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Abstract. This paper proposes a model with two type of preys and one predator of fishery with Holling type IV

function response. The effect of harvesting was incorporated to both populations and thoroughly analysed. We

study the dynamics as the prey-predator system of fishing in two fishing zones: a free zone and a reserved zone.

The equilibrium points are calculated and the local and global stability conditions of the system are obtained. The

local stability conditions were obtained by the Routh-Hurwitz criterion. In addition, the global stability of the

coexistence equilibrium point is proved by defining an appropriate Lyapunov function. The optimal harvesting

policy is discussed by using the Pontryagin’s Maximal Principle. Finally, numerical simulations are carried to

verify the analytical results.
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1. INTRODUCTION

Currently, the relationship between prey and predator has become a very important topic to

discuss in ecology. The prey-predator system has attracted many researchers to study the inter-

action between species (see [4, 11, 14, 24, 28, 34]). For this, we use the aspect of mathematical
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ecology to study the interacting species. The current study considers fishing between two areas:

a free area and another area reserved for fishing as a case study. However, current trends in

species dynamics between the two areas have been obtained by reading various publications

such as [13, 15, 18, 23, 25]. This literature clearly explains the current trend on this kind of

models and fisheries management.

Dubey et al. [8] proposed and analyzed the dynamics of a predator-prey model where one

prey species is reserved and the other free for fishing. In addition, it assumes that the predator is

not authorized to enter the reserved zone, however it is authorized to access the free zone. Kar et

al. [13] they proposed and analyzed a mathematical prey-predator model made up of two prey

in two areas (free fishing area, reserved area) and a predator authorized to enter the free area.

The dynamics follow the response of the type I Holling function. Yang et al. [31] proposed

and studied a predator-prey model with harvest and reserve area for prey in the presence of

toxicity where the dynamics follow a Holling type II response. They studied the boundedness

of solutions and the existence of the equilibria of this system. The optimal harvest policy was

also discussed. Thus, the Holling II type functional response is fairly representative in the case

of the model presented by Yang et al. [31].

In theoretical ecology, the mathematicians and ecologists study more often the interactions

between the model prey-predator using the response functions of Holling type (I, II and III)

[10]. The functional response of Holling type IV comes in the form : Sokol et al. [27] proposed

this function in this form : ax
b+cx+x2 . However, in this paper, the prey-predator interaction mod-

eling using a simplified type IV Holing functional response is expressed by : ax
b+x2 .

When the prey population is low, predators who follow a type IV functional response con-

sume very little. For such predators, the highest consumption of prey occurs when the size of

the prey is intermediate. When their numbers is low, the prey therefore undergoes a relaxation

of the predation pressure. Therefore, they are opportunistic predators, capable of diversifying
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the prey they hunt.

The specific study aims to analyze the impact of the type IV functional response on fishing

activities between the two zones on the model proposed by Yang et al. [31]. Thus, we are

studying a prey-predator system of two prey and a single predator in a two-zone environment :

one zone accessible to fishing and the other is prohibited. We assumed that the prey migrated

randomly between the two plots. The growth of prey in each plot in the absence of a predator is

assumed to be logistic and linear respectively. The Holling response to predation from predators

is type IV.

Considering the hypotheses below, we formulate the system of equations of the model as :

(1)


dx
dt

= r1x
(
1− x

K

)
−σ1x+σ2y−ux2− axz

b+x2 −q1Ex,
dy
dt

= r2y+σ1x−σ2y− vy2,

dz
dt

= βaxz
b+x2 −dz−wz−q2Ez.

with initial conditions x(0) > 0, y(0) > 0, z(0) > 0. Here, x ≡ x(t), y ≡ y(t), z ≡ z(t) are the

population densities of prey and predator respectively. Model system (1) is defined on the set

R3
+ = {(x,y,z) ∈ R3/x ≥ 0, y ≥ 0, z ≥ 0 } and r1 > 0, r2 > 0, K > 0, σ1 > 0, σ2 > 0, q1 > 0,

q2 > 0, d > 0, β > 0 Further, the biological meanings of parameters are described in Table

