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Abstract. In this paper, we introduce application of Adomian Decomposition Method (ADM) for solving systems

of Ordinary Differential Equations (ODEs). This method is illustrated by four examples of (ODEs) and solutions

are obtained. One of the most important advantages of this method is its simplicity in using.
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1. INTRODUCTION

The literature on the Adomian decomposition method (ADM) and its modifications [1-7]

tells us that this method is proven to be efficient to solve linear and nonlinear ODEs, DAEs,

PDEs, SDEs, integral equations and integrointegral equations. More importantly, such method

has been applied to a wide class of problems in physics, biology and chemical reaction. The

reason of such spread and application of the method lies in the fact that the ADM provides

the solution in a rapid convergent series with computable terms. In this manuscript, we aim at

introducing a new reliable modification of ADM. For this reason, a new differential operator for
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solving high-order and system of differential equations. In order to illustrate the application of

the modified form of the ADM, we would provide a set of examples to show the advantages of

using the proposed method to solve the initial value problems.

2. ANALYSIS OF THE ADM

We consider the following system of ordinary differential equations of second order

u′′+ p1(x)u′+ f1(x,u,v,w, ...) = g1(x),

v′′+ p2(x)v′+ f2(x,u,v,w, ...) = g2(x),

(1) w′′+ p3(x)w′+ f3(x,u,v,w, ...) = g3(x).

...

With the following initial conditions

u(0) = a1, u′(0) = a2,

v(0) = b1, v′(0) = b2,

w(0) = d1, w′(0) = d2,

...

where f1, f2, ... fi are nonlinear functions, pi(x),and gi(x) are given functions.

According to the ADM we rewrite the system of equations(1) in terms of operator from as

Lu = g1(x)− f1(x,u,v,w, ...),

Lv = g2(x)− f2(x,u,v,w, ...),

(2) Lw = g3(x)− f3(x,u,v,w, ...)

...

where Li are differential operators given by

Li = e−
∫

pi(x)dx d
dx

e
∫

pi(x)dx d
dx

, i = 1,2, ...
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and their inverse integral operators are defined as

(3) L−1
i (.) =

∫ x

0
e−

∫
pi(x)dx

∫ x

0
e
∫

pi(x)dx(.)dxdx.

Applying L−1
i on (2) we get

u = γ1(x)+L−1
1 g1(x)−L−1

1 f1(x,u,v,w, ...),

v = γ2(x)+L−1
2 g2(x)−L−1

2 f2(x,u,v,w, ...),

(4) w = γ3(x)+L−1
3 g3(x)−L−1

3 f3(x,u,v,w, ...).

...

such that

Lγi(x) = 0, i = 1,2,3, ...

We decompose u(x),v(x), ...w(x) and fi(x,u,v, ...w) see in as

u(x) =
∞

∑
n=0

un(x), f1(x,u,v,w, ...) =
∞

∑
n=0

A1n,

v(x) =
∞

∑
n=0

vn(x), f2(x,u,v,w, ...) =
∞

∑
n=0

A2n,

w(x) =
∞

∑
n=0

wn(x), f3(x,u,v,w, ...) =
∞

∑
n=0

A3n,

...

(5) r(x) =
∞

∑
n=0

rn(x), fi(x,u,v,w, ...) =
∞

∑
n=0

Ain,

where Ain are the Adomian polynomials [8] are given

(6) Ain =
1
n!

dn

dλ n [ fi(x,
∞

∑
j=0

u jλ
j,

∞

∑
j=0

v jλ
j,

∞

∑
j=0

w jλ
j, ...)]λ=0, i = 1,2, ...

From (4)and (5) we have

∞

∑
n=0

un(x) = γ1(x)+L−1
1 g1(x)−L−1

1 [
∞

∑
n=0

A1n]

∞

∑
n=0

vn(x) = γ2(x)+L−1
2 g2(x)−L−1

2 [
∞

∑
n=0

A2n]
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∞

∑
n=0

wn(x) = γ3(x)+L−1
1 g3(x)−L−1

n [
∞

∑
n=0

A3n]

...

(7)
∞

∑
n=0

rn(x) = γn(x)+L−1
1 gn(x)−L−1

n [
∞

∑
n=0

Ain]

then we define:

u0 = γ1(x)+L−1g1(x), un+1 =−L−1
1 A1n,

v0 = γ2(x)+L−1g2(x), vn+1 =−L−1
2 A2n,

(8) w3 = γ3(x)+L−1g3(x), wn+1 =−L−1
i A3n, n≥ 0

.

