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Abstract. In this work, we are interested in the study of a spatiotemporal SEIR epidemiological model, with

no-flux boundary conditions. This model includes a constant inflow of new susceptible, exposed, infectious and

recovered. In addition, it also incorporates a contact rate depending on the size of the population and another death

related to the disease. Our objective is to characterize the optimal control pair, which minimizes exposed, infected

individuals and the corresponding effort and treatment costs. We have demonstrated the existence of the state

system solution and optimal control. The characterization of the optimal control pair is determined in terms of

state functions and adjoint functions. The numerical resolution of the optimal system, has shown the effectiveness

of our adopted strategy.
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1. INTRODUCTION

In epidemiology, mathematical modeling has become an important tool for analyzing the

causes, dynamics and spread of epidemics. Indeed, mathematical models provide a better

understanding of the mechanisms underlying the spread of emerging infectious diseases, and

allow authorities to make decisions about effective control strategies. One of the most basic

procedures in disease modeling is to use a model, in which the population is divided into

different groups depending on the stage of infection, with assumptions about the nature and

rate of transfer time from compartment to another.Several diseases that confer immunity against

reinfection have been modeled using SIR,SIS, SEIR ... etc (see [1-10]). With S is the class of

the susceptible population, which represents individuals not yet infected with the disease and

who are susceptible to contracting the disease, I is the class of infected persons who represents

the individuals infected with the disease, and who can transmit the disease to sensitive people. E

is the class of people exposed and R is the class of recovered that represents people immunized

against the disease. In the literature, several studies have been carried out on the SEIR models,

for example, Greenhalgh [18] has examined the SEIR models integrating density dependence

into the mortality rate. Cooke and van den Driessche [19] presented and studied the SEIRS

models with two delays. Li and Muldowney [20] and Li et al. [21] investigated the overall

dynamics of SEIR models with non-linear incidence. Li ,Smith H L,and al. [22] analyzed the

overall dynamics of a SEIR model with vertical transmission and bilinear incidence. Zhang.al

[25] studied the overall dynamics of a SEIR model with immigration from different compartments.

The impact of the mobility of individuals plays an important role in the transmission of the

disease, which makes it necessary to introduce the spatial factor in the SEIR models, in order

to give a more realistic study [11-17][30]. Based on the SEIR model presented by Zhang.al, in

which we introduce the spatial factor, and adopting a strategy in the form of a control problem,

we formulate a spatial-temporal SEIR epidemiological model, as that system of parabolic partial

differential equations coupled with no-flux boundary conditions. The main objective of this

work is to set up an optimal control approach based on a combination of minimization of

the number of latent and infected individuals and the therapeutic treatment, for the Reaction-

Diffusion SEIR model. To achieve this goal, we characterize an optimal control pair in the form
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of an effort that reduces contact between infectious and susceptible individuals, and a treatment

envisioned to combat the spread of the disease. We prove the existence of state system solutions

and the existence of optimal control. Optimal control theory provides the characterization of

the optimal control pair in terms of state and adjoint functions. The optimality system is solved

numerically, using a forward-backward sweep method (FBSM) [23]. The numerical simulations

of our control strategy show the effectiveness of the approach we have adopted. The document

is organized as follows: In Section 2, we present the mathematical model and the associated

optimal control problem. We prove the existence of a strong global solution for our system in

section 3. In section 4, we show the existence of the optimal solution. The necessary optimality

conditions are defined in section 5. As an application, the numerical results associated with our

problem control are given in section 6. Finally, we conclude the document in section 7.

2. THE BASIC MATHEMATICAL MODEL AND OPTIMAL CONTROL PROBLEM

The model (1) used by zhang consists of four compartments SEIR: susceptible, exposed,

infected and recovered. We note their densities at time t and at position x by.

S(t,x), I(t,x),E(t,x),R(t,x), respectively:

(1)



∂S
∂ t

= (1− p−q−b)Θ−βλ
SI
N −dS

∂E
∂ t

= qΘ+βλ
SI
N − (d + ε)E

∂ I
∂ t

= pΘ− (d +α + γ)I + εE

∂R
∂ t

= bΘ−dR+ γI

(t,x) ∈ Q = [0,T ]×Ω

With N(t) = S(t)+ I(t)+E(t)+R(t) is the total that population number at time t, and the

parameters are defined as follows :
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Parameter Definition

β Effective contact rate

d Natural mortality rate

γ Recovery rate

α Rate that exposed individuals become infectious

ε Disease induced death rate

Θ Recruitement rate into the population

p Rate of exposed individuals in new members of the population

q Rate of infected individuals in new members of the population

b Rate of recovred individuals in new members of the population

λ The probability for an individual to take part in a contact.

