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Abstract. In this article, some types of convergence are discussed along with a class of γ-continuous functions. It

is known that various classes of generalized continuous functions are closed under the uniform convergence. We

show that γ-continuity is closed with respect to a weaker type of convergence. Further properties of such types of

convergence related to γ-continuous functions are obtained.
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1. INTRODUCTION

The notion of convergence, to gather with the notion of continuity, plays a crucial role in

developing the theory of analysis, in particular, the theory of metric spaces and consequently

uniform spaces. There are many known types of convergence of nets of functions. The most
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known types are pointwise and uniform convergence. It is known that various types of general-

ized continuous functions are closed under the uniform convergence but not the pointwise one,

see [7] for somewhat continuity, [8] for quasi-continuity and [11] for cliquish functions.

There are several types of convergence in between pointwise and uniform convergence, we

mention only those types that are dealt in this work. In 1979, Predio [9] defined a notion of

quasi-uniform convergence, which is weaker than uniform convergence but stronger than point-

wise one. She showed that quasi-uniform convergence posses similar properties of uniform

convergence with respect to continuous functions. In the same year, Császár and Laczkovich

[3] introduced another type of convergence, lies between pointwise and uniform convergence,

called equal. The notion of equal convergence was used while modifying the Baire classifica-

tion of real valued functions. In 1991, Bukovská [2] defined an equivalent concept to the equal

convergence and named it quasinormal convergence. To reduce the level of confusion about the

word ”equal”, we stick to the word ”quasinormal”. It is worth saying that quasinormal conver-

gence is independent with the quasi-uniform one. In 1993, Ewert [6] introduced almost uniform

convergence of functions. This type of convergence is weaker than uniform convergence but

stronger than quasi-uniform one and independent with quasinormal convergence. She found

some nice results on almost uniform convergence of functions. Among them, she proved that

uniform and almost uniform coincide on compact spaces.

In this work, we mainly consider types of convergence (mentioned above) of nets of γ-

continuous functions defined on a topological space with values in a uniform space. We study

connections between such types of convergence and preserving of γ-continuity of functions.

2. PRELIMINARIES

Let (X ,τ) be a topological space and (Y,u) a uniform space with a family du of pseudometrics

on Y inducing u. For a subset A of a space X , the closure and interior of A with respect to X are

respectively denoted by ClX (A) and IntX (A) (or simply Cl(A) and Int(A)). A subset A ⊆ X is

called b-open [1] (or γ-open [5]) if A ⊆ Int(Cl(A))∪Cl(Int(A)). The family of all b-open sets

in X is denoted by BO(X).

For a space X , the intersection of two b-open sets in X need not be b-open ([5, Example

1.1.4]), so BO(X) is not a topology on X . But one can generate a topology with this class in a
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natural way. We denote by τγ the topology generated by BO(X). That is, τγ = {U ⊆ X : U ∩A∈

BO(X) whenever A ∈ BO(X)}. The elements of τγ are called γ-open. Since intersection of an

open set with a b-open set is b-open ([1, Proposition 2.3]), so all open sets are included in τγ .

Therefore τ ⊆ τγ ⊆ BO(X). More details on τγ can be found in [1, P. 62].

A function f : X→Y is called γ-continuous at a point x0 ∈X if for each d ∈ du and ε > 0, there

exists a γ-open set A that contains x0 such that d ( f (x), f (x0))< ε for all x∈ A. Evidently, every

continuous function is γ-continuous but not conversely. The Dirichlet function is γ-continuous

but not continuous.

A space X is γ-compact [5] if every γ-open cover of X has a finite subcover. By the remark

[5, Remark 3.1.1], every γ-compact is compact. However, there are spaces which are compact

but not γ-compact. Take X = R with the topology τ = { /0,X ,{0}}, so X is compact that is not

γ-compact. A space X is locally γ-compact [5] if every point has a neighborhood which is itself

contained in a γ-compact set. For a better view, we define the types of convergence as follow:

Definition 2.1. Let (S,≤) be a directed set. Then the net { fs}s∈S of functions fs : X → Y is

called

(1) pointwise convergent to f : X → Y if for each x ∈ X , d ∈ du and ε > 0, there exists s0 ∈ S

such that

d ( fs(x), f (x))< ε for s ∈ S and s0 ≤ s.

(2) uniformly convergent to f : X→Y if for each d ∈ du and ε > 0, there exists s0 ∈ S such that

d ( fs(x), f (x))< ε for all x ∈ X and s ∈ S, s0 ≤ s.