1. The prey x in an unreserved area, reproduces in logistic terms of carrying capacity K and

intrinsic growth rate r1 according to the term r1x
(
1− x

K

)
. For the prey y in the reserve zone,

it increases linearly according to the term r2y. It is assumed that there is a migration from the

unreserved area to the reserved area of the prey species x according to the term σ1x and vice

versa for the prey y following the term σ2y. The Interaction between prey x and predator z is

expressed by Holling type-IV functional response (see [29, 30]) that is axz
b+x2 . The explanations

of the parameters are presented on this table :
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Parameters Biological meaning

r1 Intrinsic growth rate of the prey inside unreserved area

r2 Intrinsic growth rate of the prey inside reserved area

K The environmental carrying capacity of prey species in the unreserve area

σ1,σ2 migration rate from unreserved area to reserved area and vice versa

q1 The coefficient of catchability of prey in the unreserved area

q2 The coefficient of catchability of predator in the unreserved area

d The death rate of the predator species

β The conversion rate of predator due to prey
TABLE 1. Parameters descriptions

If there is no migration of fish population from reserved area to unreserved area (σ2 = 0) and

(r1−σ1−q1E < 0), we find that ẋ< 0. Similarly, if there is no migration of fish population from

unreserved area to reserved area (σ1 = 0) and r2−σ2 < 0, then ẏ < 0. If βa
2
√

b
< d +w+ q2E,

then ż < 0.

So, from our analysis, we suppose that :

(2) r1−σ1−q1E > 0, r2−σ2 > 0 and
βa

2
√

b
> d +w+q2E.

What follows is organized in the following way. In the next section, we show the bournitude

system solutions (1). In section 3-4, we study the existence and stability of all the equilibria

of our model. Then, we discuss the optimal harvesting policy of the system (1) in section 5.

Finally, we present the numerical simulations to study the stability of the equilibria.

2. BASIC RESULTS AND EXISTENCE OF EQUILIBRIA

In the first part of this section, we demonstrate the boundedness of the solutions of our system

(1). From the point of view of biology, we are only interested in the dynamics of system (1) in

the first octant R3
+.

Lemma 2.1. The set Ω =
{
(x,y,z) ∈ R3

+ : x+ y+ 1
β

z≤ H
d+w+q2E

}
is a region of attraction for

all solutions initiating in the interior of the positive octant, where



DYNAMICAL BEHAVIOURS OF PREY-PREDATOR FISHERY MODEL 2897

H =
K(r1−q1 +d +w+q2E)2

4(r1 +Ku)
+

(r2 +d +w+q2E)2

4v
.

Proof. Let us consider X(t) = x(t)+ y(t)+ 1
β

z(t), then the time derivative along the solutions

of the system (1) is given by

dX(t)
dt +(d +w+q2E)X(t) = (r1−q1E +d +w+q2E)x− ( r1

K +u)x2− vy2

+ (r2 +d +w+q2E)y,

≤ K(r1−q1 +d +w+q2E)2

4(r1 +Ku)
+

(r2 +d +w+q2E)2

4v
= H.

Applying the theory of differential inequality [3, 17], we get

X(t)≤ H
d +w+q2E

−
(

H
d +w+q2E

− (x(0)+ y(0)+
1
β

z(0))
)

exp(−(d +w+q2E)t)

and when t→ ∞,0 < X(t)≤ H
d+w+q2E , proving the Lemma. �

In this section, we discuss the existence of positive equilibria of system (1).

Equilibria of model (1) is obtained by solving dx/dt = dy/dt = dz/dt = 0. It can be checked

that model (1) has four positive equilibria.

(1) P0(0,0,0) there is a trivial equilibrium.

(2) The equilibrium point P̄(x̄, ȳ,0), where (x̄, ȳ) is the positive solution of the following

equations :

(3)
(r1−σ1−q1E)x− ( r1+Ku

K )x2 +σ2y = 0,

(r2−σ2)y+σ1x− vy2 = 0.

After the calculations, x is satisfied by the following cubic equation,

(4) a1x3 +a2x2 +a3x+a4 = 0,

where

a1 = − v
σ2

2

(
r1+Ku

K

)2
,

a2 = 2v(r1+Ku)(r1−σ1−q1E)
Kσ2

2
,

a3 = (r2−σ2)(r1+Ku)
Kσ2

− v(r1−σ1−q1E)2

σ2
2

,

a4 = σ1− (r2−σ2)(r1−σ1−q1E)
σ2

.
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The above equation (4) had a unique positive solution if the following inequalities hold.

We find that a1 < 0 and, according to the criteria of Descartes [7] it is necessary to

impose that :

a3 > 0 if E > 1
q1

(
(r1−σ1)−

√
(r2−σ2)(r1+Ku)σ2

Kv

)
,

a4 > 0 if E > 1
q1

(
r1−σ1− σ1σ2

r2−σ2

)
.

Then, we obtain

(5) E > max
(

1
q1
(r1−σ1− σ1σ2

r2−σ2
), 1

q1

(
(r1−σ1)−

√
(r2−σ2)(r1+Ku)σ2

Kv

))
.

