...,xβ (3n)) with the permutation

β = (1,n+1) of 1,2, ...,3n.
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Proof. Let p = (p0, p1, ..., pn−1) ∈ Rn, where pi = ai + ubi + vci ∈ R and ai,bi,ci ∈ Z3, for

i = 0,1, ...,n−1. Then

φγ(1+u)(p) =φ((1+u)pn−1, p0, ..., pn−2)

=φ(an−1 +u(an−1 +2bn−1)+ vcn−1,a0 +ub0 + vb0, ...,an−2 +ubn−2 + vbn−2)

=(bn−1,a0 +2b0, ...,an−2 +2bn−2,an−1 +2bn−1,b0, ...,bn−2,cn−1,c0, ...,cn−2).

On the other hand, we have

ρφ(p) =ρ(a0 +2b0,a1 +2b1, ...,an−1 +2bn−1, b0,b1, ...,bn−1,c0,c1, ...,cn−1)

=(an−1 +2bn−1,a0 +2b0, ...,an−2 +2bn−2, bn−1,b0, ...,bn−2,cn−1,c0,c1, ...,cn−2).

Applying δ on both sides, we get

δρφ(p) =δ (an−1 +2bn−1,a0 +2b0, ...,an−2 +2bn−2, bn−1,b0, ...,bn−2,cn−1,c0, ...,cn−2)

=(bn−1,a0 +2b0, ...,an−2 +2bn−2,an−1 +2bn−1,b0, ...,bn−2,cn−1,c0, ...,cn−2).

∴ φγ(1+u) = δρφ . �

Corollary 4.2. A code C is a (1+u)-constacyclic code of length n over R if and only if φ(C) is

a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over Z3.

Proof. Let C be (1+ u)-constacyclic code of length n over R. Then γ(1+u)(C) = C. Applying

φ on both sides, we get φγ(1+u)(C) = φ(C). By Theorem 4.1, we have δρφ(C) = φ(C). This

shows that φ(C) is a permutation equivalent to a quasi-cyclic code of length 3n and index 3 over

Z3.

Conversely, if φ(C) is a permutation equivalent to a quasi-cyclic code of length 3n and index

3 over Z3. Then δρφ(C) = φ(C). By Theorem 4.1, we have φγ(1+u)(C) = φ(C). Since φ is

injective it follows that γ(1+u)(C) =C. This shows that C is a (1+u)-constacyclic code of length

n over R. �

Theorem 4.3. Let φ be the Gray map defined in equation (1), γ(2+2u) be the (2+2u)-constacyclic

shift operator and η be the quasi-negacyclic shift operator as given in the preliminaries. Then

φγ(2+2u) = δηφ , where δ is the permutation of Z3n
3 as defined in the Theorem 4.1.
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Proof. Let p = (p0, p1, ..., pn−1) ∈ Rn, where pi = ai + ubi + vci ∈ R and ai,bi,ci ∈ Z3, for

i = 0,1, ...,n−1. Then

φγ(2+2u)(p) =φ((2+2u)pn−1, p0, ..., pn−2)

=φ(2an−1 +u(2an−1 +bn−1)+ v2cn−1,a0 +ub0 + vc0, ...,an−2 +ubn−2 + vcn−2)

=(2bn−1,a0 +2b0, ...,an−2 +2bn−2,2an−1 +bn−1,b0, ...,bn−2,2cn−1,c0, ...,cn−2).

Also, we have

ηφ(p) =η(a0 +2b0,a1 +2b1, ...,an−1 +2bn−1, b0,b1, ...,bn−1,c0,c1, ...,cn−1)

=(−(an−1 +2bn−1),a0 +2b0, ...,an−2 +2bn−2,−bn−1,b0, ...,bn−2,−cn−1,c0, ...,cn−2).

Applying δ on both sides, we get

δηφ(p) =δ (−(an−1 +2bn−1),a0 +2b0, ...,an−2 +2bn−2,−bn−1,b0, ...,bn−2,−cn−1,c0, ...,cn−2)

=(−bn−1,a0 +2b0, ...,an−2 +2bn−2,−(an−1 +2bn−1),b0, ...,bn−2,−cn−1,c0, ...,cn−2)

=(2bn−1,a0 +2b0, ...,an−2 +2bn−2,2an−1 +bn−1,b0, ...,bn−2,2cn−1,c0, ...,cn−2).