Table 1:Parameter defintion

In model (1), in order to take into account the effect of the spatial factor, we introduce the

Laplacian operator4= ∂ 2

∂x2 +
∂ 2

∂y2 .In addition, we include two controls v1 and v2 which

represent respectively the effort that reduces the contact between infectious and susceptible

individuals and the rate of treatment of infectious individuals. We assume that v2(t,x)I

individuals are removed from the infected class and added to the recovred class. The

mathematical system with controls is given by the nonlinear differential equations

(2)



∂S
∂ t

= dS∆S+(1− p−q−b)Θ− (1− v1(t,x))βλ
SI
N −dS

∂E
∂ t

= dE∆E +qΘ+(1− v1(t,x))βλ
SI
N − (d + ε)E

∂ I
∂ t

= dI∆I + pΘ− (d +α + γ + v2(t,x))I + εE

∂R
∂ t

= dR∆R+bΘ−dR+ γI + v2(t,x)I

(t,x) ∈ Q = [0,T ]×Ω

We denote by Ω a fixed and bounded domain in IR2 with smooth boundary ∂Ω and η is the

outward unit normal vector on the boundary. The initial conditions and no-flux boundary
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conditions are given by

(3)
∂S
∂η

=
∂E
∂η

=
∂ I
∂η

=
∂R
∂η

= 0 , (t,x) ∈ Σ = [0,T ]×∂Ω

(4) S(0,x) = S0 ≥ 0, E(0,x) = E0 ≥ 0, I(0,x) = I0 ≥ 0, and R(0,x) = R0 ≥ 0

Eligible controls are contained in the ensemble

(5) Uad =
{
(v1,v2) ∈ (L∝ (Q))2/0≤ v1 ≤ vmax

1 ≤ 1and 0≤ v2 ≤ vmax
2 ≤ 1

}
We seek to minimize the functional objective

(6) J (v) =
∫ T

0

∫
Ω

(K1E (t,x)+K2I (t,x))dxdt +
ρ1

2
‖v1‖2

L2(Q)+
ρ2

2
‖v2‖2

L2(Q)

for some positive constant vmax.

Where K1,K2, are constant weights.

For the parameter ρ1
2 ,ρ2

2 , our objective is to find control functions such

J(v∗1,v
∗
2) = min{J (v1,v2) , (v1,v2) ∈Uad}

• We put H (Ω) =
(
L2 (Ω)

)4, and denote the space of all absolutely continuous functions

y : [0,T ]→H (Ω) having the property that
∂y
∂ t
∈L2 ([0,T ] ,H (Ω)) by W 1,2 ([0,T ] ,H (Ω)).

Moreover, define L (T,Ω) = L2 ([0,T ] ,H2(Ω)
)
∩L∞

(
[0,T ] ,H1 (Ω)

)
3. EXISTENCE OF SOLUTION

In this section,we study the existence of a global strong solution, positivity, and boundedness

of solutions for (2)-(4). Let y = (y1,y2,y3,y4) = (S,E, I,R) the solution of the system (2)-(4)

with y0 =
(
y0

1,y
0
2,y

0
3,y

0
4
)
=
(
S0,E0, I0,R0). A denotes the linear operator defned as foll

(7)
A : D(A)⊂ H (Ω)−→ H (Ω)

Ay = (dS∆y1,dE∆y2,dI∆y3,dR∆y4) ∈ D(A) ,∀y = (y1,y2,y3,y4) ∈ D(A)

with the domain of A is defined by

(8) D(A) =
{

y ∈
(
H2 (Ω)

)3
,
∂y1

∂η
=

∂y2

∂η
=

∂y3

∂η
=

∂y4

∂η
= 0,a.ex ∈ ∂Ω

}
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Theorem 1. Let Ω be a bounded domain from R2, with the boundary smooth enough, y0
i ≥

0 on Ω ( for i = 1,2,3,4 ), the problem (2-4 ) has a unique (global) strong solution y ∈

W 1,2 ([0,T ] : H (Ω)) such that yi ∈L (T,Ω)∩L∞ (Q) for i = 1,2,3,4 . In addition y1, y2, y3

and y4 are nonnegative. Furthermore there exists C > 0 (independent of (v)) for all t ∈ [0,T ]

(9)
∥∥∥∥∂yi

∂ t

∥∥∥∥
L2(Q)