Thus, from the first equation of (3), we deduce

ȳ =
x̄

σ2

((
r1 +Ku

K

)
x̄− (r1−σ1−q1E)

)
> 0,

if

(6) x̄ >
(r1−σ1−q1E)K

r1 +Ku
.

(3) For the interior equilibrium P∗(x∗,y∗,z∗), (x∗,y∗,z∗) is the positive solution of the fol-

lowing equations :

(7)

r1x
(
1− x

K

)
−σ1x+σ2y−ux2− axz

b+x2 −q1Ex = 0,

r2y+σ1x−σ2y− vy2 = 0,
βaxz
b+x2 −dz−wz−q2Ez = 0.

From the last equation of (7), we get two positive solutions :

(8) x∗1 =
βa−

√
(βa)2−4b(d +w+q2E)2

2(d +w+q2E)
,

(9) x∗2 =
βa+

√
(βa)2−4b(d +w+q2E)2

2(d +w+q2E)
.

Substitute x∗i for i = 1,2 in the second equation of (7), we get :

(10) y∗i =
(r2−σ2)+

√
(r2−σ2)2 +4vσ1x∗i

2v
> 0.
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Using the third equation of (7), we obtain :

(11) z∗i =
b+ x∗2i

ax∗i

(
(r1−σ1−q1E)x∗i −

(
r1 +Ku

K

)
x∗2i +σ2y∗i

)
,

which is positive for i = 1,2, if

(12) 0 < x∗i <
K(r1−σ1−q1E)+

√
(r1−σ1−q1E)2 +

4σ2(r1+Ku)y∗i
K

2(r1 +uK)
.

We therefore state the existence of the positives equilibrium points in the following theorem.

Theorem 2.2. (1) The trivial equilibrium point P0(0,0,0) exists.

(2) The positive predator equilibrium P̄(x̄, ȳ,0) will exist if the following conditions (5) and

(6) are satisfied,

(3) The positive interior equilibrium P∗i (x
∗
i ,y
∗
i ,z
∗
i ) for i = 1,2 exists if (12) is realized.

3. LOCAL STABILITY OF EQUILIBRIUM POINTS

In this section, we will study local stability by finding the eigenvalues of the Jacobian matrix

J(x,y,z) =


J11 σ2 − ax

b+x2

σ1 r2−σ2−2vy 0
βaz(b−x2)

b+x2 0 βax
b+x2 − (d +w+q2E)

 ,

where J11 = r1−σ1−q1E−2( r1
K +u)x− az(b−x2)

b+x2 .

Theorem 3.1. The equilibrium P0(0,0,0) of the system (1) is unstable.

Proof. The characteristic equation of P0(0,0,0) is :

(λ +d +w+q2E)(λ 2 +(r1−σ1−q1E + r2−σ2)λ −σ2σ1) = 0.

It is clear that λ1 =−(d+w+q2E)< 0. Let λ2 and λ3 be the two other eigenvalues. Evidently

λ2 +λ3 = r1−σ1− q1E + r2−σ2 > 0. Therefore λ2 and λ3 have one positive value. Hence,

P0(0,0,0) is unstable. �

Theorem 3.2. The equilibrium point P̄(x̄, ȳ,0) of the system (1) is locally asymptotically stable

if (6) and x̄ /∈ [x∗1,x
∗
2].
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Proof. The characteristic equation at P̄ is written as :(
βax̄

b+x̄2 − (d +w+q2E)−λ

)
×
(
(r2−σ2−2vȳ−λ )(r1−σ1−q1E− 2(r1+Ku)

K x̄−λ )−σ1σ2

)
= 0

Obviously, λ1 =
βax̄

b+x̄2 −(d+w+q2E)< 0 if x̄ /∈ [x∗1,x∗2]. Let λ2 and λ3 be two other eigenvalues.

Then λ2 and λ3 are the root of the equation : λ 2−n1λ +n2 = 0,

where
n1 = (r2−σ2−2vȳ)+

(
r1−σ1−q1E− 2(r1+Ku)

K x̄
)
,

n2 = (r2−σ2−2vȳ)×
(

r1−σ1−q1E− 2(r1+Ku)
K x̄−σ1σ2

)
.

We have λ2 +λ3 = n1 < 0 and λ2λ3 = n2 > 0. So λ1,λ2,λ3 < 0. Thus the equilibrium point

P̄(x̄, ȳ,0) is locally asymptotically stable. �

Theorem 3.3. If the interior equilibrium point P∗1 (x
∗
1,y
∗
1,z
∗
1) exists, then P∗1 is locally asymptot-

ically stable if (13) and (14) are realized, which are given in the proof.