∴ φγ(2+2u) = δηφ . �

Corollary 4.4. A code C is a (2+2u)-constacyclic code of length n over R if and only if φ(C) is

a permutation equivalent to a quasi-negacyclic code of length 3n and index 3 over Z3.

Proof. Let C be (2+ 2u)-constacyclic code of length n over R. Then γ(2+2u)(C) = C. Apply-

ing φ on both sides, we get φγ(2+2u)(C) = φ(C). From the above Theorem 4.3, δηφ(C) =

φγ(2+2u)(C) = φ(C). This shows that φ(C) is a permutation equivalent to a quasi-negacyclic

code of length 3n and index 3 over Z3.

Conversely, if φ(C) is a permutation equivalent to a quasi-negacyclic code of length 3n and

index 3 over Z3. Then δηφ(C) = φ(C). By using Theorem 4.3, we have φγ(2+2u)(C) =

δηφ(C) = φ(C). Since φ is injective it follows that γ(2+2u)(C) = C. This shows that C is a

(2+2u)-constacyclic code of length n over R. �

Definition 4.5. [16] For a∈Z3n
3 with a=(a0,a1, ...,an−1,an, ...,a2n, ...,a3n−1)= (a(0)|a(1)|a(2)),

where a(i) ∈ Zn
3 for i = 0,1,2, quasi-twisted shift operator on Z3n

3 is defined by



A NOTE ON CONSTACYCLIC CODES OVER THE RING 1447

ν(a) = (γ2(a(0))|γ2(a(1))|γ2(a(2))), where γ2 is a 2-constacyclic shift operator from Zn
3 to Zn

3. A

linear code C of length 3n over Z3 is called a quasi-twisted code of index 3 if ν(C) =C.

Theorem 4.6. Let γ2 be 2-constacyclic shift operator, φ be the Gray map and ν be the quasi-

twisted shift operator as given before. Then φγ2 = νφ .

Proof. Let p = (p0, p1, ..., pn−1) ∈ Rn, where pi = ai + ubi + vci ∈ R and ai,bi,ci ∈ Z3, for

i = 0,1, ...,n−1. Then

φγ2(p) =φ(2pn−1, p0, ..., pn−2)

=φ(2an−1 +u(2bn−1)+ v(2cn−1),a0 +ub0 + vb0, ...,an−2 +ubn−2 + vbn−2)

=(2an−1 +2(2bn−1),a0 +2b0, ...,an−2 +2bn−2,2bn−1,b0, ...,bn−2,2cn−1,c0, ...,cn−2)

=(2an−1 +bn−1,a0 +2b0, ...,an−2 +2bn−2,2bn−1,b0, ...,bn−2,2cn−1,c0, ...,cn−2).

On the other hand, we have

ν φ(p) =ν(a0 +2b0,a1 +2b1, ...,an−1 +2bn−1,b0,b1, ...,bn−1,c0,c1, ...,cn−1)

=(2(an−1 +2bn−1),a0 +2b0, ...,an−2 +2bn−2,2bn−1,b0, ...,bn−2,2cn−1,c0,c1, ...,cn−2)

=(2an−1 +bn−1,a0 +2b0, ...,an−2 +2bn−2,2bn−1,b0, ...,bn−2,2cn−1,c0,c1, ...,cn−2).

∴ φγ2 = νφ . �

Corollary 4.7. A code C is a 2-constacyclic code over R if and only if φ(C) is a quasi-twisted

code of index 3 over Z3 with length 3n.

Proof. Suppose C is a 2-constacyclic code over R. Then γ2(C) =C. Applying φ on both sides

and using the above Theorem 4.6, ν φ(C) = φ(C). This shows that φ(C) is a quasi-twisted code

of index 3 over Z3 with length 3n.

