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Abstract. The main object of the present article is the study of an abstract singular fractional differential equation

subject to some initial conditions. Under appropriate assumptions on the initial conditions we obtained the explicit

solution of the given singular fractional differential equation after decoupling it into two separate equations of

different nature. Finally, two concrete examples of singular fractional differential initial value problems are given

at the end of this work.
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1. INTRODUCTION

Systems of differential algebraic equations (DAEs) have been used to model a large variety of

areas in science and technology such as in multi-body mechanics, chemical engineering, con-

trol theory as well as incompressible fluids, see [3, 4, 10, 13]. Thus, the theory of differential

algebraic equations has known a remarkable development in the last four decades, and despite

the fact that the DAEs are considered somehow as a generalization of Ordinary Differential
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Equations (ODEs), the study of this kind of systems is quite different from the standard anal-

ysis of the classical ODEs. Another field that has enriched nowadays the classical concepts of

ODEs is Fractional Calculus whose genesis began by an innocent question asked by Marquise

De l’Hopital to the mathematician Gottfried W. Leibniz in 1695 regarding the new notation of

the nth derivative introduced by the latter, namely dn

dxn . He asked him whether it is propitious

to use the noninteger value n = 1
2 . As it is too hard to give a rigorous mathematical answer, he

just answered him in a prescient manner that ”This is an apparent paradox from which, one day,

useful consequences will be drawn...” Effectively, that naive question is now an unveiled reality

that a great deal of investigators have deeply explored and used in the framework of Fractional

Calculus [1, 7]. So, due to the nonlocal character of fractional derivative several real world

processes and natural phenomena are mathematically modeled by different types of fractional

derivatives among them Caputo’s and Riemann-Liouville’s, for more details see [5, 9, 14]. In

regard to singular fractional differential initial value problems, we address the reader to the re-

cent investigations by the authors E. Shishkina & S. Sitnik [15], Y. Zhao [17], S. Bu & G. Cai

[2], M. Plekhanova [12], and the references therein.

Let R+ := [0,∞) be the set of nonnegative real numbers, α a positive non integer number and let

N = [α]+1, where [α] is the integral part of α . We are interested in solving explicitly the fol-

lowing singular fractional differential initial value problem with respect to Caputo’s fractional

derivative in the unknown vector function x(t) : R+→ X , namely

(1) EDα
0+x(t) = Ax(t)+ f (t), t > 0,

subject to the initial conditions

(2) x(k)(0) = vk, k = 0,1, . . . ,N−1,

where E,A ∈B (X), so that ker E 6= {0} (and possibly ker A 6= {0}), and Dα
0+ denotes the (left

sided) Caputo’s fractional derivative of order α > 0 initiated at 0, v0, v1, ...,vN are known vec-

tors in X and f is a given absolutely continuous function defined on R+. Unlike the projection

operators approach used in the works [6, 12], we shall express the solution to problem (1)-(2)

in terms of Mittag-Leffler functions and Drazin inverses [8, 16] of the operators A and E, when



SINGULAR FRACTIONAL DIFFERENTIAL INITIAL VALUE PROBLEMS 1537

AE = EA. In particular, if these operators are non singular, we obtain the explicit solution of

a regular fractional initial value problem. The technique used in our investigation consists in

decoupling the operator E into the sum of two operators, one of them is nilpotent, so that the

given problem (1)-(2) is equivalent to a certain couple of manageable subproblems. In order to

investigate general singular fractional initial value problems when the operators A and E don’t

necessarily commute we introduce a new notion of regularity that allows solving this type of

problems.

The present article is organized as follows: we first start by stating some basic definitions and

properties from Fractional Calculus as well as the notion of Drazin inverse of non invertible

linear operators in a Banach space. Next, we investigate a certain singular fractional differential

initial value problem as we establish the existence and uniqueness of the solution; moreover,

we derive the explicit representation of the solution besides some illustrating examples. Finally,

we finish our investigation with some concluding remarks.

2. PRELIMINARIES

Let (X ,‖.‖) be a complex Banach space. We denote by B (X) the Banach space of linear

bounded operators from X into itself endowed with the norm ‖A‖op = sup{‖Ax‖ : ‖x‖= 1}, for

every A ∈B (X). First of all we give some background regarding Fractional Calculus chiefly

the notion of (left-sided) fractional Riemann-Liouville integral of order α > 0 of a function

f : R+ → X as well as its (left-sided) fractional derivative of order α in the sense of Caputo

[5, 9, 11].