Proof. The characteristic equation of the system (1) at P∗1 is :

λ 3 +a2λ 2 +a1λ +a0 = 0,

where

a0 =−(r2−σ2−2vy∗1)
βa2x∗1z∗1(b− x∗21 )

(b+ x∗21 )3 = (σ1
x∗1
y∗1

+ vy∗1)
βa2x∗1z∗1(b− x∗21 )

(b+ x∗21 )3 .

Using (8) we get b− x∗21 > 0, which proves a0 > 0.

a1 = (r1−σ1−q1E)−2
(

r1+Ku
K

)
x∗1−

az∗1(b−x∗21 )

(b+x∗21 )2 (r2−σ2−2vy∗1)+
βa2x∗1z∗1(b−x∗21 )

(b+x∗21 )3 −σ1σ2,

= r1+Ku
K x∗1(σ1

x∗1
y1∗ + vy∗1)+σ2

vy∗21
x∗1

+
ax∗1z∗1

(b+x∗21 )

(
βa(b−x∗21 )

b+x∗21
−2x∗1(σ1

x∗1
y∗1
+ vy∗1)

)
.

Then,

(13) a1 > 0 =⇒
βa(b− x∗21 )

b+ x∗21
> 2x∗1(σ1

x∗1
y∗1

+ vy∗1).

a2 = −
(
(r1−σ1−q1E)−2( r1+Ku

K )x∗1−
az∗1(b−x∗21 )

(b+x∗21 )2 +(r2−σ2−2vy∗1)
)
,

= r1+Ku
K x∗1 +σ2

y∗1
x∗1
− 2az∗1x∗21

(b+x∗21 )2 +σ1
x∗1
y∗1
+ vy∗1.

(14) a2 > 0 =⇒ r1 +Ku
K

>
2az∗1x∗1

(b+ x∗21 )2 .
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a2a1−a0 =
(

r1+Ku
K x∗1(σ1

x∗1
y1∗ + vy∗1)+σ2

vy∗21
x∗1

+
ax∗1z∗1

(b+x∗21 )

(
βa(b−x∗21 )

b+x∗21
−2x∗1(σ1

x∗1
y∗1
+ vy∗1)

))
×

(
r1+Ku

K x∗1 +σ2
y∗1
x∗1
− 2az∗1x∗21

(b+x∗21 )2 +σ1
x∗1
y∗1
+ vy∗1

)
− (σ1

x∗1
y∗1
+ vy∗1)

βa2x∗1z∗1(b−x∗21 )

(b+x∗21 )3 ,

=
(
(σ1

x∗1
y1∗ + vy∗1)x

∗
1(

r1+Ku
K − 2az∗1x∗21

(b+x∗21 )2 )+σ2
vy∗21
x∗1

)
×

(
r1+Ku

K x∗1 +σ2
y∗1
x∗1
− 2az∗1x∗21

(b+x∗21 )2 +σ1
x∗1
y∗1
+ vy∗1

)
+

βx∗1z∗1a2(b−x∗21 )

(b+x∗21 )”

(
r1+Ku

K x∗1 +σ2
y∗1
x∗1
− 2az∗1x∗21

(b+x∗21 )2

)
.

Using the Routh-Hurwitz criteria, it is to check that all roots of the equation had a negative real

parts if (13) and (14) realized, then P∗1 is locally asymptotically stable. �

Theorem 3.4. If the interior equilibrium point P∗2 (x
∗
2,y
∗
2,z
∗
2) exists, then P∗2 is unstable.

Proof. The characteristic equation of the system (1) at P∗2 is :

λ 3 +b2λ 2 +b1λ +b0 = 0,

where

b0 = −(r2−σ2−2vy∗2)
βa2x∗2z∗2(b−x∗22 )

(b+x∗22 )3 = (σ1
x∗1
y∗1
+ vy∗1)

βa2x∗2z∗2(b−x∗22 )

(b+x∗22 )3 ,

b1 =
(
(r1−σ1−q1E)−2

(
r1+Ku

K

)
x∗2−

az∗2(b−x∗22 )

(b+x∗22 )2

)
(r2−σ2−2vy∗2)+

βa2x∗2z∗2(b−x∗22 )

(b+x∗22 )3 −σ1σ2,

b2 = −
(
(r1−σ1−q1E)−2

(
r1+Ku

K

)
x∗2−

az∗2(b−x∗22 )

(b+x∗22 )2 +(r2−σ2−2vy∗2)
)
.