+‖yi‖L2(0,T ;H2(Ω)) +‖yi‖H1(Ω)+‖yi‖L∞(Q) ≤C, for i = 1,2,3,4

Proof. To prove the existence of a (global) strong solution for system(2)-(4), now we write

system (2)-(4) as shown in ((6) see Appendix). Let

(10)



g1 (y(t)) = (1− p−q−b)Θ− (1− v1(t,x))βλ
y1y3

N −dy1

g2 (y(t)) = qΘ+(1− v1(t,x))βλ
y1y3

N − (d + ε)y2, t ∈ [0,T ]

g3 (y(t)) = pΘ− (d +α + γ + v2(t,x))y3 + εy2

g4 (y(t)) = bΘ−dy4 +(γ + v2(t,x))y3

The system (10) represent the nonlinear term of (2) and we consider the function

g(y(t)) = (g1 (y(t)) ,g2 (y(t)) ,g3 (y(t)) ,g4 (y(t))), then we can be rewrite the system (2)-(4)

in the space H(Ω) as follows

(11)


∂y
∂ t

= Ay+g(y(t)) , t ∈ [0,T ]

y(0) = y0

As the operator A defined in (7)-(8) is dissipating, self-adjoint and generates a C0-semi-

group of contractions on H (Ω)[23], It is clear that function g is Lipschitz continuous in y =

(y1,y2,y3,y4) uniformly with respect to t ∈ [0,T ]. Therefore, theorem (6) (see appendix) assures

problem (2-4) admits a unique strong solution y ∈W 1,2 ([0,T ] ,H (Ω)) with

(12) y1, y2, y3 y4 ∈ L2 ([0,T ] ,H2(Ω)
)

In order to show that yi ∈ L∞ (Q) for i = 1, 2, 3, 4, we denote M = max
{
‖g1‖L∞(Q) ,

∥∥y0
1

∥∥
L∞(Ω)

}
and {S (t) , t ≥ 0} is the C0-semi-group generated by the operator B : D(B) ⊂ L2 (Ω) −→
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L2 (Ω), where By1 = d1∆y1 and D(B) =
{

y1 ∈ H2 (Ω) ,
∂y1

∂η
= 0, a.e∂Ω

}
. It is clear that the

function U1 (t,x) = y1−Mt−
∥∥y0

1

∥∥
L∞(Ω)

satisfies the system

(13)


∂U1

∂ t
(t,x) = dS4U1 +g1 (t,y(t))−M , t ∈ [0,T ]

U1 (0,x) = y0
1−
∥∥y0

1

∥∥
L∞(Ω)

Note that this system has a solution given by

U1 (t) = S (t)(y0
1−
∥∥y0

1
∥∥

L∞(Ω)
)+

∫ t

0
S (t− s)(g1 (s,y(s))−M)ds,

As y0
1−
∥∥y0

1

∥∥
L∞(Ω)

≤ 0 and g1 (s,y(s))−M ≤ 0, we have U1 (t,x) ≤ 0, ∀(t,x) ∈ Q . Similarly

the function U2 (t,x) = y1 +Mt +
∥∥y0

1

∥∥
L∞(Ω)

satisfies U2 (t,x)≥ 0,∀(t,x) ∈ Q. Then

|y1(t,x)| ≤Mt +
∥∥y0

1
∥∥

L∞(Ω)
, ∀(t,x) ∈ Q

and analogously , we have

(14) |yi(t,x)| ≤Mt +
∥∥y0

i
∥∥

L∞(Ω)
∀(t,x) ∈ Q f or i = 2,3,4

Thus we have proved that

(15) yi ∈ L∞(Q)∀(t,x) ∈ Q f or i = 1,2,3,4.

By the first equation of (2), we obtain

∫ t
0
∫

Ω

∣∣∣∣∂y1

∂ s

∣∣∣∣2 dsdx+d2
S
∫ t

0
∫

Ω
|4y1|2 dsdx−2dS

∫ t
0
∫

Ω

∂y1

∂ s
4y1dsdx

=
∫ t

0
∫

Ω

(
(1− p−q−b)Θ− (1−u(t,x))βλ

y1y3
N −µy1

)2 dsdx

Using the regularity of y1 and the Green’s formula, we can write

2
∫ t

0
∫

Ω

∂y1

∂ s
4y1dx =−

∫ t
0

∂

∂ s

(∫
Ω

∣∣∇yk
1

∣∣2 dx
)

