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Abstract. The use of Wolbachia bacterium has been proposed as an alternative strategy against Dengue, Zika and

Chikungunya. This requires that Wolbachia-carrying mosquitoes should persist in the population. A number of

mathematical models has been developed and analysed to understand Wolbachia-carrying mosquito population dy-

namics. However, their analytical solutions are not easily derived and therefore, a numerical approach is required.

In this paper, we develop a nonstandard finite difference scheme (NSFDS) for autonomous and non-autonomous

mathematical models of Wolbachia-carrying mosquito population. The dynamical properties of discrete systems

are then analysed. We also perform numerical simulations of the scheme and compare to other traditional methods.

We found that the discrete system preserves properties of the continuous models such as equilibrium points and

stability.
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1. INTRODUCTION

The use of Wolbachia bacterium has been proposed as a promising strategy against Dengue,

Chikungunya, and West-Nile virus. There are two mechanism by which Wolbachia can reduce
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the transmission of vector-borne diseases. First, the Wolbachia can reduce the mosquito lifespan

up to 50% depending in the Wolbachia strain [1], which minimises the chance for mosquitoes

to transmit virus. Second, Wolbachia can reduce the level of virus in the mosquitos [2]. Wol-

bachia causes an effect known as Cytoplasmic Incompatibility (CI). That is, Wolbachia-carrying

female mosquitoes can reproduce successfully when mating with both non-Wolbachia and Wol-

bachia carrying male mosquitoes. On the other hand, non-Wolbachia female mosquitoes can

only reproduce successfully when mating with non-Wolbachia male mosquitoes [2]. This gives

a reproductive advantage for Wolbachia-carrying female mosquitoes. Furthermore, CI affects

the population dynamics of mosquitoes.

Mathematical model is commonly formulated and analysed to understand complex phenom-

ena including population dynamics [3, 4, 5, 6, 7, 8, 9, 10]. The models are generally in the form

of system of nonlinear differential equations, which consist of autonomous or non-autonomous

models. Furthermore, analytical solutions of the models are not easily determined and there-

fore, a numerical approach is generally used [11]. To date, a number of mathematical models

has been developed to understand the mosquito population dynamics in the presence of Wol-

bachia-carrying mosquitoes [4, 12, 3]. The model are autonomous and non-autonomous with

seasonal forcing on adult mosquito death rate [4]. Analytical solutions of the models are not

easily determined and therefore numerical solutions are presented. Although, NSFDS has been

formulated for other problems [13, 14, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23], to the best of our

knowledge, there is a little work on the construction of NSFDS for model of Wolbachia-carrying

mosquito population dynamics. The aim of this paper is to construct a NSFDS for autonomous

and nonautonomous mathematical model of Wolbachia-carrying mosquito population and anal-

yse the scheme properties.

The remainder of the paper is organised as follows. Section 2 overviews mathematical model

for Wolbachia-carrying mosquito population dynamics. Section 3 presents the construction of

numerical scheme for autonomous and nonautonomous models and their numerical simulations.

Finally, the conclusion is presented.
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2. MATHEMATICAL MODEL

In this section, we present a mathematical model for Wolbachia-carrying mosquito popu-

lation dynamics. The model has been proposed by Ndii et al. [4]. The mosquito population

consists of non Wolbachia and Wolbachia-carrying mosquitoes. The mosquito population is

divided into Aquatic (AN and AW ), Male (MN and MW ) and female (FN and FW ) mosquitoes.

The subscripts N and W are to differentiate between non-Wolbachia and Wolbachia-carrying

mosquitoes respectively.

The Wolbachia-carrying female mosquitoes reproduce when they mate with non-Wolbachia

and Wolbachia-carrying male mosquitoes and their growth is limited by carrying capacity, K,

that is

(1)
FW (MN +MW )

FN +MN +MW +FW

(
1− AN +AW

K

)
.

Non-Wolbachia female mosquitoes can only reproduce when they mate with non-Wolbachia

males. This is governed by

(2)
FNMN

FN +MN +MW +FW

(
1− AN +AW

K

)
.