Using the Routh-Hurwitz criteria, based on (9) it is easy to check that b0 < 0. Then P∗2 is

unstable. �

4. GLOBAL STABILITY OF THE EQUILIBRIUM POINTS P̄ AND P∗1

To prove the global stability of the interiors equilibrium points P̄ and P∗1 , we state and prove

the following theorems.

Theorem 4.1. The equilibrium P̄(x̄, ȳ,0) is globally asymptotically stable.

Proof. We consider the following positive definite function about P̄ :

V (x,y) =
(

x− x̄− x̄ ln
(x

x̄

))
+ l
(

y− ȳ− ȳ ln
(

y
ȳ

))
,
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where l is a positive constant, to be chosen later on.

Differentiating V with respect to time along the solutions of model (1), After the calculations

we obtain :

dV
dt = (x− x̄)

(
−
(

r1+Ku
K

)
(x− x̄)+σ2

( y
x −

ȳ
x̄

))
+ l(y− ȳ)

(
−v(y− ȳ)+σ1

(
x
y −

x̄
ȳ

))
.

Choosing l = σ2ȳ
σ1x̄ . So

dV
dt

=−
(

r1 +Ku
K

)
(x− x̄)2− v(y− ȳ)2− σ2

xx̄y
(yx̄− ȳx)2 < 0.

Therefore, the equilibrium P̄ is globally asymptotically stable. �

Theorem 4.2. The equilibrium P1(x∗1,y
∗
1,z
∗
1) is globally asymptotically stable if (16) are real-

ized.

Proof. We utilize the geometric approach [16] to prove a global stability of P1(x∗1,y
∗
1,z
∗
1)

The variational matrix J(x,y,z) of the system (1) is :

A =


r1−σ1−q1E− 2(r1+Ku)x

K − az(b−x2)
(b+x2)2 σ2 − ax

b+x2

σ1 r2−σ2−2vy 0
βaz(b−x2)
(b+x2)2 0 βax

b+x2 − (d +w+q2E)


and its second additive compound matrix A[2] is :

A[2] =


A11 0 ax

b+x2

0 A22 σ2

−βaz(b−x2)
(b+x2)2 σ1

(
r2−σ2−2vy+ βax

b+x2 − (d +w+q2E)
)
 ,

where

A11 = r1−σ1−q1E− 2(r1+Ku)x
K − az(b−x2)

(b+x2)2 + r2−σ2−2vy,

A22 = r1−σ1−q1E−−2(r1+Ku)x
K − az(b−x2)

(b+x2)2 + βax
b+x2 − (d +w+q2E).

We set B as the following diagonal matrix :

B(x,y,z) = diag
(

x
z
,
x
z
,
x
z

)
.

So we get :

B−1 = diag
( z

x ,
z
x ,

z
x

)
, B f =

dB
dX = diag

(
ẋ
z −

x
z2 ż, ẋ

z −
x
z2 ż, ẋ

z −
x
z2 ż
)

,
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B f B−1 = diag
( ẋ

x −
ż
z ,

ẋ
x −

ż
z ,

ẋ
x −

ż
z

)
and the matrix C = B f B−1 +BA[2]B−1 can be written in the

following block form :

C =

C11 C12

C21 C22


where :

C11 = ẋ
x −

ż
z + r1−σ1−q1E−2( r1+Ku

K )x− az(b−x2)
(b+x2)2 + r2−σ2−2vy,

C12 =
(

0 ax
b+x2

)
,

C21 =

 0

−βaz(b−x2)
(b+x2)2

 ,

C22 =

 ẋ
x + r1−σ1−q1E− 2(r1+Ku)x

K − az(b−x2)
(b+x2)2 σ2

σ1
ẋ
x + r2−σ2−2vy

 .

We consider the norm in R3 as :

|(u,v,w)|= max{|u|, |v|+ |w|}

Where |(u,v,w)| is a vector in R3 and denote by η(B) the Lozinskiǐ measure with respect to this

norm is given by :

(15) η(C)≤ sup{C11 + |C12|,η1(C22)+ |C21|}= sup{g1,g2}

where
|C12| = max

{
0, ax

b+x2

}
= ax

b+x2 ,

|C21| = max
{

0, |−βaz(b−x2)
(b+x2)2 |

}
= βaz(b−x2)

(b+x2)2 ,

η1(C22) = ẋ
x +max

{
r1−q1E−2( r1+Ku

K )x− az(b−x2)
(b+x2)2 ;r2−2vy

}
Then, g1 and g2 are expressed in this form :

g1 = ẋ
x +

ax(1−β )
b+x2 +(d +w+q2E)+ r1−σ1−q1E− 2(r1+Ku)x

K − az(b−x2)
(b+x2)2 + r2−σ2−2vy,

g2 = ẋ
x +

βaz(b−x2)
(b+x2)2 +max

{
r1−q1E−2( r1+Ku

K )x− az(b−x2)
(b+x2)2 ;r2−2vy

}
.