ds =−
∫

Ω
|∇y1|2 dx+

∫
Ω

∣∣∇y0
1

∣∣2 dx
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Then

∫ t
0
∫

Ω

∣∣∣∣∂y1

∂ s

∣∣∣∣2 dsdx+d2
S
∫ t

0
∫

Ω
|4y1|2 dsdx+dS

∫
Ω
|∇y1|2 dx−dS

∫
Ω

∣∣∇y0
1

∣∣2 dx

=
∫ t

0
∫

Ω

(
(1− p−q−b)Θ− (1− v1(t,x))βλ

y1y3
N −µy1

)2 dsdx

Since ‖yi‖L∞(Q)for i= 1,2,3,4 are bounded independently of v1,v2 and y0
1 ∈H2(Ω) , we deduce

that

(16) y1 ∈ L∞
(
[0,T ] ,H1 (Ω)

)
We make use of (12), (13), and (16), in order to get

y1 ∈L (T,Ω)∩L∞ (Q)

and conclude that the inequality in (9) holds for i = 1, similarly for y2,y3 and y4.

In ordre to show the positiveness of yi for i = 1,2,3,4,we write the system (2) in the form:

(17)



∂y1

∂ t
= d14y1 +H1 (y1,y2,y3,y4) , , (t,x) ∈ Q,

∂y2

∂ t
= d24y1 +H2 (y1,y2,y3,y4)

∂y3

∂ t
= d34y3 +H3 (y1,y2,y3,y4)

∂y4

∂ t
= d44y3 +H4 (y1,y2,y3,y4)

It is easy to see that the functions H1 (y1,y2,y3,y4) ,H2 (y1,y2,y3,y4) ,H3 (y1,y2,y3,y4) and

H4 (y1,y2,y3,y4), are continuously differentiable satisfying H1 (0,y2,y3,y4)= (1− p−q−b)Θ≥

0, H2 (y1,0,y3,y4) = qΘ+(1− v1(t,x))βλ
y1y3

N ≥ 0,H3 (y1,y2,0,y4) = pΘ+ εy2 ≥ 0,

H4 (y1,y2,y3,0) = bΘ+(γ + v2(t,x))y3 ≥ 0, for all y1,y2y3,y4 ≥ 0 (See [26]).This completes

the proof. �

4. THE EXISTENCE OF THE OPTIMAL SOLUTION

In this section, we will prove the existence of an optimal control for the problem (6) subject

to reaction diffusion system (2)-(4) and (v1,v2) ∈ Uad . The main result of this section is the

following theorem.



CONTROL OF A REACTION-DIFFUSION SYSTEM 1609

Theorem 2. Under the hypotheses of theorem (1), the optimal control problem (2-6) admits an

optimal solution (y∗,(v∗1,v
∗
2)).

Proof. From Theorem 1, we know that, for every (v1,v2) ∈Uad , there exists a unique solution

y to system (2-4) . Assume that

in f(v1,v2)∈Uad
J ((v1,v2))>−∞

Let {(un,vn)} ⊂Uad be a minimizing sequence such that

limn→∝J(vn
1,v

n
2) = in f(u,v)∈Uad

J (v1,v2)

where
(
yn

1,y
n
2,y

n
3,y

n
4
)

is the solution of system (2-4) corresponding to the control
(
vn

1,v
n
2
)

for

n = 1,2, .... That is

(18)



∂yn
1

∂ t
= d1∆yn

1 +(1− p−q−b)Θ− (1− vn
1)βλ

yn
1yn

3
(yn

1+yn
2+yn

3+yn
4)
−dyn

1

∂yn
2

∂ t
= d2∆yn

2 +qΘ+(1− vn
1)βλ

yn
1yn

3
(yn

1+yn
2+yn

3+yn
4)
− (d + ε)yn

2

∂yn
3

∂ t
= d3∆yn

3 + pΘ− (d +α + γ + vn
2)y

n
3 + εyn

2 ,(t,x) ∈ Q
∂yn

4
∂ t

= d4∆yn
4 +bΘ−dyn

4 +(γ + vn
2)y

n
3

∂yn
1

∂η
=

∂yn
2

∂η
=

∂yn
3

∂η
=

∂yn
4

∂ t
= 0 (t,x) ∈ Σ(t,x) ∈ Σ(19)

yn
i (0,x) = y0

i f or i = 1,2,3,4 x ∈Ω(20)

and By theorem (1) using the estimate (9) of the solution yn
i , there exists a constant C > 0 such

that for all n≥ 1,t ∈ [0,T ]

(21)
∥∥∥∥∂yn

i
∂ t

∥∥∥∥
L2(Q)

≤C, ‖yn
i ‖L2(0,T ;H2(Ω)) ≤C, ‖yn

i ‖H1(Ω) ≤C, i = 1,2,3,4

H1 (Ω) is compactly embedded in L2 (Ω), so we deduce that yn
1 (t) is compact in L2 (Ω).