First, we recall the definition of vector-valued absolutely continuous functions over the non-

negative real line R+ and taking their values in X ; we have

Definition 1. A function f : R+ → X is said to be absolutely continuous, if for any compact

interval J ⊂ R+ and, for any ε > 0, there exists a positive real number δ > 0, such that
n

∑
k=1
‖ f (bk)− f (ak)‖< ε,

for any finite set of mutually disjoint intervals [ak,bk] ⊂ J, k = 1,2, . . . ,n, such that
n

∑
k=1

(bk−ak)< δ .
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Remark 1. We notice that a function f : R+→ X is absolutely continuous if and only if there

are ϕ ∈ L1 (R+;X) and a constant vector c ∈ X such that f (x) = c+
∫ x

0 ϕ(t)dt, x≥ 0, and from

which we get f ′ (x) = ϕ (x), a.e. x≥ 0.

Notation 1. The vector space of all absolutely continuous functions on R+ taking their values

in X is denoted by AC (R+;X). Moreover, we shall use the following generalization: If n ∈

N∗ := {1,2,3, ...}, then

ACn (R+;X
)
=
{

f : R+→ X : f ∈Cn−1 (R+;X
)

and f (n−1) ∈ AC
(
R+;X

)}
.

In particular, we have AC1 (R+;X) := AC (R+;X).

Let α be a positive real constant, we define the left-sided Riemann-Liouville fractional inte-

gral of order α of an integrable function f : R+→ X as follows

Jα

0+ f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t > 0,

where Γ(α) is the Gamma function, given by Γ(α) =
∫

∞

0 e−ttα−1dt, which is a generalization

of the factorial of an integer number. Let N = α , if α is an integer number, and N = [α]+1, if

α is not. Next, we define the left-sided Caputo’s fractional derivative of order α of f : R+→ X

by

CDα

0+ f (t) = f (N)(t), t > 0, if α = N is an integer,

CDα

0+ f (t) = JN−α

0+ f (N)(t) =
1

Γ(N−α)

∫ t

0
(t− s)N−α−1 f (N)(s)ds, t > 0,

if α is not an integer.

We point out that the Caputo’s fractional derivative of order α of f : R+→ X is well defined

whenever f ∈ ACN (R+;X). If we define the convolution product ϕ ∗ψ of two functions ϕ and

ψ by

ϕ ∗ψ (t) =
∫ t

0
ϕ (s)ψ (t− s)ds, t > 0,

and we set hγ (s) =

 1
Γ(γ)s

γ−1, s > 0

0, s≤ 0
, (γ ≥ 0) ,
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then

Jα

0+ f (t) = (hα ∗ f )(t) , t > 0,

and

CDα

0+ f (t) =
(

hN−α ∗ f (N)
)
(t) , t > 0, if α is not an integer.

We have these two useful relations:

i) CDα

0+Jα

0+ f = f , whenever Jα

0+ f ∈ ACN (R+;X),

ii) JαC
0+ Dα

0+ f (t) = f (t)−
N−1
∑

k=0

f (k) (0+)
k!

tk , for f ∈ ACN (R+;X).

We shall denote in the remaining of the present article the left-sided Caputo’s fractional de-

rivative of order α of f : R+→ X , initiated at 0, by Dα

0+ f (t) instead of CDα

0+ f (t).

We recall the following definition,

Definition 2. The index of an operator E ∈ B (X), denoted indE, is the least nonnegative

integer m such that kerEm = kerEm+1 and R (Em) =R
(
Em+1). In particular, if E is invertible,

then indE = 0; we set indE = 1, if E = 0.

Moreover, if indE = m < ∞, and R (Em) is closed, then the unique operator ED ∈ B (X)

satisfying

EDEED = ED,EDE = EED,EDEm+1 = Em,

is called the Drazin inverse of E.

We have the following Proposition,

Proposition 1. Let A,L ∈B (X) such that L is bijective and LA = AL. Then

ker(LA) = kerA and R (LA) = R (A) .

Moreover, if indA = m < ∞, then

ind (LA) = indA.

