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Abstract. This paper proposes an efficient approach for solving Fractional Barrier Option Model (FBOM). The

approach of the Caputo Fractional Reduced Differential Transform Method (CFRDTM) which is the combination

of the Caputo Fractional Derivative (CFD) and the Reduced Differential Transform Method (RDTM) is employed.

The emphasis is laid on CFD which is more suitable for the study of differential equations of fractional order. It is

assumed that the stock price pays no dividend and follows a marked point process. Based on CFRDTM, a series

solution for FBOM has been obtained successfully. The valuation formula for the price of Barrier Option (BO)

with fractional order is also obtained. Moreover, the approximate solution obtained via CFRDTM is expressed in

the form of a convergent series with computed components. An illustrative example is presented to measure the

performance of CFRDTM in terms of accuracy, efficiency and suitability. The results obtained via CFRDTM were

compared with the other existing methods such as the Laplace Adomian Decomposition Method (LADM), Two

Dimensional Differential Transform Method (TDDTM) and the Analytical Value (AV). Hence, CFRDTM is found

to be accurate, efficient and a suitable approach for obtaining an approximate solution of FBOM.
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1. INTRODUCTION

A contingent claim is a versatile security that gives its holder the right, but not obligation, to

buy (call option) or sell (put option) an underlying asset at an agreed upon price during a cer-

tain period of time. According to [1], “a barrier option is a type of derivative where the payoff

depends on whether or not the underlying asset has reached or exceeded a predetermined price.

A barrier option can be a knock-out, if the underlying exceeds a certain price, limiting profits

for the holder and limiting losses for the writer. It can also be a knock-in, if it has no value

until the underlying reaches a certain price”. Fractional differential and integral operators have

been used extensively to describe practical dynamics phenomena arising from physical science,

biological science social science, medical science and engineering; see [2, 3, 4, 5, 6, 7, 8],

just to mention a few. Veeresha and Prakasha [9] studied the solution of fractional generalized

Zakharov equations with Mittag-Leffler function. Fadugba [10] applied homotopy analysis

method for the valuation of European call options with time-fractional Black-Scholes equation.

Fadugba [11] studied the solution of fractional order equations in the domain of the Mellin

transform. Sarwar et al. [12] carried out the free convective non-Newtonian fluid of Brinkman

type flow near an upright plate moving with velocity f (t). They also proposed a fractional or-

der model for non-Newtonian fluid of Brinkman type flow. A numerical analysis for fractional

model of the spread of pests in tea plants was studied by Kumar et al. [13]. They inves-

tigated the possibility for obtaining new chaotic behaviours with singular fractional operator

and shows the chaotic behaviour at various values of arbitrary order. Cui et al. [14] consid-

ered the Riemann-Liouville-type general fractional derivatives of the non-singular kernel of the

one-parametric Lorenzo-Hartley function. They also proposed a new general fractional-order-

derivative Goldstein-Kac-type telegraph equation for the first time. In this paper, the solution

of FBOM via CFRDTM is proposed. CFRDTM does not require linearization, perturbation or

restrictive assumptions and offers solutions with easily computable components as convergent

series. The emphasis is laid on the Caputo fractional derivative because of its suitability for the

study of differential equations of fractional order and superiority over the Riemann-Liouville

fractional derivative. The rest of the paper is structured as follows: Section Two presents the

preliminaries which captures elements of FBOM, some definitions of terms and CFRDTM. In
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Section Three, the solution of FBOM via CFRDTM is obtained. The valuation formula for the

option is also obtained. Section Four captures the application of CFRDTM in the valuation

of FBOM. The physical behaviour of the prices of FBOM obtained via CFRDTM is shown

in terms of plots for different values of fractional order q is also presented. In Section Five,

discussion of results and concluding remarks were presented.

2. PRELIMINARIES

This section presents the elements of FBOM, some definitions of concepts and CFRDTM.

2.1. Fractional Barrier Option Model (FBOM). Assume that the stock price follows geo-

metric Brownian motion and pays no dividend, a Barrier Option Model (BOM) is given by

[15]

(1)
∂cb

∂τ
=

∂ 2cb

∂x2 +(β −1)
∂cb

∂x
−βcb

subject to up-and-out barrier constraints, respectively

(2) cb(x,τ) = 0,exp(x)≥ exp(Bu),τ ∈ [0,T ]

and

(3) cb(x,0) = (exp(x)−K),0 < exp(x)< exp(Bu)

with

(4) S = ex, t = T − 2τ

σ2 ,B(S, t) = cb (x,τ) ,β =
2r
σ2

where B(S, t) is the price of barrier option, S is the stock price, t is the current time, σ is the

volatility, r is the risk-free interest rate, (S, t) ε R+× (0,T ) , K is the strike price, T is the

time to expiry and Bu is the barrier/ boundary. Let the stock price be driven by a marked point

process as in [16]. Thus (1) turns to FBOM given by

(5)
∂ qcb

∂τq =
∂ 2cb

∂x2 +(β −1)
∂cb

∂x
−βcb

subject to (2) and (3), where q ∈ (0,1] is the fractional order.
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2.2. Definition of Some Concepts. Definitions of some concepts are presented as follows:

Definition 1. A real valued function f (t), t > 0, is said to be in the space Cµ , µ ∈ R if there

exists a real number ρ > µ , such that f (t) = tρ f1(t), where f1(t) ∈C[0,∞] and is said to be in

the space Cn
µ if and only if f n ∈Cµ ,n ∈ N

Definition 2. The Caputo fractional derivative of the function f ∈Cn
−1,n ∈ N is defined as

(6) c
0Dq

t f (t) =
1

Γ(n−q)

∫ t

0
(t− τ)n−q−1 f (n)(τ)dτ

for q ∈ (n−1,n], t > 0

Definition 3. The Caputo time-fractional derivative operator of order q > 0 is defined as

(7) c
0Dq

t u =


1

Γ(n−q)

∫ t
0(t− τ)n−q−1u(n)(x,τ)dτ q ∈ (0,1],

∂ nu(x,t)
∂ tn , q = n

where n is the smallest integer that exceeds q, u = u(x, t),u(n)(x,τ) = ∂ nu(x,τ)
∂τn .

Definition 4. The Riemann-Liouville fractional integral operator of order q ≥ 0 of a function

f ∈Cµ , µ ≥ 1 is defined as

(8) Jq f (t) =
1

Γ(q)

∫ t

0
(t− τ)q−1 f (τ)dτ,τ > 0

where Γ(q) is the gamma function of q.

Definition 5. The Riemann-Liouville fractional derivative operator of order q > 0 of a function

f (t) is defined as

(9) 0Dq
t f (t) =

1
Γ(n−q)

∫ t

0
(t− τ)n−q−1 f (τ)dτ

for q ∈ (n−1,n), t > 0 and n ∈ N

The relation between the Riemann-Liouville operator and Caputo fractional differential operator

is given by

(10) JqDq
t f (t) = D−q

t f (t) = f (t)−
n−1

∑
k=0

tk

k!
f (k)(0)
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TABLE 1. The fundamental properties of CFRDTM

Functional form Transformed form

ψ(x, t) = ϕ(x, t)±ξ (x, t) Ψk(x) = Φk(x)±Ξk(x)

ψ(x, t) = cϕ(x, t) Ψk(x) = cΦk(x), c is a constant.

ψ(x, t) = ϕ(x, t)ξ (x, t) Ψk(x) = ∑
k
i=0 Φi(x)Ξk−i(x)

ψ(x, t) = xmqtnq

Γ(1+mq)Γ(1+nq) Ψk(x) = xmq

Γ(1+mq)
δq(k−n)
Γ(1+q) , m,n ∈ N

ψ(x, t) = ∂ nqϕ(x,t)
∂ tnq Ψk(x) =

Γ(1+(k+n)q)
Γ(1+kq) Φk+n(x),n ∈ N

ψ(x, t) = ∂ mqϕ(x,t)
∂xmq Ψk(x) =

∂ mqΦk(x)
∂xmq , m ∈ N

ψ(x, t) = xn
i tr Ψk(x) = xn

i δ(k−r), i = 1, ...,m

ψ(x, t) = eλ t Ψk(x) = λ k

k!

Definition 6. The Mittag-Leffler function is defined as the series representation, valid in the

whole complex plane [17]

(11) Eq(z) =
∞

∑
n=0

zn

Γ(nq+1)

For more details about the properties and applications of fractional calculus; see [17] and [18].

2.3. Caputo Fractional Reduced Differential Transform Method (CFRDTM). The Ca-

puto Fractional Reduced Differential Transform (CFRDT) of the function ψ(x, t) is defined as

(12) Ψk(x) =
[c0Dkq

t ψ(x, t)]t=t0
Γ(1+ kq)

,q ∈ (0,1], k = 0,1, ...,n,

where c
0Dkq

t ψ(x, t) = ∂ kqψ(x,t)
∂ tkq . Conversely, the inverse CFRDT of Ψk(x) is defined as

(13) ψ(x, t) =
∞

∑
k=0

Ψk(x)(t− t0)kq,0 < q≤ 1.

By means of (12) and (13), the fundamental properties of CFRDTM were summarized in Table

1. See Refs [19, 20, 21, 22] for more details on classical RDTM.

3. CFRDTM FOR THE SOLUTION OF FBOM

Applying CFRDT on both sides of (3) and (5) yields

(14) Cb
0 = exp(x)−K
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and

(15) Cb
k+1 =

Γ(kq+1)
Γ(q(k+1)+1)

[
∂ 2Cb

k
∂x2 +(β −1)

∂Cb
k

∂x
−βCb

k

]
respectively. Using (14) and (15), we have the following

(16) Cb
1 =

βK
Γ(q+1)

(17) Cb
2 =

−β 2K
Γ(2q+1)

(18) Cb
3 =

β 3K
Γ(3q+1)

(19) Cb
4 =

−β 4K
Γ(4q+1)

(20) Cb
5 =

β 5K
Γ(5q+1)

(21) Cb
6 =

−β 6K
Γ(6q+1)

...