Hence, from (15) we obtain

η(C)≤ sup{g1,g2}= ẋ
x +max{ξ1,ξ2} where :

ξ1 = aε(1−β )
b+ε2 +(d +w+q2E)+ r1−σ1−q1E−2( r1+Ku

K )ε− aε(b−ε2)
(b+ε2)2 + r2−σ2−2vε,

ξ2 = βaε(b−ε2)
(b+ε2)2 −min

{
−r1 +q1E +2( r1+Ku

K )ε + aε(b−ε2)
(b+ε2)2 ;−r2 +2vε

}
.
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where ε = in f (x,y,z) is the constant of uniform persistence.

Now, we impose that

(16)
aε(1−β )

b+ε2 +(d +w+q2E)+ r1−σ1−q1E + r2−σ2−2vε < 2( r1+Ku
K )ε + aε(b−ε2)

(b+ε2)2 ,

βaε(b−ε2)
(b+ε2)2 < min{−r1 +q1E +2( r1+Ku

K )ε + aε(b−ε2)
(b+ε2)2 ;−r2 +2vε}.

Then, from the above calculation we get

η(C)≤ ẋ
x −min{−ξ1,−ξ2}

i.e. 1
t

∫ t

0
η(C)ds≤ 1

t
ln
(

x(t)
x(0)

)
−min{−ξ1,−ξ2}

lim
t→+∞

sup 1
t

∫ t

0
η(B) ds≤−min{−ξ1,−ξ2}

The model (1) is globally asymptotically stable if (16) realized. �

5. OPTIMAL HARVESTING POLICY

Recently, the optimal harvesting policy has played an important role in the field of biomath-

ematics. Increasingly the inclusion of economic factors in population models, optimal har-

vesting policies is one of the most important problems taking into account both biological and

economic. In this section, we wish to evaluate the economic performance of reserve-based man-

agement with the employment of the Pontryagin’s Principle. The objective is to select a harvest

method which can maximize the net profit. The present value I of a continuous time-stream of

revenues is given by :

I =
∫ t f

0
π(x,y,z,E)e−δ t dt=

∫ t f

0
(p1q1x(t)+ p2q2z(t)−D)Ee−δ tdt.

where D be the constant Harvesting cost per unit effort, p1 is the constant price per unit biomass

of the prey in the unreserved zone, p2 is the constant price per unit biomass of the predator and

δ is the instantaneous discount rate.

Thus, our objective is to maximize I subject to state equations (1) and to the control con-

straints :

0≤ E ≤ Emax
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To solve this optimization problem, we utilize the Pontryagin’s maximal Principle (see [6,

26, 33]). The associated Hamiltonian of the problem is given by :

H = (p1q1x+ p2q2z−D)Ee−δ t

+ λ1

(
(r1−σ1−q1E)x− ( r1

K +u)x2 +σ2y− axz
b+x2

)
+ λ2

(
(r2−σ2)y+σ1x− vy2)+λ3

(
βaxz
b+x2 − (d +w+q2E)z

)
.

where λ1, λ2 and λ3 are the adjoint variables and

∂H
∂E

= (p1q1x+ p2q2z−D)e−δ t−λ1q1x−λ3q2z.

Now, the adjoint equation are :

(17)

∂λ1
∂ t = −∂H

∂x =−p1q1e−δ tE−λ1

(
(r1−σ1−q1E)−2

(
r1+Ku

K

)
x−az b−x2

(b+x2)2

)
− λ2σ1−λ3βaz b−x2

(b+x2)2 ,

∂λ2
∂ t = −∂H

∂y =−λ1σ2−λ2(r2−σ2−2vy),
∂λ3
∂ t = −∂H

∂ z =−e−δ t p2q2E +λ1
ax

b+x2 −λ3

(
axβ

b+x2 − (d +w+q2E)
)
.

And then since H is linear in the control variable E. The optimal control E which maximizes

H must satisfy the following conditions :

(18)

 E = Emax, for ∂H
∂E > 0,

E = 0, for ∂H
∂E < 0.