(3) quasi-uniformly convergent [9] to f : X→Y if for each point x0 ∈ X , d ∈ du and ε > 0 there

exists s0 ∈ S such that for every s ∈ S and s0 ≤ s, there is a neighbourhood H of the point

x0 such that

d ( fs(x), f (x))< ε for all x ∈ H.

(4) almost uniformly convergent [6] to f : X → Y if for each point x0 ∈ X , d ∈ du and ε > 0

there exists neighbourhood V of the point x0 and s0 ∈ S such that

d ( fs(x), f (x))< ε for all x ∈V and s ∈ S, s0 ≤ s.
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(5) quasinormally convergent to f : X → Y if there exists a net {εs}s∈S of non-negative real

numbers that converges to zero such that for each x ∈ X and d ∈ du there exists an index

s0 ∈ S with the property

d ( fs(x), f (x))≤ εs for each s ∈ S and s0 ≤ s.

Note that the definition of quasinormal convergence for a sequence of real valued functions

was defined in [3, 2].

At this place, a connection between these type of convergence is needed. This diagram is a

slight enlargement of the first diagram in [6] and Remark 4.1 in [10].

quasinormal

uniform pointwise

almost uniform quasi-uniform

Diagram I

In general, none of the implications is reversible, as shown in the following examples:

Example 2.2. (i) Consider the functions gn, f defined in [6, Example 1.1], then {gn}n∈N con-

verges to f is almost uniformly but not uniformly.

(ii) Consider the functions fn, f defined in [6, Example 1.1], then { fn}n∈N converges to f

quasi-uniformly but not almost uniformly.

(iii) Let fn(x) = xn be defined on X = [0,1]. Then { fn}n∈N converges to f pointwisely but not

quasi-uniformly (see [10, Example 4.1]), where f (x) = 1 for x = 1 and f (x) = 0 otherwise.

(iv) The sequence of functions {gm}m∈N constructed in [2, Example 1.7], converges to the

zero function almost uniformly (by [4, Theorem 2] since gm and f are continuous) (and

consequently, quasi-uniformly and pointwisely) but not quasi-normally.

(v) Let fn, f be such functions given in (iii). Then { fn}n∈N converges to f quasinormally but

not quasi-uniformly (also, not almost uniformly).
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We remark that almost uniform and quasi-uniform convergence are independent with quasi-

normal one.

3. THE RESULTS

The γ-continuity with respect to entourages can be stated as follows:

Remark 3.1. A function f : X → Y is called γ-continuous at a point x0 ∈ X if and only if for

each U ∈ u, there exists a γ-open set A containing x0 such that

( f (x), f (x0)) ∈U for all x ∈ A.

We now show that the set of γ-continuous functions is not closed with respect to the pointwise

limit. Consider the functions fn, f in Example 2.2 (iii). Clearly fn are continuous and so

γ-continuous. Then { fn}n∈N pointwise converges to f but f is not γ-continuous. However,

γ-continuity is closed under quasi-uniform convergence.

Theorem 3.2. If a net { fs}s∈S of γ-continuous functions fs : X → Y is quasi-uniformly conver-

gent to a function f : X → Y , then the limit function f is γ-continuous.

Proof. Let x0 be any element and U ∈ u be an arbitrary entourage. Then there exists a sym-

metric entourage V ∈ u such that VoVoV ⊆U . Since the net { fs}s∈S converges to a function f

quasi-uniformly, then there exists s0 ∈ S such that for every s ∈ S with s0 ≤ s, there is an open

neighbourhood H of the point x0 such that

( fs(x), f (x)) ∈V for all x ∈ H.

Meanwhile, since V is symmetric, then

( f (x), fs(x)) ∈V .

Also, since x0 ∈ H, then

( fs(x0), f (x0)) ∈V .

But since fs is γ-continuous at the point x0, then for the entourage V there exists a γ-open set A

containing x0 such that

( fs(x), fs(x0)) ∈V for all x ∈ A.
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Take G = H
⋂

A. Since H is an open set and A is a γ-open set, so G is a γ-open set. As a result

( f (x), f (x0)) ∈VoVoV ⊆U for all x ∈ G.

This implies that the function f is γ-continuous at x0. But since x0 is an arbitrary point, hence

f is γ-continuous.

�

The converse of the above theorem need not be true in general.