.

.

From (6) and (8), we can determine the components un,vn,wn, ... can be immediately obtained.

3. APPLICATIONS OF THE METHOD

In this section, we will provide four numerical examples that shows this method.

Example 1.

Consider the system of linear second order ordinary differential equations:

u′′+ exu′+ v = 3+2xex + x3,

(9) v′′+ e−xv′+w = 1+6x+3x2e−x + x4,

w′′− exw′+u = 1+13x2−4x3ex,

with initial conditions

u(0) = 1,u′(0) = 0,v(0) = 1,v′(0) = 0,w(0) = 1,w′(0) = 0,
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The exact solution is

u(x) = 1+ x2,v(x) = 1+ x3, and w(x) = 1+ x4.

In an operator form eq.(9) became

Lu = 3+2xex + x3− v,

(10) Lv = 1+6x+3x2e−x + x4−w,

Lw = 1+13x2−4x3ex−u,

where

Lu = eex d
dx

e−ex d
dx

(u),

Lv = ee−x d
dx

e−e−x d
dx

(v),

Lw = e−ex d
dx

eex d
dx

(w),

and

L−1(u) =
∫ x

0
eex

∫ x

0
e−ex

(u)dxdx,

L−1(v) =
∫ x

0
ee−x

∫ x

0
e−e−x

(v)dxdx,

L−1(w) =
∫ x

0
e−ex

∫ x

0
eex

(w)dxdx.

Applying L−1 on both side of eq.(10) and using the initial conditions, we get

u(x) = 1+
3x2

2
− x3

6
− x4

24
+

7x5

120
− x6

720
−L−1v,

v(x) = 1+
x2

2
+

7x3

6
+

11x4

24
− 5x5

24
+

29x6

720
−L−1w,

w(x) = 1+
x2

2
+

x3

6
+

29x4

24
+

11x5

120
+

41x6

720
−L−1u.

We use the following scheme
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u0 = 1+
3x2

2
− x3

6
− x4

24
+

7x5

120
− x6

720
, un+1 =−L−1vn,

v0 = 1+
x2

2
+

7x3

6
+

11x4

24
− 5x5

24
+

29x6

720
, vn+1 =−L−1wn,

w0 = 1+
x2

2
+

x3

6
+

29x4

24
+

11x5

120
+

41x6

720
, wn+1 =−L−1un.

Therefore

u1 =
−x2

2
+

x3

6
− 7x5

120
− x6

120
,

v1 =
−x2

2
− x3

6
− x5

120
− 2x6

45
,

w1 =
−x2

2
− x3

6
− x4

4
− 11x5

120
− 11x6

180
,

and

u2 =
x4

24
− x6

180
,

v2 =
x4

24
+

x5

60
+

x6

180
,

w2 =
x4

24
+

x6

180
.

Approximations to the solution of the above system with three iterations of ADM, yields:

u(x) = 1+ x2− 11x6

720
,

v(x) = 1+ x3 +
5x4

12
− x5

6
+

x6

720
,

and

w(x) = 1+ x4 +
x6

720
.



2210 HASAN, DABWAN, ALAQEL, OTHMAN, AL-RABAHI

In this example, we note the solution by ADM close to the exact solution.

Example 2.

We study the system of nonlinear equation of Emden-Fowler type

u
′′
+(

1
x
)u
′
+u2v− (4x2 +5)u = 0,

(11) v
′′
+(

2
x
)v
′
+ v2u− (4x2−5)v = 0,

with initial conditions

u(0) = 1, u′(0) = 0

v(0) = 1, v′(0) = 0

with the exact solution see in[9]

(u(x),v(x)) = (ex2
,e−x2

),

where p1(x) = 1
x ,p2(x) = 2

x we find

L1(.) = x−1 d
dx

x
d
dx

(.),

L2(.) = x−2 d
dx

x2 d
dx

(.),

the inverse operators L−1 are given by

L−1
1 (.) =

∫ x

0
x−1

∫ x

0
x(.)dxdx,

L−1
2 (.) =

∫ x

0
x−2

∫ x

0
x2(.)dxdx,

applying the inverse operators L1,L2 on (11) and using the initial conditions we get

u = 1+L−1((4x2 +5)u)−L−1(u2v)

(12) v = 1+L−1((4x2−5)v)−L−1(v2u).