Equations (1) and (2) capture the effect of Cytoplasmic Incompatibility (CI). Furthermore, the

maternal transmission of Wolbachia-carrying mosquitoes is not perfect [2] and hence there is a

proportion of Wolbachia-carrying aquatic mosquitoes (1−α) that mature to be non-Wolbachia

mosquitoes. A proportion of α mature to be Wolbachia-carrying adult mosquitoes. When

aquatic mosquitoes mature, a proportion of ε is male and the rest (1− ε) is female. The model

is governed by the following system of differential equations.

dAN

dt
= ρN

MNFN

P

(
1− (AN +AW )

K

)
−µNAAN− γNAN ,

dMN

dt
= εNγNAN−µNMN + εNW (1−αW )γW AW ,

dFN

dt
= (1− εN)γNAN−µNFN +(1− εNW )(1−αW )γW AW ,
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(3)

dAW

dt
= ρW

FW (MW +MN)

P

(
1− (AN +AW )

K

)
−µWAAW − γW AW ,

dMW

dt
= εW αW γW AW −µW MW ,

dFW

dt
= (1− εW )αW γW AW −µW FW .

where P = FN +MN +MW +FW . We nondimensionalise the model by setting the ratio of male

and female mosquitoes to be the same, ε = 1/2 and K = 1, the model is reduced to

(4)

dAN

dt
= ρN

F2
N

2(FN +FW )
(1− (AN +AW ))− (µNA + γN)AN ,

dFN

dt
=

γNAN

2
+

(1−α)γW AW

2
−µNFN ,

dAW

dt
= ρW

FW

2
(1− (AN +AW ))− (µWA + γW )AW ,

dFW

dt
=

αγW AW

2
−µW FW .

In this paper, a NSFDS is constructed for nondimensionalised model (Equation (4)).

Model (4) has four equilibriums, which are mosquito-free equilibrium, only non-Wolbachia

mosquito surviving equilibrium, only and non-Wolbachia and two coexistence equilibriums.

E1 = (0,0,0,0) E2 = (AN∗,F∗N ,0,0) and E3,4 = (A+
N ,F

+
N ,A+

W ,F+
W )

where

AN∗ = 1− 4µN(µNA + γN)

ρNγN
and F∗N =

ρNA∗N
2µN

.

The expression for E3,4 is not analytically tractable and hence is explored numerically as given

in Ndii et al. [4]. Furthermore, only one of them is locally stable.

As the mosquito lifespan is seasonal-dependent, a seasonal forcing is applied to the adult

mosquito death rate. Furthermore, a sensitivity analysis showed that adult mosquito death rate

is also the influential parameter [4]. The seasonal forcing of the mosquito adult death rate is the

following

µN(t) = µN0 (1+η cos(2π(t +ψ)) and µW (t) = rµN(t)

µN0 is the baseline adult death rate, η is the degree of seasonality, ψ is the phase and t is time,

and r is the ratio of death rate of Wolbachia-carrying adult mosquitoes to non-Wolbachia adult

mosquitoes.
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TABLE 1. Parameters, description, values and sources of Model 4.

Symbol Description Value Unit Source

ρN Non-Wolbachia reproductive

rate

1.25 day−1 [4]

µNA Non-Wolbachia aquatic death

rate

1/7.78 day−1 [24]

γN Non-Wolbachia maturation

rate

1/6.67 day−1 [25]

µN Non-Wolbachia adult death

rate

1/14 day−1 [24]

µWA Wolbachia aquatic death rate 1/7.78 day−1 [2, 26]

µW Wolbachia adult death rate 1/7 day−1 [2, 26]

ρW Wolbachia reproductive rate 1.25ρN day−1 [4]

γW Wolbachia maturation rate 1/6.67 day−1 [25]

α The proportion of Wolbachia-

infected offspring from a

Wolbachia-infected mother

0.9 N/A [2, 26]

3. SCHEME CONSTRUCTION

This section deals with numerical construction of the proposed scheme. A nonstandard nu-

merical scheme is based on the two fundamental rules[27, 28, 29], which are

(1) Nonlocal approximation is used; for example

x2→ xnxn+1

x3→ 2(xn)3− (xn)2xn+1

(2) Discretisation of derivatives is not traditional and use the nonnegative function φ(h) =

h+O(h2)

Let us define the derivatives as follows

(5)
d f (t)

dt
=

f (t +h)− f (t)
φ(h)

+O(φ(h)) as h→ ∞
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where φ(h) is real-valued function on ℜ called denominator function that satisfies the following

properties [30]

(1) φ(h) = h+O(h2),

(2) 0 < φ(h)< 1 for all h > 0.