Example 3.3. Let X = [0,1] with the indiscrete topology τ and let Y = R with the usual metric

d. If fn : X → Y, n = 0, 1, 2, 3, · · · , are functions defined by fn(x) = 1
nx+1 , then the sequences

{ fn}∞

n=1 converges pointwise to the function f (x) = 1 for x= 0 and f (x) = 0 for x 6= 0. Evidently

f and fn are γ-continuous functions for each n. But fn does not converge quasi-uniformly to f .

Theorem 3.2 implies that

Corollary 3.4. If a net { fs}s∈S of γ-continuous functions fs : X → Y is almost uniformly (uni-

formly) convergent to a function f : X → Y , then the limit function f is γ-continuous.

Theorem 3.5. Let X be a γ-compact space and let { fs}s∈S be a monotonic net of γ-continuous

functions fs : X → Y that converges to a function f : X → Y pointwise. If the limit function f is

γ-continuous, then { fs}s∈S converges to f uniformly.

Proof. Let ε > 0 be given and d ∈ du be any pseudometric. Put

As = {x ∈ X : d ( fs(x), f (x))≥ ε}

Since f and fs are γ-continuous functions, therefore As is γ-closed set for each s ∈ S. By

assumption, the net { fs}s∈S is monotonic, so {As}s∈S is monotonically decreasing. Now let

x ∈ X be an element. Since the net { fs}s∈S converges to f pointwise, then there exists s0 ∈ S

such that

d ( fs(x), f (x))< ε for each s ∈ S and s0 ≤ s.

It follows that x /∈ As for each s ∈ S and s0 ≤ s. So x /∈
⋂

s∈S
As, and

⋂
s∈S

As =∅. By γ-compactness

of X and monotonicity of {As}s∈S there is s0 such that As = ∅ for each s ∈ S and s0 ≤ s. It

means



ON CERTAIN TYPES OF CONVERGENCE AND γ-CONTINUITY 1035

d ( fs(x), f (x))< ε for all x ∈ X and s ∈ S, s0 ≤ s.

Hence the net { fs}s∈S converges to f uniformly. �

Theorem 3.6. Let X be a locally γ-compact space and let { fs}s∈S be a monotonic net of γ-

continuous functions fs : X → Y that converges to a function f : X → Y pointwise. If the limit

function f is γ-continuous, then { fs}s∈S converges to f almost uniformly.

Proof. Let x ∈ X be any element. Then there is a neighbourhood V of the point x and a γ-

compact set K such that x ∈V ⊆ K. Let ε > 0 be given and d ∈ du be any pseudometric. Put

Bs = {x ∈ K : d ( fs(x), f (x))< ε}.

Since f and fs are γ-continuous functions, therefore Bs is γ-open set for each s ∈ S. Also since

the net { fs}s∈S converges to f pointwise, so the collection {Bs : s ∈ S} forms a γ-open cover of

K. Due to γ-compacness of K and monotonicity of { fs}s∈S there is s0 such that K ⊆ Bs for all

s ∈ S and s0 ≤ s. Therefore

d ( fs(x), f (x))< ε for all x ∈V and s ∈ S, s0 ≤ s.

Hence the net { fs}s∈S converges to f almost uniformly. �

Theorem 3.7. Let X be a discrete space and let { fs}s∈S be a monotonic net of (any) functions

fs : X→Y that converges to a function f : X→Y pointwise. Then { fs}s∈S converges to f almost

uniformly.

Proof. Since X is discrete, then open sets and γ-open are equivalent. So all functions defined

on X are γ-continuous and X is locally γ-compact. By Theorem 3.6, fs converges to f almost

uniformly. �

Lemma 3.8. Let { fs}s∈S be a net of functions fs : X→Y that converges to a function f : X→Y

pointwise. If X is a locally finite space, then { fs}s∈S converges to f almost uniformly.

Proof. Let x0 ∈ X , d ∈ du and ε > 0 be given. By assumption, there is a finite open set G

containing x0 and so for each x ∈ G there exists sx ∈ S such that

d ( fs(x), f (x))< ε for each s ∈ S and sx ≤ s.
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But since G is finite, we can set s0 = max{sx : x ∈ G}. Therefore, we have s0 ∈ S such that

d ( fs(x), f (x))< ε for all x ∈ G and s ∈ S, s0 ≤ s.

Thus { fs}s∈S converges to f almost uniformly. �

Theorem 3.9. Let { fs}s∈S be a net of γ-continuous functions fs : X → Y that converges to a

function f : X → Y pointwise. If X is a locally finite space, then the limit function f is γ-

continuous.