Proof. Let x ∈ ker(LA), then L(Ax) = 0; hence Ax = 0 , that is x ∈ ker A. Conversely, if x ∈

kerA, then Ax = 0 implying that LAx = 0; hence x ∈ ker(LA). Therefore, we obtain ker (LA) =

kerA.
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To prove the other relation, let z ∈ R (LA), there is x ∈ X : z = LAx = A(Lx). It follows

that z ∈R (A). Conversely, if z ∈R (A), then there exists x ∈ X : z = Ax = LA
(
L−1x

)
, and so,

z ∈R (LA). Therefore, R (LA) = R (A).

Suppose that indA = m, then m is the least integer number for which we have kerAm =

kerAm+1 and R (Am) = R
(
Am+1). Since Lm and Lm+1 are bijective we can apply the previous

assertion of this Proposition to {Lm,Am} and
{

Lm+1,Am+1} to get

ker(LA)m = kerAm = kerAm+1 = ker(LA)m+1 ,

R (LA)m = R (Am) = R
(
Am+1)= R (LA)m+1 .

We conclude that

ind (LA) = indA = m.

�

We need the following decomposition’s Theorem of a bounded linear operator, see for in-

stance [16]:

Theorem 1. Let E ∈B (X) with indE = m < ∞ and R (Em) is closed. Then

(3) E = C+N,

where C = EEDE and N = E−C = E
(
I−EDE

)
.

Moreover, we have

(4) CN = NC = 0,Nm = 0,Nk = Ek (I−EDE
)
6= 0, for k < m;

(5) NED = EDN = 0;

(6) NDC = 0, CDN = 0;

(7) ED = CD;

(8) CDC = EDE;

(9)
(
ED)D

= C;
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(10) CEED = EEDC = C;

(11)
(
ED)∗ = (E∗)D ;

(12)
(
ED)p

= (E p)D , p ∈ N.

Here are some other interesting properties regarding the Drazin inverse of linear bounded

operators,

Lemma 1. Let E, A ∈B (X) such that ED and AD exist. If EA = AE, then, we have

EAD = ADE,

EDA = AED,

(EA)D = ADED = EDAD.

Proof. It suffices to follow the steps of the Proof of Lemma 2.21 [10] which is still valid for

bounded linear operators. �

Remark 2. We note that if A, B ∈ B (X) ( not necessarily commuting), then AB is Drazin

invertible if and only if BA is Drazin invertible, see [8]. If it is the case, then

(AB)D = A
[
(BA)D

]2
B.

Furthermore, if AB = BA, then

(AB)D = BDAD = (BA)D = ADBD.

Let us state without proof some facts about the application of Laplace transform to Caputo’s

fractional derivative initiated at the origin. We have

Definition 3. Let f : R+→ X be a piecewise continuous on every finite interval [0,T ], T > 0,

and there exist positive constants M and a such that ‖ f (t)‖ ≤Meat , t ≥ 0. Then the Laplace

transform of f (t) is defined by

F(p) = L ( f )(p) =
∫ +∞

0
e−ps f (s)ds,Re(p)> a.
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The inverse Laplace transform is formally given by

f (t+)+ f (t−)
2

= L −1(F)(t) =
1

2πi

∫ c+i∞

c−i∞
et pF(p)d p, t > 0,

where the integral is carried out along the line c+ iy,−∞ < y <+∞, with c > a.

Let α > 0 and N = [α]+ 1, if α is non integer and N = α , if α is integer, then the Laplace

transform of the Caputo’s fractional derivative Dα

0+g of a vector-valued function g∈CN (R+;X) such

that g(N) ∈ L1 (0,T ;X), for every T > 0 and∣∣∣g(N) (x)
∣∣∣≤Meax, for every x > T > 0,

for some constants M > 0 and a > 0, is given by

(13) (L Dα

0+g)(p) = pα(L g)(p)−
N−1

∑
k=0

g(k) (0) pα−k−1,Re(p)> a).

3. MAIN RESULTS

Let us first state and solve explicitly some fractional differential equation with a nilpotent

operator coefficient. The obtained solution is unique and there is no initial value imposed. We

have

Lemma 2. Let B, N, L ∈B (X) such that B is invertible, N a nilpotent operator of index (of

nilpotency) m ∈ N∗ so that BLN = LNB. Then, for any function f : R+→ X such that

(
B−1)k+1

(LN)k (Dα

0+
)k f ∈ AC

(
R+;X

)
, for k = 0,1, . . . ,m−1,

the fractional differential equation

(14) LNDα

0+ξ (t) = Bξ (t)+ f (t) , t > 0,

has a unique solution given by

(15) ξ (t) =−
m−1

∑
k=0

(
B−1)k+1

(LN)k (Dα

0+
)k f (t) , t > 0.