We use the following scheme

u0 = 1, un+1 = L−1((4x2 +5)un)−L−1A1n, n≥ 0,
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(13) v0 = 1, vn+1 = L−1((4x2−5)vn)−L−1A2n, n≥ 0,

where A1n, A2n are Adomian polynomials that represent nonlinear term. Which are given by

A1n(x) = u2(x)v(x),A2n(x) = v2(x)u(x)

The comonents of the Adomian polynomials are given by

A10 = u2
0v0,

A11 = u2
0v1 +2u0v0u1,

A12 = u2
0v2 +2u0v1u1 +2u0v0u2 +u2

1v0

...

and the nonlinear term v2 ,has the few Adomian polynomials A2n are given by

A20 = v2
0u0,

A21 = v2
0u1 +2v0v1u0,

A22 = v2
0u2 +2v0u1v1 +2v2v0u0 + v2

1u0

...

leads to

u0 = 1,

v0 = 1,

u1 = x2 +
x4

4
,

v1 =−x2 +
x4

5
,

u2 =
x4

4
+

91x6

720
+

x8

64
,

v2 =
3x4

10
− 113x6

840
+

x8

90
,

so

u3 =
x6

24
+

627x8

35840
+

1091x10

288000
+

x12

2304
,
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v3 =
−23x6

840
+

12689x8

362880
− 77767x10

11088000
+

x12

3510
.

Approximations to the solutions are as follows:

u(x) = 1+ x2 +0.5x4 +0.168056x6 +0.0331194x8 +0.00378819x10 + . . . .

v(x) = 1− x2 +0.5x4−0.161905x6 +0.0460786x8−0.00701362x10 + . . . .

From the previous example we note that, the solution by ADM converges to the exact solution.

Example 3.

We sutdy the system of nonlinear equations of Emden-Fowler type

u′′+
2
x

u′+ v2−u2 +6v = 6+6x2,

(14) v′′+
2
x

v′+u2− v2−6v = 6−6x2,

with initial conditions

u(0) = 1, u′(0) = 0

v(0) =−1, v′(0) = 0

The exact solutions see in[9] are

(u(x),v(x)) = (x2 + ex2
,x2− ex2

),

,where p1(x) = p2(x) = 2
x .

System (14) we can write as

Lu = 6+6x2−6v− v2 +u2,

(15) Lv = 6−6x2 +6v+ v2−u2,

where Lu, Lv define by:

Lu = x−2 d
dx

x2 d
dx

u,

(16) Lv = x−2 d
dx

x2 d
dx

v.
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And the inverse operators L−1 define by:

L−1(.) =
∫ x

0
x−2

∫ x

0
x2(.),

(17) L−1(.) =
∫ x

0
x−2

∫ x

0
x2(.).

Applying L−1 on equation (15), and using the initial conditions, we get

u(x) = 1+L−1(6+6x2−6v− v2 +u2),

(18) v(x) =−1+L−1(6−6x2 +6v+ v2−u2),

by assuming that

(19) u(x) =
∞

∑
n=0

un(x), v(x) =
∞

∑
n=o

vn(x).

By substituting equation (19) in (18) we have
∞

∑
n=0

un(x) = 1+L−1(6+6x2)−L−1[6
∞

∑
n=o

vn(x)+
∞

∑
n=o

A1n(x)−
∞

∑
n=0

A2n],

∞

∑
n=0

vn(x) =−1+L−1(6−6x2)+L−1[6
∞

∑
n=0

vn +
∞

∑
n=o

A1n(x)−
∞

∑
n=0

A2n],

where

u0 = 1+L−1(6+6x2), un+1 =−L−1[6
∞

∑
n=0

vn +
∞

∑
n=o

A1n−
∞

∑
n=0

A2n],n≥ 0,

(20) v0 =−1+L−1(6−6x2), vn+1 = L−1[6
∞

∑
n=0

vn +
∞

∑
n=o

A1n(x)−
∞

∑
n=0

A2n],n≥ 0,

where A1n,A2n are Adomian polynomials define by

A1n = v2
n, A2n = u2

n,

A10 = v2
0, A20 = u2

0,

A11 = 2v0v1 A21 = 2u0u1.