Conversely, let φ(C) be a quasi-twisted code of index 3 over Z3 with length 3n. From the

definition of a quasi-twisted code and Theorem 4.6, we have φ γ2(C) = ν φ(C) = φ(C). This

implies that γ2(C) =C as φ is injective. Thus, C is a 2-constacyclic code over R. �
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5. GENERATORS OF CONSTACYCLIC CODES OVER R

In this section, we discuss λ -constacyclic codes of odd length n over R for λ = (1+u). Note

that λ n = 1, if n is an even integer and λ n = λ , if n is an odd integer. Analogous to results given

in [6, 10, 12], we have the following results.

Theorem 5.1. Let µ : R[x]/〈xn− 1〉 −→ R[x]/〈xn−λ 〉 be a map defined by µ(a(x)) = a(λx).

If n is an odd integer, then µ is a ring isomorphism.

Proof. For a(x),b(x) ∈ R[x] such that

a(x)≡ b(x)mod(xn−1)

⇒a(x)−b(x) = (xn−1)q(x), forsome q(x) ∈ R[x].

Putting x = λx in theabove, weget

a(λx)−b(λx) =((λx)n−1)q(λx)

=(λxn−1)q(λx)

=λ (xn−λ )q(λx)

=λq(λx)(xn−λ ).

∴ a(λx)≡ b(λx)mod(xn−λ ).

i.e., a(x)≡ b(x)mod(xn−1) ⇐⇒ µ(a(x))≡ µ(b(x))mod(xn−λ ).

This shows that µ is well defined and one-one.

For any a(x),b(x) ∈ R[x]/〈xn− 1〉, we have µ(a(x)+ b(x)) = µ((a+ b)(x)) = (a+ b)(λx) =

a(λx)+ b(λx) = µ(a(x))+ µ(b(x)) and µ(a(x)b(x)) = µ(ab(x)) = ab(λx) = a(λx)b(λx) =

µ(a(x))µ(b(x)).

Hence, µ is a ring isomorphism. �

Corollary 5.2. Let n be an odd integer. Then I is an ideal of Rn = R[x]/〈xn− 1〉 if and only if

µ(I) is an ideal of Rn,λ = R[x]/〈xn−λ 〉.
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Corollary 5.3. Let µ be a permutation of Rn with n odd, such that µ(c0,c1,c2, ...,cn−1) =

(c0,λc1,λ
2c2, ...,λ

n−1cn−1) and C be a subset of Rn, then C is a cyclic code if and only if µ(C)

is a λ -constacyclic code.

Proof. Let C be a cyclic code of odd length n over R. Then by Proposition 2.1, its polynomial

representation I is an ideal of Rn = R[x]/〈xn− 1〉. So, the above Corollary 5.2, is satisfied

and thus µ(I) is an ideal of Rn,λ = R[x]/〈xn−λ 〉. Hence, µ(C) is a λ -constacyclic code (by

Proposition 2.2).

In the similar manner, the converse part can be proved. �

In [15], Liu developed the following results to determine the generators of cyclic codes over

R = Fp +uFp + vFp of length n.

Theorem 5.4. [15] Let C be a cyclic code over R = Fp + uFp + vFp of length n. Then C =

〈g(x) + vp1(x) + up2(x),va1(x) + uq1(x),ua2(x)〉, where g(x), p1(x), p2(x),q1(x),a1(x),a2(x)

are polynomials in Fp[x]/〈xn−1〉 with a2(x)|a1(x)|g(x)|(xn−1) and a1(x)|p1(x)xn−1
g(x) .

Theorem 5.5. [15] Let C be a cyclic code over Fp + uFp + vFp of length n. When (n, p) = 1,

then C is an ideal in R[x]/〈xn−1〉 and generated by C = 〈g1(x) + vp1(x) + ub1(x),ug2(x)〉,

where g1(x), p1(x),b1(x),g2(x) are polynomials in Fp[x]/〈xn−1〉 satisfying the conditions

p1(x)|g1(x)|(xn−1) and g2(x)|(xn−1).

Using Theorem 5.4, and Theorem 5.5, we can construct the generators for λ - constacyclic

codes of length n over R as follows:

Theorem 5.6. Let C be a λ -constacyclic code of length n over R. Then, C is an ideal of Rn,λ

given by C = 〈g(x̂)+vp1(x̂)+up2(x̂),va1(x̂)+uq1(x̂),ua2(x̂)〉, where g(x), p1(x), p2(x),q1(x),

a1(x),a2(x) ∈ Z3[x]/〈xn−1〉, a2(x)|a1(x)|g(x)|(xn−1),a1(x)|p1(x)xn−1
g(x) and x̂ = λx.