Let’s Show that
{

yn
1 (t) ,n≥ 1

}
is equicontinuous in C

(
[0,T ] : L2 (Ω)

)
. As

∂yn
1

∂ t
is bounded

in L2 (Q), this implies that for all s, t ∈ [0,T ]

(22)
∣∣∣∣∫

Ω

(yn
1)

2 (t,x)dx−
∫

Ω

(yn
1)

2 (s,x)dx
∣∣∣∣≤ K |t− s|
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The Ascoli-Arzela Theorem(See [24]) implies that yn
1 is compact in C

(
[0,T ] : L2 (Ω)

)
. Hence,

selecting further sequences, if necessary, we have

yn
1 −→ y∗1 in L2 (Ω), uniformly with respect to t and analogously, we have for yn

i −→ y∗i in

L2 (Ω) for i = 2 ,34, uniformly with respect to t.

From the boundedness of ∆yn
i in L2 (Q), which implies it is weakly convergent in L2 (Q) on a

subsequence denoted again4yn
i then for all distribution ϕ∫

Q
ϕ∆yn

i =
∫

Q
yn

i4ϕ →
∫

Q
y∗i4ϕ =

∫
Q

ϕ∆y∗i

Which implies that 4yn
i →4y∗i weakly in L2 (Q),i = 1, 2, 3, 4, In addition, the estimates (21)

leads to
∂yn

i
∂ t
→ ∂y∗i

∂ t
weakly in L2 (Q), i = 1, 2, 3, 4,

yn
i → y∗i weakly in L2 (0,T ;H2 (Ω)

)
, i = 1, 2, 3, 4,

yn
i → y∗i weakly star in L∞

(
0,T ;H1 (Ω)

)
, i = 1, 2, 3, 4,

We put N(y) = βλ

y1+y2+y3+y4
,we now show that yn

1yn
3 7→ y∗1y∗3 and N(yn)yn

1yn
3 7→ N(y∗)y∗1y∗3

strongly in L2 (Q), we write

yn
1yn

3− y∗1y∗3 = (yn
1− y∗1)yn

3 +(yn
3− y∗3)y∗1

N(yn)yn
1yn

3−N(y∗)y∗1y∗3 = N (yn)(yn
1yn

3− y∗1y∗3)+ y∗1y∗3 (N (yn)−N (y∗))

N (yn)−N (y∗) =
βλ

yn
1 + yn

2 + yn
3 + yn

4
− βλ

y∗1 + y∗2 + y∗3 + y∗4
and we make use of the convergences yn

i −→ y∗i strongly in L2 (Q), i= 1,3, and of the boundedness

of yn
1, yn

3 in L∞ (Q), then yn
1yn

3→ y∗1y∗3and N(yn)yn
1yn

3 7→ N(y∗)y∗1y∗3 strongly in L2 (Q).

Since vn
1 and vn

2 are bounded, we can assume thatvn
1 → v∗1 and vn

2 → v∗2 weakly in L2 (Q) on a

subsequence denoted again vn
1 and vn

2 . Since Uad is a closed and convex set in (L2 (Q))2, it is

weakly closed, so (v∗1,v
∗
2) ∈Uad

We now show that

vn
1N(yn)yn

1yn
3→ v∗1N(y∗)y∗1y∗3weakly in L2 (Q)

Writing with i = 1,2,3,4,

vn
1N(yn)yn

1yn
3− v∗1N(y∗)y∗1y∗3 = (N(yn)yn

1yn
3−N(y∗)y∗1y∗3)un +(vn

1− v∗1)N(y∗)y∗1y∗3
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and making use of the convergences N(yn)yn
1yn

3 7→ N(y∗)y∗1y∗3 strongly in L2 (Q), and vn
1 −→ v∗1

weakly in L2 (Q), one obtains thatunN(yn)yn
1yn

3→ u∗N(y∗)y∗1y∗3 weakly in L2 (Q).