Proof. Applying B−1 to the both sides of the first equation of (14) we find

(16) B−1LNDα

0+ξ (t) = ξ (t)+B−1 f (t) .



SINGULAR FRACTIONAL DIFFERENTIAL INITIAL VALUE PROBLEMS 1543

It is worth to notice that the assumption BLN = LNB implies that B(LN)k = (LN)k B, for k =

1,2, . . . ,m−1, and so (LN)k B−1 = B−1 (LN)k, for k = 1,2, . . . ,m−1. Setting Q = B−1LNDα

0+ ,

we get for every k = 1,2, . . . ,m−1,

QkB−1 =
(
B−1LNDα

0+
)k

B−1 =
(
B−1)k

(LN)k B−1 (Dα

0+
)k

=
(
B−1)k+1

(LN)k (Dα

0+
)k
.

Expressing equation (16) in term of Q we obtain

(17) Qξ (t) = ξ (t)+B−1 f (t) .

Next, applying the operators Qk, k = 1,2, . . . ,m−1, to equation (17) we get respectively

Q2
ξ (t) = Qξ (t)+QB−1 f (t)

= ξ (t)+B−1 f (t)+QB−1 f (t) ,

Q3
ξ (t) = Qξ (t)+QB−1 f (t)+Q2B−1 f (t)

= ξ (t)+B−1 f (t)+QB−1 f (t)+Q2B−1 f (t) ,

...

Qm
ξ (t) = 0 = ξ (t)+

m−1

∑
k=0

QkB−1 f (t) .

So that, the unique solution to the fractional differential equation (14) is given by

ξ (t) = −
m−1

∑
k=0

QkB−1 f (t)

= −
m−1

∑
k=0

(
B−1)k+1

(LN)k (Dα

0+
)k f (t) , t ≥ 0,

which completes the Lemma’s proof. �

Our next step is to establish an equivalence between the fractional differential equation (1)

and a couple of appropriate fractional differential equations. We have
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Proposition 2. Let E, A ∈B (X) with ker E 6= {0}. We assume the Drazin inverse ED exists

and EA = AE. Then, equation (1) is equivalent to the fractional differential system

(18)

 CDα
0+y(t) = Ay(t)+ f1(t),

NDα
0+z(t) = Az(t)+ f2(t), t ≥ 0,

where C = EEDE, N = E−C, and

y(t) = EDEx(t) , z(t) =
(
I−EDE

)
x(t) ,

f1(t) = EDE f (t) , f2 (t) =
(
I−EDE

)
f (t) .

Moreover, the function y(t) = EDEx(t) is a solution to the first equation of (18), if and only

if, it satisfies the regular fractional differential equation

(19) Dα
0+y(t) = EDAy(t)+ED f1(t), t ≥ 0.

Proof. It is worth to notice that we have
(
EDE

)2
= EDE, and so, applying the operator EDE to

both sides of equation (1) we obtain at once the following fractional differential equation(
EDE

)2
EDα

0+x(t) = EEDEDα
0+

(
EDE

)
x(t)

= CDα
0+y(t)

= EDEAx(t)+EDE f (t)

= Ay(t)+ f1 (t) ,

which is a solution to the equation (18)1.

Likewise, noticing that
(
I−EDE

)2
=
(
I−EDE

)
, and applying the operator

(
I−EDE

)
to

both sides of equation (1) we get(
I−EDE

)2
EDα

0+x(t) = E
(
I−EDE

)
Dα

0+

(
I−EDE

)
x(t)

= NDα
0+z(t)

=
(
I−EDE

)
Ax(t)+

(
I−EDE

)
f (t)

= Az(t)+ f2 (t) .

Therefore, z(t) satisfies equation (18)2.
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Conversely, if (y(t) ,z(t)) satisfies the system (18), then, thanks to the linearity of the frac-

tional derivative, the function x(t) = y(t)+ z(t) satisfies

EDα
0+x(t) = EDα

0+ (y(t)+ z(t)) = EDα
0+y(t)+EDα

0+z(t)

= A(y(t)+ z(t))+ f1 (t)+ f2 (t)

= Ax(t)+ f (t) .