Proof. The result follows from Corollary 5.3 and Theorem 5.4. �

Theorem 5.7. Let C be a λ -constacyclic code of even length n over R. Then C is an ideal of Rn,λ

given by C = 〈g1(x̂)+vp1(x̂)+ub1(x̂),ug2(x̂)〉, where g1(x), p1(x),b1(x),g2(x)∈Z3[x]/〈xn−1〉,

p1(x)|g1(x)|(xn−1), g2(x)|(xn−1) and x̂ = λx.



1450 ST. TIMOTHY KOM, O. RATNABALA DEVI, TH. ROJITA CHANU

Proof. The result follows from Corollary 5.3 and Theorem 5.5. �

Theorem 5.8. Let C be a λ -constacyclic code of odd length n over R and C = 〈a(x)+ub(x)+

vc(x)〉, where a(x),b(x),c(x) ∈ Z3[x] with degree less than n. Then φ(C) is a permutation

equivalent to a quasi-cyclic code of length 3n over Z3 generated by the polynomials [a(x)+

2b(x)]+ xn[b(x)]+ x2n[c(x)],2[a(x)+b(x)]+ xn[a(x)+b(x)] and x2n[a(x)].

Proof. The polynomial corresponding to the Gray map φ of (1) can be defined as

φ :
R[x]
〈xn−1〉

→ Z3[x]
〈xn−1〉

× Z3[x]
〈xn−1〉

× Z3[x]
〈xn−1〉

φ(a(x)+ub(x)+ vc(x)) = (a(x)+2b(x),b(x),c(x)),

where a(x),b(x),c(x) ∈ Z3[x].

For any r1(x),r2(x),r3(x) ∈ Z3[x], it can be shown that

φ [(r1(x)+ur2(x)+ vr3(x))(a(x)+ub(x)+ vc(x))]

= r1(x)[a(x)+2b(x),b(x),c(x)]+ r2(x)[2a(x)+2b(x),a(x)+b(x),0]+ r3(x)[0,0,a(x)].

And, the vector (a(x),b(x),c(x)) ∈ Z3[x]
〈xn−1〉 ×

Z3[x]
〈xn−1〉 ×

Z3[x]
〈xn−1〉 can be identified with the element

([a(x)]+ xn[b(x)]+ x2n[c(x)]) ∈ Z3[x]/〈x3n−1〉, which corresponds to the quasi-cyclic code of

length 3n and index 3 over Z3.

Hence, φ(C) is generated by the polynomials [a(x) + 2b(x)] + xn[b(x)] + x2n[c(x)],2[a(x) +

b(x)]+ xn[a(x)+b(x)] and x2n[a(x)]. �

Definition 5.9. Let n be an odd positive integer and τ = (1,n+ 1)(3,n+ 3)...(2i+ 1,n+ 2i+

1)...(n−2,2n−2) be a permutation of the set {0,1,2, ...,3n−1}. Then a permutation Π of Z3n
3

is defined by

Π(r0,r1, ...,r3n−1) = (rτ(0),rτ(1), ...,rτ(3n−1)).

Theorem 5.10. Let n be an odd positive integer, φ be the Gray map, µ be the permutation of

Rn with λ = (1+u) and Π be the permutation as given before. Then φ µ = Πφ .



A NOTE ON CONSTACYCLIC CODES OVER THE RING 1451

Proof. Let p= (p0, p1, ..., pn−1)∈ Rn, where pi = ai+ubi+vci ∈ R, for i= 0,1, ...,n−1. When

λ = 1+u, we have

φ µ(p) =φ(p0,(1+u)p1,(1+u)2 p2, ...,(1+u)n−1 pn−1)

=φ(a0 +ub0 + vc0,a1 +u(a1 +2b1)+ vc1, ...,an−2 +u(an−2 +2bn−2)+ vcn−2,

an−1 +ubn−1 + vcn−1)

=(a0 +2b0,a1 +2(a1 +2b1),a2 +2b2, ...,an−2 +2(an−2 +2bn−2),an−1 +2bn−1,

b0,a1 +2b1,b2, ...,an−2 +2bn−2,bn−1,c0,c1,c2, ...,cn−2,cn−1)

=(a0 +2b0,b1,a2 +2b2, ...,bn−2,an−1 +2bn−1,b0,a1 +2b1,b2, ...,an−2 +2bn−2,bn−1,

c0,c1,c2, ...,cn−2,cn−1).