By taking n→ ∞ i in (18-20)„ we obtain that y∗ is a solution of (2-4) corresponding to

(u,∗ v∗) ∈Uad . Therefore

J (y∗,(v∗1v∗2)) = K1
∫ T

0
∫

Ω
y∗2 (t,x)dxdt +K2

∫ T
0
∫

Ω
y∗3 (t,x)dxdt +

ρ1

2
‖v∗1‖

2
L2(Q)+

ρ2

2
‖v∗2‖

2
L2(Q)

≤ limn→∝in f
(

K1
∫ T

0
∫

Ω
yn

2 (t,x)dxdt +K2
∫ T

0
∫

Ω
yn

3 (t,x)dxdt +
ρ1

2
‖v∗1‖

2
L2(Q)+

ρ2

2
‖v∗2‖

2
L2(Q)

)
= limn→∝

(
K1
∫ T

0
∫

Ω
yn

2 (t,x)dxdt +K2
∫ T

0
∫

Ω
yn

3 (t,x)dxdt +
ρ1

2
‖v∗1‖

2
L2(Q)+

ρ2

2
‖v∗2‖

2
L2(Q)

)
= in f(v1,v2)∈Uad

J ((y,(v1,v2))

This shows that J attains its minimum at (y∗,(v∗1,v
∗
2)) , we deduce that (y∗,(v∗1,v

∗
2)) verifies

problem (2-4) and minimizes the objectif functional (6). The proof is complet �

5. NECESSARY OPTIMALITY CONDITIONS

Let v =

 v1

v2

∈Uad ,v∗ =

 v∗1

v∗2

∈Uad and vε = v∗+εv∈Uad , in this section, we show

the optimality conditions to problem (2-4), and we find the characterization of optimal control.

First , we need the Gateaux differentiability of the mapping v→ y(v). For this reason, denoting

by yε =
(
yε

1,y
ε
2,y

ε
3,y

ε
4
)
= (y1,y2,y3,y4)(vε) and y∗ =

(
y∗1,y

∗
2,y
∗
3,y
∗
4
)
= (y1,y2,y3,y4)(v∗) the

solution

of (2-4) corresponding to vε and v∗ respectively.

H =



−βλy∗3(y
∗
2+y∗3+y∗4)((1−vε

1)+d)
(y∗1+y∗2+y∗3+y∗4)

2 0 −βλy∗1(y
∗
1+y∗2+y∗4)(1−vε

1)

(y∗1+y∗2+y∗3+y∗4)
2 0

βλy∗3(y
∗
2+y∗3+y∗4)(1−vε

1)

(y∗1+y∗2+y∗3+y∗4)
2 −(d + ε)

βλy∗1(y
∗
1+y∗2+y∗4)(1−vε

1)

(y∗1+y∗2+y∗3+y∗4)
2 0

0 ε −
(
d + γ +α + vε

2
)

0

0 0 (vε
2 + γ) −d



and L =


βλ

y∗1y∗3
(y∗1+y∗2+y∗3+y∗4)

0

−βλ
y∗1y∗3

(y∗1+y∗2+y∗3+y∗4)
0

0 −y∗3

0 y∗3

.
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Proposition 3. The mapping y : Uad→W 1,2 ([0,T ] ;H (Ω)) with yi ∈L (T,Ω) for i = 1,2,3,4

is Gateaux differentiable with respect to v∗. For all direction v ∈Uad , y′ (v∗)v =Y is the unique

solution in W 1,2 ([0,T ] ;H (Ω)) with Yi ∈L (T,Ω) of the following equation

(23)


∂Y
∂ t

= AY +HY +Lv, t ∈ [0,T ]

Y (0) = 0

Proof. Put Y ε
i =

yε
i − y∗i

ε
for i = 1,2,3,4.F (y1,y2,y3,y4) =

y1y3

y1 + y2 + y3 + y4
,

Dε
1 =

F
(
yε

1,y
ε
2,y

ε
3,y

ε
4
)
−F

(
y∗1,y

ε
2,,y

ε
3,y

ε
4

)
yε

1− y∗1
, and Dε

3 =
F
(

y∗1,y
ε
2,,y

ε
3,y

ε
4

)
−F

(
y∗1,y

∗
3,y
∗
3,y
∗
4
)

yε
3− y∗3

.