To establish the last assertion we notice that y(t) = EDEx(t) is already a solution to the first

equation of (18), and we have

Dα
0+y(t) = Dα

0+

(
EDE

)
x(t) = EDEDα

0+x(t)

= ED (Ax(t)+ f (t))

= ED [A(EDE
)

x(t)+EDE f (t)
]

= EDAy(t)+ED f1(t), t ≥ 0.

Conversely, multiplying (19) by C we obtain

CDα
0+y(t) = EDEAy(t)+CED f (t)

= EDEA
[
EDEx(t)

]
+ f1(t)

= Ay(t)+ f1 (t) .

�

Let us now state and prove another important result which is

Proposition 3. Let E, A ∈B (X) such that EA = AE and ED, AD exist. Then the following

assertions are equivalent

a)

(20) kerED∩kerAD = {0} .

b)

(21) ADA
(
I−EDE

)
= I−EDE.
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Proof. a)⇒b): Suppose that kerED∩kerAD = {0} and set

B = ADA
(
I−EDE

)
−
(
I−EDE

)
.

Applying the operators AD and ED to the latter equation we get respectively

ADB = ADADA
(
I−EDE

)
−AD (I−EDE

)
= AD (I−EDE

)
−AD (I−EDE

)
= 0,

and

EDB = EDADA
(
I−EDE

)
−ED (I−EDE

)
= ADA

(
ED−EDEDE

)
−
(
ED−EDEDE

)
= 0.

Hence, for any x ∈ X , we have

AD (Bx) = ED (Bx) = 0,

that is

Bx ∈ kerED∩kerAD = {0} .

It follows that Bx = 0, for every x ∈ X , and accordingly (21) holds.

b)⇒a): Suppose that (21) holds. Let x ∈ kerED∩kerAD, then

ADx = EDx = 0.

It follows that

(
I−EDE

)
x = x−EEDx = x

= A
(
I−EDE

)
ADx = 0.

Hence x = 0; therefore kerED∩kerAD = {0}. �
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Remark 3. i) It is not hard to check the following inclusion by using the property ED = EDEDE

and AD = ADADA,

kerE ∩kerA⊂ kerED∩kerAD.

ii) If E, A ∈B (X) commute, ED, AD exist, with indE = m < ∞ and indA = k < ∞, and

kerEm∩kerAk = {0} ,

then the relation (21) holds. Indeed, applying respectively Em and Ak to the operator B we

obtain

EmB = EmADA
(
I−EDE

)
−Em (I−EDE

)
= AD (Em−EDEm+1)−AD (Em−EDEm+1)
= 0,

and

AkB = AkADA
(
I−EDE

)
−Ak (I−EDE

)
= Ak (I−EDE

)
−Ak (I−EDE

)
= 0.

Reasoning as above we conclude that (21) holds.

Before tackling the general singular fractional differential equation we would like to investi-

gate the homogeneous one, we have

Theorem 2. Let E, A ∈B (X) with ker E 6= {0} so that EA = AE and indE = m. We assume

that E and A have bounded Drazin inverses ED and AD obeying condition (20). Then, the

general solution of

(22) EDα
0+x(t) = Ax(t), t > 0,

is given by

x(t) =
N−1

∑
k=0

tkEα,k+1
(
tαEDA

)
EDEbk, t ≥ 0,
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for some constant vectors b0, b1, . . . ,bN−1 ∈ X, where

Eα,β (t) = ∑
k≥0

1
Γ(αk+β )

tk

is the Mittag-Leffler function of two parameters α,β > 0.

Proof. Define y(t) = EDEx(t), then

Dα
0+y(t) = EDEDα

0+x(t) = EDAy(t) , t ≥ 0.

Next, applying Laplace transform to the latter equation, we obtain by virtue of the linearity

of L ,

L (Dα

0+y)(p) = pα(L y)(p)−
N−1

∑
k=0

y(k) (0) pα−k−1

= L (EDAy)(p) = EDA L (y)(p) .

Setting Y (p) = (L y)(p), we infer

(
pα I−EDA

)
Y (p) =

N−1

∑
k=0

pα−k−1y(k) (0) .

If |p|>
∥∥EDA

∥∥1/α

op , then we get

(
pα I−EDA

)−1
= ∑

j≥0
p−α( j+1) (EDA

) j
.