On the other hand, we have

Πφ(p) =Π(a0 +2b0,a1 +2b1, ...,an−2 +2bn−2,an−1 +2bn−1,b0,b1, ...,bn−2,bn−1,c0,c1,

...,cn−2,cn−1)

=(a0 +2b0,b1,a2 +2b2, ...,bn−2,an−1 +2bn−1,b0,a1 +2b1, ...,an−2 +2bn−2,bn−1,

c0,c1, ...,cn−2,cn−1).

∴ φ µ = Πφ . �

Corollary 5.11. Let φ(C) = D be the Gray image of a cyclic code C of odd length n over R.

Then Π(D) is a permutation equivalent to a quasi-cyclic code of length 3n over Z3.

Proof. By Theorem 5.3, µ(C) is a λ -constacyclic code over R as C is a cyclic code over R.

From Theorem 4.2, we see that φ µ(C) is a permutation equivalent to a quasi-cyclic code of

length 3n and index 3 over Z3. By Theorem 5.10, we have Πφ(C) = Π(D) = φ µ(C). This

implies that Π(D) is a permutation equivalent to a quasi-cyclic code of length 3n over Z3. �

Example 5.12. Let n = 6,λ = 1+ u. Now in Z3[x] we have x6− 1 = (x+ 1)3(x+ 2)3. As

per Theorem 5.6, let g(x) = (x+ 1)(x+ 2)2 = x3 + 2x2 + 2x+ 1, a1(x) = (x+ 2)2 = x2 + x+
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1, a2(x) = x+2, p1(x) = x+2, p2(x) = q1(x) = 1. Then

C = 〈(1+u)x3 +2x2 +(2+2u+ v)x+u+2v+1,vx2 + vx+u+ v,2ux+2u〉

is a (1+u)-constacyclic code of length 6 over R. Therefore, the Gray image φ(C) is a [18,15,2]

linear code over Z3. Note that it is an optimal linear code according to the database [8].

Example 5.13. Let n = 4,λ = 1+ u. We have x4− 1 = (x+ 1)(x+ 2)(x2 + 1) in Z3[x]. Now,

following Theorem 5.7, let g1(x) = (x+1)(x+2) = x2+2, p1(x) = x+1, p2 = 1, g2(x) = x2+1.

Then

C = 〈x2 + vx+2+u+ v,ux2 +u〉

is a (1+ u)-constacyclic code of length 4 over R. Further, its Gray image φ(C) is a [12,8,3]

linear code over Z3. As per online database [8], it is an optimal linear code.

6. CONCLUSION

In this paper, we have studied the algebraic structure of λ -constacyclic code of length n over

R = Z3[u,v]/〈u2−u,v2,uv,vu〉 with Z3 = {0,1,2}, for λ = (1+u),(2+2u) and 2 . By intro-

ducing a Gray map from Rn to Z3n
3 , we obtained a good relation among the Gray image, cyclic,

constacyclic, quasi-cyclic, quasi-negacyclic and quasi-twisted codes over Z3. Further, we have

found that the Gray image of λ -constacyclic codes is permutation equivalent to either quasi-

cyclic or quasi-negacyclic or quasi-twisted code when λ = (1+u),(2+2u) or 2, respectively.

Also, the generator for (1+u)-constacyclic code over R is constructed with some examples to

illustrate the results.

ACKNOWLEDGEMENT

The first author is grateful to the Council of Scientific and Industrial Research (CSIR), Govern-

ment of India for financial support, and the Department of Mathematics, Manipur University,

for providing research facilities. The authors would like to appreciate the contribution made by

Dr. Om Prakash, IIT, Patna, for his valuable advice while improving the manuscript.