We denote Sε the system (2 ) corresponding to vε and S∗ the system (2) corresponding to v∗,

subtracting system Sε from S∗, we have

(24)

∂Y ε
1

∂ t
= d1∆Y ε

1 − (Dε
1βλ (1− vε

1)+d)Y ε
1 −Dε

3βλ (1− vε
1)Y

ε
3 + v∗1βλ

y∗1y∗3
(y∗1+y∗2+y∗3+y∗4)

∂Y ε
2

∂ t
= d2∆Y ε

2 +(Dε
1βλ (1− vε

1))Y
ε
1 − (d + ε)Y ε

2 +(Dε
3βλ (1− vε

1))Y
ε
3 − v∗1βλ

y∗1y∗3
(y∗1+y∗2+y∗3+y∗4)

, (x, t) ∈ Q

∂Y ε
3

∂ t
= d3∆Y ε

3 + εY ε
2 − (d + γ +α + vε

2)Y ε
3 − v∗2y∗3

∂Y ε
4

∂ t
= d4∆Y ε

4 +(vε
2 + γ)Y ε

3 −dY ε
4 + v∗2y∗3

with the homogeneous Neumann boundary conditions

(25)
∂Y ε

1
∂η

=
∂Y ε

2
∂η

=
∂Y ε

3
∂η

=
∂Y ε

4
∂η

= 0 (x, t) ∈ Σ

(26) Y ε
i (0,x) = 0 x ∈Ω, f or i = 1,2,3,4

We prove that Y ε
i are bounded in L2 (Q) uniformly with respect to ε . For this end, denoting by
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Y ε =
(
Y ε

1 ,Y
ε
2 ,Y

ε
3 ,Y

ε
4
)
,

Hε =


−(Dε

1βλ (1− vε
1)+d) 0 −Dε

3βλ (1− vε
1) 0

(Dε
1βλ (1− vε

1)) −(d + ε) (Dε
3βλ (1− vε

1)) 0

0 ε −
(
d + γ +α + vε

2
)

0

0 0 (vε
2 + γ) −d

 ,

and L =


βλ

y∗1y∗3
(y∗1+y∗2+y∗3+y∗4)

0

−βλ
y∗1y∗3

(y∗1+y∗2+y∗3+y∗4)
0

0 −y∗3

0 y∗3

 .

Then (24) given by

(27)


∂Y ε

∂ t
= AY ε +HεY ε +Lv, t ∈ [0,T ]

Y ε (0) = 0

(S (t) , t ≥ 0)be the semi-group generated by A, then the solution of (27) can be expressed as

(28) Y ε (t) =
∫ t

0
S (t− s)Hε (s)Y ε (s)ds+

∫ t

0
S (t− s)Lv(s)ds,

On the other hand the coefficients of the matrix Hε are bounded uniformly with respect to ε ,

using Gronwall’s inequality, we have

(29) ‖Y ε
i ‖L2(Q) ≤ Γ

where Γ > 0 (i = 1,2,3). Then

(30) ‖yε
i − y∗i ‖L2(Q) = ε ‖Y ε

i ‖L2(Q) (4.7)

Hence yε
i → y∗i in L2 (Q), i = 1,2,3.

Denoting by H =


−(D∗1βλ (1− v∗1)+d) 0 −D∗3βλ (1− v∗1) 0

(D∗1βλ (1− v∗1)) −(d + ε) (D∗3βλ (1− v∗1)) 0

0 ε −(d + γ +α + v∗2) 0

0 0 (v∗2 + γ) −d

 ,
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where D∗1 =
∂F
(
y∗1,y

∗
2,y
∗
3,y
∗
4
)

∂y1
, D∗3 =

∂F
(
y∗1,y

∗
2,y
∗
3,y
∗
4
)

∂y3
, and Y = (Y1,Y2,Y3,Y4). Hence, then

system (24-26) can be written in the form

(31)


∂Y
∂ t

= AY +HY +Lv, t ∈ [0,T ]

Y (0) = 0

and its solution can be expressed as

(32) Y (t) =
∫ t

0
S (t− s)H (s)Y (s)ds+

∫ t

0
S (t− s)Lv(s)ds,

By (28) and (32) we deduce that

(33) Y ε (t)−Y (t) =
∫ t

0
S (t− s)Hε (s)(Y ε −Y )+Y (s)(Hε (s)−H (s))ds

Thus all the coefficients of the matrix Hε tend to the corresponding coefficients of the matrix H

in L2 (Q), An application of Gronwall’s Inequality yields to Y ε
i → Yi in L2 (Q) as ε → 0, for

i = 1,2,3,4. �

Let v∗ be an optimal control of (2-5), y∗ =
(
y∗1,y

∗
2,y
∗
3,y
∗
4
)

be the optimal state, Z is the matrix

defined by Z =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

, K = (0,K1,K2,0), Z∗ is the adjoint matrix associated to Z,

H∗ is the adjoint matrix associated to H and p = (p1, p2, p3,, p4) is the adjoint variable,we can

write the dual system associated to system (2-5):