It follows that

Y (p) =
(

pα I−EDA
)−1

N−1

∑
k=0

pα−k−1y(k) (0)

= L

(
N−1

∑
k=0

tkEα,k+1
(
tαEDA

)
y(k) (0)

)
.

To simplify the solution’s expression we shall put throughout

Tα,β (t) := tβ−1Eα,β

(
tαEDA

)
.

Therefore,

y(t) =
N−1

∑
k=0

Tα,k+1 (t)y(k) (0) .
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We notice that for any constant vectors b0, b1,. . . , bN−1 ∈ X the function

y(t) =
N−1

∑
k=0

Tα,k+1 (t)bk,

satisfies the following

CDα
0+y(t) = C

N−1

∑
k=0

Dα
0+Tα,k+1 (t)bk

= EEDA
N−1

∑
k=0

Tα,k+1 (t)bk = Ay(t) .

Hence y(t) is a solution to the homogeneous equation associated with (18)1.

Let us now obtain the closed form of the general solution to the equation (22).

Consider the following homogeneous equation associated with (18)2

(23) NDα
0+z(t) = Az(t) , t > 0

Applying Nm−1 to both sides of (23) we infer

NmDα
0+z(t) = 0 = ANm−1z(t) .

It follows that ADANm−1z(t) = 0, and thanks to the assumption (20) and Proposition 3 we

get

0 = ADA
(
I−EDE

)
Nm−1z(t)

=
(
I−EDE

)
Nm−1z(t) = Nm−1z(t) ,

by assuming of course that m−1 > 0. Hence, Nm−1z(t) = 0, and continuing in this manner

we arrive at the final result Nz(t) = 0, which in turn implies that

NDα
0+z(t) = Dα

0+Nz(t) = 0 = Az(t) .

Finally, since
(
I−EDE

)
y(t) = EDEz(t) = 0, then

(
I−EDE

)
z(t) = z(t). It follows by

virtue of Proposition 3 that

ADA
(
I−EDE

)
z(t) = AD (I−EDE

)
Az(t) = 0

=
(
I−EDE

)
z(t) = z(t) .
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Therefore, the unique solution to the differential equation (23) is the null one. Accordingly,

the general solution to the singular fractional differential equation (23) is

x(t) = y(t) = EDEy(t) =
N−1

∑
k=0

Tα,k+1 (t)EDEbk, t ≥ 0,

for some constant vectors b0, b1, . . . ,bN−1 ∈ X . �

We are now in the position to establish the existence and uniqueness of the solution to the

singular fractional differential initial value problem (1)-(2). We have

Theorem 3. Let E, A ∈B (X) with ker E 6= {0} so that AE = EA and indE = m. We assume

that E and A possess bounded Drazin inverses ED and AD and both satisfy condition (20). Let

f ∈ CN (R+;X) so that Tα,α ∗ f is integrable, the composite Caputo’s fractional derivative

(Dα

0+)
i f (t), t > 0, exists for every i = 1, . . . ,m− 1, limt→0+(D

α

0+)
i f ( j)(t) exists for every i =

1, . . . ,m−1 and j = 0,1, . . . ,N−1. If the initial conditions satisfy

v j = EDEb j− (I−EDE)
m−1

∑
i=0

(ADE)iAD(Dα

0+)
i f ( j)(0+),(24)

for j = 0,1, . . . ,N−1,

for some constant vectors b j, j = 0,1, . . . ,N−1, then the unique solution x(t) to problem (1)-(2)

has the closed form

x(t) =
N−1

∑
k=0

Tα,k+1 (t)EDEbk +
∫ t

0
Tα,α (s)ED f (t− s)ds

−(I−EDE)
m−1

∑
i=0

(ADE)iAD(Dα

0+)
i f (t), t ≥ 0.

Proof. Applying the Laplace transform L to the equation (19), we obtain by virtue of the

linearity of L ,

L (Dα

0+y)(p) = pα(L y)(p)−
n−1

∑
k=0

y(k) (0) pα−k−1

= EDA L (y)(p)+EDL ( f )(p).

Setting Y (p) = (L y)(p) and F (p) = L ( f )(p), the latter equation becomes

(
pα I−EDA

)
Y (p) =

n−1

∑
k=0

pα−k−1y(k) (0)+EDF (p) .
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Assuming that |p|>
∥∥EDA

∥∥1/α

op we obtain

(
pα I−EDA

)−1
= ∑

j≥0
p−α( j+1) (EDA

) j
.