The function λieδ t , (i = 1,2,3) is the usual shadow price and p1q1x+ p2q2z−D is the net

economic revenue on a unit harvest. Economically, if the first condition of (18) is satisfied, after

the payment of all expenditure, we obtains a positive profit. According to the second condition

of (18), we have a negative profits that is to say to a loss, then the fisherman will not exert any

effort.

When ∂H
∂E = 0, i.e. when the shadow price equals the net economic revenue on a unit harvest,

the Hamiltonian H becomes independent of the variable E. This is necessary condition for the

singular control E∗ to be optimal over the control set 0 < E∗ < Emax.

Thus, the optimal harvesting policy is :
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E(t) =


Emax , ∂H

∂E > 0,

0 , ∂H
∂E < 0,

E∗ , ∂H
∂E = 0.

When ∂H
∂E = 0, it follows that :

λ1eδ tq1x+λ3eδ tq2z = p1q1x+ p2q2z−D =
∂π

∂E
e−δ t .

This involves that the user’s cost of harvest per unit of effort equals the discounted value of

the future marginal profit of the effort at the steady-state level. In the interior of equilibria P∗1 .

The third equation of (17) in the following form :

dλ3

dt
= M1λ3−M2e−δ t ,

where :

M1 = − q2az∗

q1(b+x∗2) ,

M2 = p2q2E− a(p1q1x∗+p2q2z∗−D)
q1(b+x∗2) .

By calculation, we get λ3(t) =
M2

M1+δ
e−δ t .

Similarly,

dλ2

dt
= N1λ2−N2e−δ t

where :

N1 = −(r2−σ2−2vy∗),

N2 = σ2
q1x∗

(
q2z∗M2
M1+δ

− (p1q1x∗+ p2q2z∗−D)
)
.

Then λ2(t) =
N2

N1+δ
e−δ t .

The first equation of (17) can be written as

dλ1

dt
= T1λ1−T2e−δ t .

where

T1 = −(r1−σ1−q1E)+2( r1+Ku
K )x∗+ az∗(b−x∗2)

(b+x∗2)2 ,

T2 = p1q1E + N2σ1
N1+δ

+ M2βaz∗(b−x∗2)
(M1+δ )(b+x∗2)2 .
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It easy to verify that : λ1 =
T2

T1+δ
e−δ t .

According to the above calculation, we have :

(19) T2
T1+δ

q1x∗+ M2
M1+δ

q2z∗ = p1q1x∗+ p2q2z∗−D.

Thus, we denote the function by :

G(x) = T2
T1+δ

q1x+ M2
M1+δ

q2z− (p1q1x+ p2q2z−D)

=
K p1q2

1E(b+x2)2x
(δ−(r1−σ1−q1E))K(b+x2)2+2(r1+Ku)(b+x2)+Kaz(b−x2)

+

σ1σ2K(b+x2)2[p2q2
2Eq1z(b+x2)−q2za(p1q1x+p2q2z−D)]

[δq1(b+x2)−q2az][δ−(r2−σ2−2vy)][δ−(r1−σ1−q1E))K(b+x2)2+2(r1+Ku)(b+x2)+Kaz(b−x2)]
−

σ1σ2(p1q1x+p2q2z−D)[δq1(b+x2−q2az)]
[δq1(b+x2)−q2az][δ−(r2−σ2−2vy)][δ−(r1−σ1−q1E))K(b+x2)2+2(r1+Ku)(b+x2)+Kaz(b−x2)]

+

q1Kβazx(b−x2)(b+x2)2[p2q2Eq1(b+x2)−a(p1q1x+p2q2z−D)]
[δq1(b+x2)−q2az][δ−(r1−σ1−q1E))K(b+x2)2+2(r1+Ku)(b+x2)+Kaz(b−x2)]

+

p2q2
2Eq1(b+x2)−aq2z(p1q1x+p2q2z−D)

δq1(b+x2)−q2az − (p1q1x+ p2q2z−D).

Hence (19) can be written as G(x∗1) = 0. After the calculations we get G(0)> 0 There exists a

unique positive root x∗1 = xδ of G(x∗1) = 0 in the interval 0 < x∗1 < K if the following inequalities

hold :

(20) G(K)< 0, Ġ(x)< 0 f or 0 < x < K

Therefore, we summarize the analysis above by the following theorem.

Theorem 5.1. If E > 0 and (20) is satisfied, then the optimal harvesting control Eδ and the

corresponding solutions xδ , yδ , zδ exist that maximize. Where :

xδ = x∗1,

yδ =
r2−σ2+

√
(r2−σ2)2+4vσ1xδ

2v ,

zδ =
b+x2

δ

axδ
[(r1−σ1−q1E)xδ − ( r1+Ku

K )x2
δ
+σ2yδ ].