(22) Cb
n =

(−1)n+1β nK
Γ(nq+1)

...

By means of inverse CFRDT, one obtains the solution as

(23) cb(x,τ) =
∞

∑
k=0

Cb
k τ

qk

Substituting (14), (16)-(22) into (23) and simplifying further, one gets

(24) cb(x,τ) = exp(x)−KEq(−βτ
q)

where

Eq(−βτ
q) = exp(−βτ

q) =
∞

∑
m=0

(−βτq)m

Γ(mq+1)
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TABLE 2. The parameters

Parameter Description Values

S Stock price $80

K Strike price $20, $30, $40, $50, $60

T Time to expiry 2, 4, 6, 8, 10 (years)

r Risk-free interest rate 0.1,0.2,0.3,0.4,0.5,0.6

σ Volatility 0.25

q Fractional order 0.25, 0.50, 0.75, 0.90, 0.95,

1

Bu Barrier/ Boundary $85

is the Mittag-Leffler function. Using (4), the price of FBOM via CFRDTM is obtained as

(25) B(S, t) = S−K exp

[
−r(T − t)q

(
σ2

2

)q−1
]

with S < eBu . For a special case q = 1, (25) becomes the result obtained by [23].

4. APPLICATION OF CFRDTM IN THE VALUATION OF FBOM

Using (25) and the following parameters in Table 2. The results generated via CFRDTM

were displayed in Figures 1-6. The comparative result analyzes of CFRDTM and Analytical

Value (AV) [24] are presented in Figures 7-11. The physical behaviour of the FBOM prices

is captured in terms of plots for different values of q in Figure 12. The comparative study of

the FBOM prices generated via CFRDTM, Laplace Adomian Decomposition Method (LADM)

[25], Two-Dimensional Differential Transform Method (TDDM) [15] and AV is captured in

Figure 13.
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Figure 1: FBOM prices via CFRDTM with r = 0.1

Figure 2: FBOM prices via CFRDTM with r = 0.2

Figure 3: FBOM prices via CFRDTM with r = 0.3
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Figure 4: FBOM prices via CFRDTM with r = 0.4

Figure 5: FBOM prices via CFRDTM with r = 0.5

Figure 6: FBOM prices via CFRDTM with r = 0.6
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Figure 7: CFRDTM versus AV with T = 2 years

Figure 8: CFRDTM versus AV with T = 4 years
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Figure 9: CFRDTM versus AV with T = 6 years

Figure 10: CFRDTM versus AV with T = 8 years
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Figure 11: CFRDTM versus AV with T = 10 years

Figure 12: FBOM prices via CFRDTM versus AV with σ = 0.25,r = 0.1,S = $80,T = 10

years for different values of q
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Figure 13: The comparative results analyses of CFRDTM, LADM, TDDTM and AV with

q = 1.0,σ = 0.25,r = 0.1, S = $80,T = 4 years

5. DISCUSSION OF RESULTS AND CONCLUDING REMARKS

5.1. Discussion of Results. It is observed from Figures 1-6 that the price of FBOM generated

via CFRDTM increases as the risk-free interest rate increases. By varying the time to expiry, it

is observed from Figures 7-11 that increase in time to expiry leads to increase in FBOM prices.

It is also observed that CFRDTM curves follow that of AV more elegantly. Figure 12 shows

the physical behaviour of the FBOM prices generated via CFRDTM for different values of

fractional order q in the context of AV. It is observed from Figure 12 that CFRDTM compared

favourably and agreed with AV for q = 0.75, q = 0.90, q = 0.95 and q = 1.0. It is also observed

that when q = 0.25 and q = 0.50, FBOM is overpriced. In other words, when q = 1, FBOM

has the lowest price in exercise time T . The payoff of FBOM increases as q decreases. It is

observed from Figure 13 that the results obtained via CFRDTM agreed with that of LADM,

TDDTM and AV.

5.2. Concluding Remarks. In this paper, a new efficient approach “CFRDTM” has been pro-

posed for the solution of FBOM. The valuation formula for the price of Barrier Option (BO)

with fractional order is also obtained. Furthermore, an illustrative example is presented to mea-

sure the performance of CFRDTM in terms of accuracy, efficiency and suitability. The results
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show that CFRDTM is in agreement with AV. It is also observed that CFRDTM compared

favourably with other existing methods “LADM, TDDTM, AV” for the valuation of FBOM.

Moreover, CFRDTM is found to be accurate, computationally efficient and suitable for ob-

taining an approximate solution of FBOM. In conclusion, CFRDTM is a good approach to be

included in the class of methods for the valuation of FBOM. Results and figures are obtained

by the help of MAPLE 18 and MATLAB R2014a, Version: 8.3.0.552, 32 bit (win 32) in double

precision. The methodology can further be extended to solve barrier option pseudo differential

equation with fractional order.
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