The above definition is consistent with the traditional derivatives. There is no general rule for

determining φ(h) but we can find ideas in [30].

3.1. Scheme construction for autonomous model. Let define (AN)
n, (FN)

n, (AW )n, (FW )n

the approximation of AN(nh), FN(nh), AW (nh), and FW (nh) respectively where n= 0,1,2,3,4, ...

and h > 0 the step size of the scheme. The approximation scheme for the Model (4) is given as

follows,

(6)

An+1
N −An

N
φ1(h)

= ρN
Fn

NFn+1
N

2(Fn
N +Fn

W )
(1− (An

N +An
W ))− (γN +µNA)An+1

N ,

Fn+1
N −Fn

N
φ2(h)

=
γN

2
An

N +
(1−α)

2
γW An

W −µNFn+1
N ,

An+1
W −An

W
φ3(h)

=
ρW Fn

W
2

(1− (An
N +An

W ))− (γW +µWA)An+1
W ,

Fn+1
W −Fn

W
φ4(h)

=
αγW

2
An

W −µW Fn+1
W .

Rearrange the Equation (6) to obtain

(7)

An+1
N =

2(Fn
N +Fn

W )An
N +φ1(h)

[
ρNFn+1

N Fn
N (1− (An

N +An
W ))
]

2(Fn
N +Fn

W )(1+φ1(h)(µNA + γN))
,

Fn+1
N =

2Fn
N +φ2(h) [γNAn

N +(1−α)γW An
W ]

2(1+φ2(h)µN)
,

An+1
W =

2An
W +φ3(h)ρW Fn

W (1− (An
N +An

W ))

2(1+φ3(h)(ρW +µWA))
,

Fn+1
W =

2Fn
W +φ4(h)αγW An

W
2(1+φ4(h)µW )

.

We choose the denominator function as

φi(h) =
eMih−1

Mi

where i = 1,2,3,4 and (M1,M2,M3,M4) = (γN +µNA,µN ,γW +µWA,µW ).
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3.2. Scheme analysis. This section presents the equilibrium points of the scheme and the

stability of the model. We determine the equilibrium points that satisfy the conditions of An+1
N =

An
N , Fn+1

N = Fn
N , An+1

W = An
W , Fn+1

W = Fn
W .

(8)

An
N =

2(Fn
N +Fn

W )An
N +φ1(h) [ρNFn

NFn
N (1− (An

N +An
W ))]

2(Fn
N +Fn

W )(1+φ1(h)(µNA + γN))
,

Fn
N =

2Fn
N +φ2(h) [γNAn

N +(1−α)γW An
W ]

2(1+φ2(h)µN)
,

An
W =

2An
W +φ3(h)ρW Fn

W (1− (An
N +An

W ))

2(1+φ3(h)(ρW +µWA))
,

Fn
W =

2Fn
W +φ4(h)αγW An

W
2(1+φ4(h)µW )

.

If Wolbachia-carrying mosquitoes do not persist in the population, then the equilibrium points

is

E2 =

(
1− 4µN(γN +µNA)

ρNγN
,
1
2

(
γN

µN
− 4(γN +µNA)

ρN

)
,0,0

)
The equilibrium E2 corresponds exactly to that of Model (4).

The other equilibrium points (E3 and E4) can be found numerically since the mathematical

expressions are not analytically tractable.

To determine the stability, we construct a Jacobian matrix and find the eigenvalues. For

discrete model, the equilibrium points are stable if the root of characteristic polynomial is less

than unity.