Furthermore, the adjoint functions λ1, λ2 and λ3 exist that satisfy equations (17) with the the

conditions λi(t f ) = 0, i = 1,2,3. from equation (19), we have
T2

T1+δ
q1x∗1 +

M2
M1+δ

q2z∗1= p1q1x∗1 + p2q2z∗1−D→ 0 as δ → ∞.

Thus, the net economic revenue π(x,y,z,E, t) = 0.

So, if the discount rate δ is infinite, the economic gain is zero, which leads to the closure of the
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fishery. Consequently, the interest rate rises, which leads to an increase in the rate of inflation.

Consequently, the real value of the resource is reduced.

6. NUMERICAL SIMULATIONS

It is difficult to find realistic data in order to validate the results of our model (1). For this

reason, we take some hypothetical data in order to illustrate the results that we have already

established in the previous sections.

(1) In order to ensure the local stability of the equilibrium P̄, we consider the following

parameters :

(21)
r1 = 2,r2 = 1,K = 4,σ1 = 1,σ2 = 0.5,a = 1,b = 1,q1 = 0.5,

q2 = 0.8,E = 0.8,β = 0.8,u = 0.4,v = 0.4,w = 0.4,d = 0.3.

The system (1) with the initial conditions (x(0),y(0),z(0)) = (20,20,20). For this set of

parameters (21), the conditions of existence (2) and (6) are established. Consequently,

we find the equilibrium point following P̄(1.60,3.38,0). As well as, the local stability

conditions mentioned in theorem 3.2 are realized, which proves the effectiveness of our

theoretical results. So, the solution of our model (1) approaches to the equilibrium point

P̄ which is locally asymptotically stable. In the same way, there are few oscillations

in the beginning for the populations of prey x and y before reaching the equilibrium.

Although, the predator populations rapidly decrease to reach equilibrium. (see Figure

1)

(2) We consider the following parameters to prove the local stability of the equilibrium P∗1 :

(22)
r1 = 4,r2 = 2,K = 2,σ1 = 2,σ2 = 1,a = 1,b = 1,q1 = 0.5,

q2 = 0.5,E = 1,β = 5.7,u = 0.4,v = 0.4,w = 0.4,d = 0.01.

The system (1) with the initial conditions (x(0),y(0),z(0)) = (0.1,1,1). For this set

of parameters (22), the conditions of existence (2) and (12) are established. Conse-

quently, we find the equilibrium point following P∗1 (0.16,2.79,18.63). As well as, the
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local stability conditions mentioned in theorem 3.3 are realized, which proves the effec-

tiveness of our theoretical results. So, the solution of our model (1) approaches to the

equilibrium point P∗1 which is locally asymptotically stable. We remark that there are

a few oscillations of prey populations x and y, then they decreases to converge towards

the equilibrium. So, the predators population z can attack the prey x which implies the

diminution of prey. After that, it converges to the equilibrium state. (see Figure 2)
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FIGURE 1. (a) Time series of x(t) of the system, (b) Time series of y(t) of the

system, (c) Time series of z(t) of the system, (d) The phase trajectory of the

system (1)
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FIGURE 2. (a) Time series of x(t) of the system, (b) Time series of y(t) of the

system, (c) Time series of z(t) of the system, (d) The phase trajectory of the

system (1)

7. CONCLUSION AND DISCUSSION

In recent years, researchers have proposed various prey-predator models to describe the in-

teraction between the prey and predator population using the holling II function response. In

this paper, we have proposed a mathematical model analyze and study the dynamics of prey-

predator fishing using the function response holling type IV and toxic substances. Interactions

between species are based on the following assumptions :

• The prey can move between the two fishing zones (free zone and prohibited fishing

zone).

• The populations of predators are prohibited in the prohibited fishing area.

• The interaction between species of prois and predators is linked by the Holling type IV

functional response.

To describe the behavior of our system (1), we proved the boundedness of the solutions. Then,

we studied the existence of equilibria as well as their local and global stability. We studied the

global stability of the equilibrium P̄ using the Lyapunov function, and we used the geometric
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approach to prove the global stability of the equilibrium P∗1 . To study the economic side, we

formulated an optimal control problem which is solved by the Pontryagin’s Maximum Principle.

Finally, in numerical simulations, we choose the parameters to ensure the overall stability of the

system.

In this article, there are factors that are not taken into account. As predator species can

access the prohibited fishing area, predators can be divided into several types (Infected and

susceptible), and competition factors, etc. So, we will try to take those factors into consideration

in a future research.
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