A NOTE ON CONSTACYCLIC CODES OVER THE RING 1453

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] T. Abualrub, I. Siap, Cyclic codes over the ring Z2 +uZ2 and Z2 +uZ2 +u2Z2, Des. Codes Cryptogr. 42(3)

(2007), 273-287.

[2] T. Bag, H. Islam, O. Prakash, A. K. Upadhyay, A note on constacyclic and skew constacyclic codes over the

ring Zp[u,v]/〈u2−u,v2− v,uv− vu〉, J. Algebra Comb. Discrete Appl. 6(3) (2018), 163-172.

[3] A. Bayram, I. Siap, Structure of codes over the ring Z3[v]/〈v3− v〉, Appl. Algebra Eng. Comm. Comput. 24

(2013), 369-386.

[4] Y. Cengellenmis, On the cyclic codes over F3 + vF3, Int. J. Algebra, 4(6) (2010), 253-259.

[5] A. Dertli, Y. Cengellenmis, On (1+u)-Cyclic and cyclic codes over F2+uF2+vF2, Eur. J. Pure Appl. Math.

9(3) (2016), 305-313.

[6] A. Dertli, Y. Cengellenmis, S. Eren, On the codes over a semilocal finite ring, Int. J. Adv. Comput. Sci. Appl.

6(10) (2015), 283-292.

[7] S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, Springer (2017).

[8] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes. Online available at http:

//www.codetables.de. Accessed on 2020-07-31.

[9] A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, The Z4-linearity of Kerdock,

Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.

[10] H. Islam, T. Bag, O. Prakash, A class of constacyclic codes over Z4[u]/〈uk〉, J. Appl. Math. Comput. 60(1-2)

(2019), 237–251.

[11] H. Islam, O. Prakash, A study of cyclic and constacyclic codes over Z4 + uZ4 + vZ4, Int. J. Inf. Coding

Theory, 5(2) (2018), 155-168.

[12] H. Islam, O. Prakash, A class of constacyclic codes over the ring Z4[u,v]/〈u2,v2,uv− vu〉 and their Gray

images, Filomat, 33(8) (2019), 2237-2248.

[13] S. Karadeniz, B. Yildiz , (1+ v)-constacyclic codes over F2 + uF2 + vF2 + uvF2, J. Franklin Inst. 348(9)

(2011), 2625-2632.

[14] S. Ling, C. Xing, Coding Theory A First Course, Cambridge University Press (2004).

[15] H. Liu, Cyclic codes of length n over Fp +uFp + vFp, Open Autom. Control Syst. J. 6 (2014), 788-791.

[16] M. Özen, F. Z. Uzekmek, N. Aydin, N. T. Özzaim, Cyclic and some constacyclic codes over the ring

Z4[u]/〈u2−1〉, Finite Fields Appl. 38 (2016), 27-39.

http://www.codetables.de.
http://www.codetables.de.


1454 ST. TIMOTHY KOM, O. RATNABALA DEVI, TH. ROJITA CHANU

[17] M. Özkan, A. Dertli, Y. Cengellenmis, On Gray images of constacyclic codes over the finite ring F2+u1F2+

u2F2, TWMS J. App. Eng. Math. 9(4) (2019), 876-881.

[18] M. Özkan, F. Öke, On some special codes over F3+vF3+uF3+u2F3, Math. Sci. Appl. E-Notes, 4(1) (2016),

40-44.

[19] J. F. Qian, L. N. Zhang, S. X. Zhu, (1+u)- Constacyclic and cyclic codes over F2 +uF2, Appl. Math. Lett.

19 (2006), 820-823.

[20] M. Shi, A. Alahmadi, P. Solé, Codes and Rings: Theory and Practice, Academic Press, (2017).

[21] B. Yildiz , S. Karadeniz, Cyclic codes over F2 + uF2 + vF2 + uvF2, Des. Codes Cryptogr. 58(3) (2011),

221-234.


	1.  Introduction 
	2.  Preliminaries 
	3. Gray Map and Cyclic Codes Over R
	4. Constacyclic Codes over R
	5. Generators of Constacyclic Codes over R
	6. Conclusion
	Acknowledgement
	Conflict of Interests
	References