It follows that

Y (p) =
(

pα I−EDA
)−1

n−1

∑
k=0

pα−k−1y(k) (0)+
(

pα I−EDA
)−1

EDF (p)

= L

(
n−1

∑
k=0

Tα,k+1 (t)y(k) (0)+Tα,α (t)∗ED f (t)

)
.

Therefore,

y(t) =
n−1

∑
k=0

Tα,k+1 (t)y(k) (0)+Tα,α (t)∗ED f (t)

=
n−1

∑
k=0

Tα,k+1 (t)EDEbk +
∫ t

0
Tα,α (s)ED f (t− s)ds,

for some constant vectors b j, j = 0,1, . . . ,N−1,.

Next, to solve explicitly the fractional differential equation (18)2 we apply the operator AD

to both sides of the equation to get by virtue of Proposition 3,

ADNDα
0+z(t) = ADAz(t)+AD (I−EDE

)
f (t)

=
(
I−EDE

)
x(t)+AD (I−EDE

)
f (t)

= z(t)+AD (I−EDE
)

f (t),

Next, applying Lemma 2, for B = I and L = AD, one gets the unique solution of the latter

equation which is

z(t) =−
(
I−EDE

)m−1

∑
i=0

(
ADN

)i (
Dα

0+
)i AD f (t) , t ≥ 0.

Since we have N = E
(
I−EDE

)
and

(
I−EDE

)i
=
(
I−EDE

)
, for i = 1,2, . . . ,m−1, then

z(t) =−
(
I−EDE

)m−1

∑
i=0

(
ADE

)i (
Dα

0+
)i AD f (t) .

Summing up the solutions of the above subproblems y(t) and z(t) we obtain the unique

solution to the singular fractional differential initial value problem (1)-(2), that is
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x(t) = y(t)+ z(t)

=
N−1

∑
k=0

Tα,k+1 (t)EDEbk +
∫ t

0
Tα,α (s)ED f (t− s)ds

−
(
I−EDE

)m−1

∑
i=0

(
ADE

)i (
Dα

0+
)i AD f (t) , t ≥ 0.

Let us now check the given initial values. Using the derivation rule regarding integrals de-

pending upon a certain real parameter, we get, for j = 1, . . . ,N−1, the following

x( j)(t) =
j−1

∑
k=0

∑
m≥1

αm
Γ(αm+ k− j+1)

tαm+k− j (EDA
)m

EDEbk

+
N−1

∑
k= j

∑
m≥0

αm
Γ(αm+ k− j+1)

tαm+k− j (EDA
)m

EDEbk

+
j−1

∑
k=0

Tα,α−k (t)ED f ( j−k−1) (0)+
∫ t

0
Tα,α (s)ED f ( j) (t− s)ds

−
(
I−EDE

)m−1

∑
i=0

(
ADE

)i (
Dα

0+
)i AD f ( j) (t)

so that, letting t→ 0+, we obtain

x( j)(0) = v j = EDEb j−
(
I−EDE

)m−1

∑
i=0

(
ADE

)i (
Dα

0+
)i AD f ( j) (0)

j = 0,1, . . . ,N−1.

Regarding the uniqueness of the solution (under assumption (24)), it suffices to cope with

the homogeneous problem whose solution is identically zero, and accordingly the uniqueness

follows. �

Remark 4. We point out that if f ≡ 0, then the compatibility assumption (24) reduces merely

to v j = EDEv j, for j = 0,1, . . . ,N−1. Moreover, if E is nonsingular, then EDE = I, and once

again, assumption (24) becomes v j = EDEv j, for j = 0,1, . . . ,N− 1. Whence, we obtain as a

unique solution in such a case as expected the function

x(t) =
N−1

∑
k=0

Tα,k+1 (t)vk +
∫ t

0
Tα,α (s)E−1 f (t− s)ds, , t ≥ 0.
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4. ILLUSTRATING EXAMPLES

In order to illustrate the obtained results we consider the following examples:

Example 1. Consider the following singular fractional differential initial value problem in R4:

(25)