Proof. The proof is an immediate consequence of Lemma 3.8 and Theorem 3.2. �

The following result is due Császár and Laczkovich [3, Theorem 5.1] and Bukovská [2,

Theorem 1.2] for sequences of real valued functions.

Theorem 3.10. A net { fs}s∈S of functions fs : X → Y converges quasinormally to a function

f : X → Y if and only if there exists a monotonically increasing net {At}t∈T of sets with a

directed set (T,≤′) such that X =
⋃

t∈T
At and the net { fs}s∈S is uniformly convergent to the

function f on each At .

Proof. Assume that { fs}s∈S is a net of functions that converges to a function f quasinormally.

Then there exists {εs}s ∈S of non-negative real numbers that converges to zero such that for each

x ∈ X and d ∈ du there exists an index s0 ∈ S with the property

d ( fs(x), f (x))≤ εs for each s ∈ S and s0 ≤ s.

First, we choose (T,≤′) such that T = S and ≤′ is the same as ≤. Put

At = {x ∈ X : d ( fs(x), f (x))≤ εs for each s ∈ S and t ≤ s}.

We have Atα ⊆ Atβ where tα≤′tβ , thus the net {At}t∈T of sets is monotonically increasing also

X =
⋃

t∈T
At . To show that the net { fs}s∈S is uniformly convergent to f on each set At . We put

ε t
s =


sup{d ( fs(x), f (x)) : x ∈ At} for s ∈ S and s≤ t

εs otherwise.

It is obvious that {ε t
s}s ∈S is a net of non-negative real numbers and converges to zero for each

t ∈ T . As a consequence,
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d ( fs(x), f (x))≤ ε t
s for each s ∈ S and x ∈ At .

Hence { fs}s∈S converges to f uniformly on a set At for each t ∈ T .

Conversely, suppose that {At}t∈T be a monotonic increasing net of set such that X =
⋃

t∈T
At

and { fs}s∈S is uniformly convergent to a function f on a set At for each t ∈ T . Then for each

set At there exists a net {δ t
s}s∈S of non-negative real that converges to zero such that

(1) d ( fs(x), f (x))≤ δ
t
s for each x ∈ X and s ∈ S.

So there exists a net {δt}t∈T of non-negative real that converges to zero such that for each δt

there exists st with the property

(2) δ
t
s ≤ δt for each s ∈ S and st ≤ s.

Define

(3) εs = δt for each s ∈ S and st ≤ s < st ′.

Then {εs}s∈S is a net of non-negative real numbers and converges to zero. Now let x ∈ X , then

there exists t0 ∈ T such that x ∈ At for each t0≤′t, therefore by (1), (2) and (3) we have

d ( fs(x), f (x))≤ εs for each s ∈ S and st ≤ s

Thus { fs}s∈S is quasinormally convergent to f on X . �

Theorem 3.11. Let { fs}s∈S be a net of γ-continuous functions fs : X → Y . If the net { fs}s∈S

converges quasinormally to a function f : X → Y , then there exists a monotonically increasing

net {Bt}t∈T of γ-closed sets with a directed set (T,≤′) such that X =
⋃

t∈T
Bt and the net { fs}s∈S

is uniformly convergent to the function f on each set Bt .

Proof. Suppose that { fs}s∈S is a net of γ-continuous functions that converges to a function f

quasinormally. Then there exists a net {εs}s ∈S of non-negative real numbers that converges to

zero such that for each x ∈ X and d ∈ du there exists an index s0 ∈ S with the property

d ( fs(x), f (x))≤ εs for each s ∈ S and s0 ≤ s.

Take T = S and let ≤′ be similar to ≤, so (T,≤′) is a directed set. Put

Bt = {x ∈ X : d ( fs(x), fs0(x))≤ εs+εs0 for each s,s0 ∈ S and t ≤ s,s0}.
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Since fs and fs0 are γ-continuous functions for each s,s0 ∈ S, therefore Bt is a γ-closed set for

each t ∈ T . Clearly the net {Bt}t∈T of sets is monotonically increasing and X =
⋃

t∈T
Bt . To show

that the net { fs}s∈S is uniformly convergent to f on each set Bt . Put

ε t
s =


sup{d ( fs(x), f (x)) : x ∈ Bt} for s ∈ S and s≤ t

εs otherwise.

Evidently, {ε t
s}s ∈S is a net of non-negative real numbers and converges to zero for each t ∈ T .

As a consequence,

d ( fs(x), f (x))≤ ε t
s for each s ∈ S and x ∈ Bt

Hence the net { fs}s∈S converges to f uniformly on a set Bt for each t ∈ T . �
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