Hence

u0 = 1+ x2 +
3x4

10
,
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v0 =−1+ x2− 3x4

10
,

as well as

u1 = x2− x4

10
+

3x6

70
+

x8

60
,

v1 =−x2 +
x4

10
− 3x6

70
− x8

60
,

and

u2 =
3x4

10
+

17x6

210
− x8

504
+

19x10

7700
,

v2 =
−3x4

10
− 17x6

210
+

x8

504
− 19x10

7700
.

Therefore

u(x) = 1+2x2 +
x4

2
+

13x6

105
+

37x8

2520
+

19x10

7700
+ ...

v(x) =−1− x4

2
− 13x6

105
− 37x8

2520
− 19x10

7700
+ ...

This gives the exact solution of Eq.(14) which is given as follows

(u(x),v(x)) = (x2 + ex2
,x2− ex2

)

Example 4.

Consider the system of non-liner equations:

u′′−u′+ v2 = 2e−x + e2x,

(21) v′′+ v′+u2 = 2ex +2e−2x,

with initial conditions

u(0) = 1,u′(0) =−1,

v(0) = 1,v′(0) = 1.

The exact solutions are (u(x),v(x)) = (e−x,ex).

Re-written the system of non-liner eq.(21), as

Lu = 2e−x + e2x− v2,

(22) Lv = 2ex +2e−2x−u2,
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where

L(.) = ex d
dx

e−x d
dx

(.),

L(.) = e−x d
dx

ex d
dx

(.).

The L−1, are considered as two fold integral operator defined by

L−1(.) =
∫ x

0
ex

∫ x

0
e−x(.)dxdx,

(23) L−1(.) =
∫ x

0
e−x

∫ x

0
ex(.)dxdx.

Applying L−1(23) on (22), and using the initial conditions, we have

u(x) = 2− ex +L−1(2e−x + e2x− v2),

(24) v(x) = 2− e−x +L−1(2ex +2e−2x−u2).

Using Adomian decomposition for (u,v) as given in (24), we obtain

∞

∑
n=0

un = 2− ex +L−1(2e−x + e2x)−L−1
∞

∑
n=0

A2n,

(25)
∞

∑
n=0

vn = 2− e−x +L−1(2ex +2e−2x)−L−1
∞

∑
n=0

A1n,

the components(un,vn) can be recursively determined by using the relation

u0 = 2− ex +L−1(2e−x + e2x),un+1 =−L−1(A2n),n≥ 0,

(26) v0 = 2− e−x +L−1(2ex +2e−2x),vn+1 =−L−1(A1n),n≥ 0,

where A1n,A2n are Adomian polynomials of nonlinear (u2,v2), we are give by

A1n(x) = u2(x),A2n = v2,

we get

A10 = u2
0,

A11 = 2u0u1,

A12 = 2u0u2 +u2
1, ...
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And

A20 = v2
0,

A21 = 2v0v1,

A22 = 2v0v2 + v2
1, ...

This in turn given

u0 = 1− x+ x2 +
x3

3
+

x4

3
+

7x5

60
+

2x6

45
+

31x7

2520
+

x8

315
+

127x9

181440
+

2x10

14175
,

v0 = 1+ x+
3x2

2
− 5x3

6
+

5x4

8
− 29x5

120
+

7x6

80
− 25x7

1008
+

17x8

2688
− 509x9

362880
+

341x10

1209600
,

u1 =
−x2

2
+

x3

6
− 5x4

24
+

x5

40
− 7x6

240
− 7x7

720
− 101x8

8064
− 2477x9

362880
− 12941x10

3628800
,

v1 =
−x2

2
− x3

6
− 7x4

24
− x5

120
− 43x6

720
+

251x7

5040
− 1879x8

40320
+

10151x9

362880
− 10247x10

725760
,

u2 =
−x4

12
+

x5

20
− x6

20
+

x7

252
− 37x8

2880
− 19x9

8640
− 533x10

226800
,

v2 =
−x4

12
− x5

20
− 13x6

180
+

x7

252
− 499x8

20160
+

113x9

12096
− 3097x10

453600
,

...

This gives the exact solution of Eq.(21) which is given by

(u(x),v(x)) = (e−x,ex)

CONCLUSIONS

In this paper, the application of ADM is investigated to obtain approximations solutions of

some linear and nonlinear system of (ODEs). This work emphasized our belief that the method

is a reliable technique to handle linear and nonlinear system of (ODEs).
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