Theorem 1. Let x = (AN ,FN ,AW ,FW ) and x̂ = (ÂN , F̂N , ÂW , F̂W ) be an equilibrium point of the

difference equation

(9) xn+1 = F(xn,xn−1, ...,xn−k),n = 0,1,2, ...

where the function F is a continuously differentiable function defined on some open neighbor-

hood of an equilibrium point x̂. If all the roots of the characteristic polynomial have absolute

value less then one, then the equilibrium point x̂ is locally asymptotically stable. If at least one

root of the characteristic polynomial has absolute value greater than one, then the equilibrium

point x̂ is unstable.
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Constructing the Jacobian matrix J(x̂), which is
J11 J12 J13 J14

− φ2(h)γN
2(1+φ2(h)µN)

1− 1
(1+φ2(h)µN)

−φ2(h)(1−α)γW
2(1+φ2(h)µN)

0
φ3(h)ρW FW

2(1+φ3(h)(γW+µWA))
0 1− −φ3(h)ρW FW+2

2(1+φ3(h)(γW+µWA))
−φ3(h)ρW (1−(AN+AW ))

2(1+φ3(h)(γW+µWA))

0 0 − φ4(h)αγW
2(1+φ4(h)µW ) 1− 2

2(1+φ4(h)µW )


where

J11 = 1− −φ1(h)F̂N
2
ρN +2(F̂N + F̂W )

2((F̂N + F̂W )(1+φ1(h)(µNA + γN)))
,

J12 =−D1 +D2,

J13 =
φ1(h)ρNF̂N

2

2((F̂N + F̂W )(1+φ1(h)(µNA + γN)))
,

J14 =−D3 +D4,

with

D1 =
2ÂN +2φ1(h)ρNF̂N(1− ÂN− ÂW )

2((F̂N + F̂W )(1+φ1(h)(µNA + γN)))
,

D2 =
((2(F̂N + F̂W ))ÂN +φ1(h)ρNF̂N

2
(1− ÂN− ÂW ))

2((F̂N + F̂W )2(1+φ1(h)(µNA+ γN)))
,

D3 =
ÂN

((F̂N + F̂W )(1+φ1(h)(µNA + γN)))
,

D4 =
((2(F̂N + F̂W ))ÂN +φ1(h)ρNF̂N

2
(1− ÂN− ÂW ))

2((F̂N + F̂W )2(1+φ1(h)(µNA + γN))
.

The eigenvalues of the model is found numerically by solving |J−λ I|. The results are given in

Table 2.

TABLE 2. Eigenvalues for E2 and E3 for discrete model with different values

of h. The parameter values for E2 is given in Table 2

.

h (λ1,λ2,λ3,λ4) for E2 (λ1,λ2,λ3,λ4) for E3

0.1 (0.06702,0.00388,0.03487,−0.00068) (0.0686,0.0290,0.0036,0.0051)

0.01 (0.00686,0.00039,0.00356,−0.000069) (0.00703,0.00297,0.00036,0.00051)

0.001 (0.00068,0.00003,0.00035,−0.0000069) (0.00070,0.00029,0.00003,0.00005)
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We show the results that the absolute of the eigenvalues is always less than unity and therefore

the equilibrium points are locally stable. Note that the obtained equations should be computed

in sequence but it starts from Fn+1
N , An+1

N , An+1
W , Fn+1

W since the outcome of the Fn+1
N is needed

for the calculation of An+1
N , which is then used to calculate An+1

W and then Fn+1
W . The numerical

simulations are given in Section 3.3

3.3. Numerical simulations. To illustrate the results, we perform numerical simulations of

the scheme and compare to the Euler method. The parameter values are given in Table 1 and

the numerical simulations are given in Figures 1 and 2

Time

0 50 100

A
N

0

0.2

0.4

0.6

0.8

NSFDS

Euler

Time

0 50 100

F
N

0

0.1

0.2

0.3

0.4

NSFDS

Euler

Time

0 50 100

A
W

0

0.2

0.4

0.6

0.8

NSFDS

Euler

Time

0 50 100

F
W

0

0.1

0.2

0.3

0.4 NSFDS

Euler

FIGURE 1. Numerical simulations of NSFDS and the Euler method for the non-

Wolbachia only equilibrium (E2) with h = 0.01 .