ED

4/3
0+ x(t) = Ax(t)+ f (t), t > 0,

x0 =
(
−1, 1, 0, 1

)T
,

x1 =
(

1, 1, 1, 1
)T

,

where E, A ∈ R4×4 are as follows

E =
1
12


10 −1 4 5

5 −2 −1 4

4 5 10 −1

−1 4 5 −2

 , A =


1
2 1 1

2 −1

0 1
2 0 1

2
1
2 −1 1

2 1

0 1
2 0 1

2

 ,

and f (t) =
(

t2, t, 0, −t
)T

. We notice that E and A are singular matrices whose Drazin

inverses are

ED =


1 −2 1 −2

−2 7 −2 7

1 −2 1 −2

−2 7 −2 7

 , AD =


1
2 0 1

2 0

0 1
2 0 1

2
1
2 0 1

2 0

0 1
2 0 1

2

 .

Hence, the explicit representation of the solution is given by

x(t) = T4
3 ,1

(t)EDEx0 +T4
3 ,2

(t)EDEx1 +
∫ t

0
T4

3 ,
4
3
(s)EDF(t− s)ds

−(I−EED)
1

∑
i=0

(ADE)iAD(D
4/3
0+ )i f (t),

with

−(I−EED)
1

∑
i=0

(ADE)iAD(D
4/3
0+ )i f (t) = 0.
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Therefore, the closed form of the solution to the given problem is

x(t) =


T4

3 ,1
(t)− 1

2T4
3 ,2

(t)+
∫ t

0 T4
3 ,

4
3
(s)(t− s)2ds

T4
3 ,1

(t)+T4
3 ,2

(t)−2
∫ t

0 T4
3 ,

4
3
(s)(t− s)2ds

T4
3 ,1

(t)− 1
2T4

3 ,2
(t)+

∫ t
0 T4

3 ,
4
3
(s)(t− s)2ds

T4
3 ,1

(t)+T4
3 ,2

(t)−2
∫ t

0 T4
3 ,

4
3
(s)(t− s)2ds


, t ≥ 0.

Our second example deals this time with a singular fractional differential initial value prob-

lem in an infinite dimensional space, namely the Banach space

l2 =

{
x = (xn)n≥1 ⊂ R : ∑

n≥1
|xn|2 < ∞

}
,

endowed with the norm ‖x‖=
(

∑
n≥1
|xn|2

)1/2

. We have

Example 2. Consider the following singular fractional differential initial value problem

(26)

 ED
2/3
0+ x(t) = Ax(t)+ f (t) , t > 0,

x(0) = (1, 1
2 ,

1
3 , . . . ,

1
n , ...) ∈ l2,

where, f (t) = (1
n sinnt)n≥1, E,A ∈L (l2) are projection operators, defined respectively by

(27) Ex = (x1,x2,0,0,x5,x6,0,0,x9,x10,0,0,x13,x14,0,0, ...)

and

(28) Ax = (x1,0,x3,x4,x5,0,x7,x8,x9,0,x11,x12,x13,0, ...) .

Taking into account the projection properties, we get at once

ED = E, AD = A,

and

ADA(I−EDE) = I−EDE.

Hence condition (21) in Proposition 3 is satisfied, and so, according to Theorem 3, we obtain

x(t) = T2
3 ,1

(t)Ex(0)+
∫ t

0
T2

3 ,
2
3
(s)E f (t− s)ds

−(I−E)A f (t)− (I−E)EAD
2/3
0+ f (t).
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We notice that

−(I−E)EAD
2/3
0+ f (t) = 0, t > 0.

It follows that the closed form of the given singular fractional differential initial value problem

is

x(t) = (xn)n≥1 ,

where

xn (t) =

 −
1
n sinnt, if n ∈ J = {4k−1,4k, for k = 1,2, ...} ,

1
nT2

3 ,1
(t)+ 1

n
∫ t

0 T2
3 ,

2
3
(s)sinn(t− s)ds, if n ∈ N∗\J.

5. CONCLUSION

Combining the theory of Fractional Calculus and the theory of singular differential equations

we have been able to establish the existence and uniqueness of the singular fractional differen-

tial initial value problem (1)-(2) by using the notion of Drazin inverses as well as the Laplace

transform. The derived results are new and simpler than those published elsewhere. The nov-

elty in our approach is the replacement of the empty intersection assumption of the kernels of

the operators E and A by the empty intersection of the kernels of their Drazin inverses; two

illustrative examples are presented at the end of the present article.
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