Figure 1 shows the numerical simulations for the model for non-Wolbachia only steady state.

It shows that the numerical simulations using NSFDS and the Euler method are in good agree-

ment.

Figure 2 shows the numerical simulations of the model for the coexistence equilibrium. It

shows that NSFDS and the Euler method gives the similar results. We also simulate for a very

large time and found that the solutions remain positive.
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Time

0 50 100

A
N

0

0.2

0.4

0.6

0.8

NSFDS

Euler

Time

0 50 100

F
N

0

0.1

0.2

0.3

NSFDS

Euler

Time

0 50 100

A
W

0.2

0.4

0.6

0.8

NSFDS

Euler

Time

0 50 100

F
W

0.2

0.3

0.4

0.5

NSFDS

Euler

FIGURE 2. Numerical simulations of the NSFDS and the Euler method for co-

existence equilibrium (E3) with h = 0.01.

3.4. Scheme construction for non-autonomous model. The numerical scheme for nonau-

tonomous model is the same as that of the autonomous model except for the adult mosquito

death rate. The adult mosquito death rate is governed by

(10) µ
n+1
N = µN0 (1+η cos(2π((nh)+ψ)) and µ

n+1
W = rµ

n+1
N ,

where r is the ratio of death rate of Wolbachia-carrying adult mosquitoes to that of non-Wolbachia

adult mosquitoes. The numerical scheme for the nonautonomous model is the following.

An+1
N −An

N
φ1(h)

= ρN
Fn

NFn+1
N

2(Fn
N +Fn

W )
(1− (An

N +An
W ))− (γN +µNA)An+1

N ,

Fn+1
N −Fn

N
φ2(h)

=
γN

2
An

N +
(1−α)

2
γW An

W −µ
n
NFn+1

N ,

(11)

An+1
W −An

W
φ3(h)

=
ρW Fn

W
2

(1− (An
N +An

W ))− (γW +µWA)An+1
W ,

Fn+1
W −Fn

W
φ4(h)

=
αγW

2
An

W −µ
n
W Fn+1

W
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Rearranging Equation (11) gives An+1
N , Fn+1

N , An+1
W , Fn+1

W , where their expressions are the same

as Equation (7) except for µN and µW . The µN and µW are replaced by Equations 10. This gives

the periodic solutions of the model. The simulations of the model is given in Section 3.5. The

calculation of the obtained equations begins by calculating the parameter µ
n+1
N . The following

steps are the same as in autonomous model.

3.5. Numerical Simulations. In this section, we present numerical simulations of NSFDS

for the nonautonomous model and compare the results to that of the Euler method and matlab

ode45 routine. The simulation is given in Figure 3.

Time

800 800.5 801 801.5 802 802.5 803 803.5 804 804.5 805

F
W

0.49

0.492

0.494

0.496

0.498

0.5

0.502

NSFDS

Euler

ode45

FIGURE 3. Numerical simulations of nonstandard finite difference method and

Euler method with h = 0.01 for Wolbachia-carrying mosquito population. For

the sake of clarity, we only plot from day 800 to 805.

Figure 3 shows that the numerical simulations for the Wolbachia-carrying mosquito popula-

tion using NSFDS, the Euler method and the ode45 routine are in a good agreement. We also

conducted numerical simulations for a very large time to examine the positivity of the periodic

solutions. We found that the solutions remain positive all the time.
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4. CONCLUSIONS

We formulated a nonstandard finite difference schemes for autonomous and non-autonomous

model of Wolbachia-carrying mosquito population. A seasonal forcing is added in adult mosquito

death rate as this is influential parameter of the model. We found that the scheme is locally sta-

ble and the numerical simulations are in good agreement with Euler method and Matlab ode45

routine. For large time window, the numerical simulations show that the solutions remain pos-

itive as long as φi(h) < 1. However, the convergence of the scheme depends on the step size

h. Furthermore, one may be interested to use other denominator functions such as hyperbolic

tangent function. This may improve the accuracy of the scheme.
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