(34)


−∂ p

∂ t
−Ap−H∗p = Z∗ZK, t ∈ [0,T ]

p(T,x) = 0

Lemma 4. Under hypotheses of theorem ( 1) , if (y∗,(v1,v2)) is an optimal pair, then there

exists a unique strong solution p ∈W 1,2 ([0,T ] ;M (Ω)) to the system (34) with pi ∈L (T,Ω)

for i = 1,2,3,4.
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Proof. Like in Theorem (1), by making the change of variable s = T − t and the change of

functions qi (s,x) = pi (T − s,x) = pi (t,x) ,(t,x) ∈ Q, i = 1,2,3,4. we can easily prove the

existence of the solution to this lemma . �

To obtain the necessary conditions for the optimal control problem, applying standard optimality

techniques, analyzing the objective functional and utilizing relationships between the state and

adjoint equations,we obtain a characterization of the control optimal.

Theorem 5. Let u∗be an optimal control of (2)-(5) and let y∗ ∈W 1,2 ([0,T ] ;H (Ω)) with

y∗i ∈L (T,Ω) for i = 1,2,3,4 be the optimal state, that is y∗ is the solution to (2)-(5) with the

control v∗ =

 v∗1

v∗2

. ρ =

 ρ1

ρ2

 Then,

(35) v∗1 = min

vmax
1 , max

0,
βλ

y∗1y∗3
(y∗1+y∗2+y∗3+y∗4)

(p2− p1)

ρ1



(36) v∗2 = min
(

vmax
2 , max

(
0,

y∗3(p3− p4)

ρ2

))

Proof. We suppose v∗=

 v∗1

v∗2

 is an optimal control and y∗=
(
y∗1,y

∗
2,y
∗
3,y
∗
4
)
=(y1,y2,y3,y4)(v∗)

are the corresponding state variables. Consider vε = v∗+εh∈Uad ,h=

 h1

h2

and corresponding

state solution yε =
(
yε

1,y
ε
2,y

ε
3,y

ε
4
)
= (y1,y2,y3,y4)(vε), we have
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(37)

J′ (v∗)(h) = lim
ε→0

1
ε
(J (vε)− J (v∗))

= lim
ε→0

1
ε

(∫ T
0
∫

Ω
K1
(
yε

2− y∗2
)
(t,x)dxdt +

∫ T
0
∫

Ω
K2
(
yε

3− y∗3
)
(t,x)dxdt

+
ρ1

2
∫ T

0
∫

Ω

((
vε

1
)2− (v∗1)

2
)
(t,x)dxdt +

ρ2

2
∫ T

0
∫

Ω

((
vε

2
)2− (v∗2)

2
)
(t,x)dxdt

)

= lim
ε→0

(∫ T
0
∫

Ω
K1

(
yε

2− y∗2
ε

)
(t,x)dxdt +

∫ T
0
∫

Ω
K2

(
yε

3− y∗3
ε

)
(t,x)dxdt )

+
ρ1

2
∫ T

0
∫

Ω

(
(εh1)

2 +2hv∗1
)
(t,x)dxdt +

ρ2

2
∫ T

0
∫

Ω

(
(εh2)

2 +2hv∗2
)
(t,x)dxdt

)

=
∫ T

0
∫

Ω
K1Y2 (t,x)dxdt +

∫ T
0
∫

Ω
K2Y3 (t,x)dxdt +ρ1

∫ T
0
∫

Ω
(h1v∗1)(t,x)dxdt

+ρ2
∫ T

0
∫

Ω
(h2v∗2)(t,x)dxdt

=
∫ T

0 〈ZK,ZY 〉H(Ω) dt +
∫ T

0 〈ρv∗,h〉L2(Ω) dt

We use (23) and (34), we have

∫ T

0
〈ZK,ZY 〉H(Ω) dt =

∫ T

0
〈Z∗ZK,Y 〉H(Ω) dt

=
∫ T

0

〈
−∂ p

∂ t
−Ap−H∗p,Y

〉
H(Ω)

dt

=
∫ T

0

〈
p,

∂Y
∂ t
−AY −HY

〉
H(Ω)

dt

=
∫ T

0
〈p,Lh〉H(Ω) dt(38)

=
∫ T

0
〈L∗p,h〉L2(Ω) dt

Since J is Gateaux differentiable at v∗ and Uad is convex, as the minimum of the objective

functional is attained at v∗ it is seen that J
′
(v∗)(u− v∗)≥ 0 for all u ∈Uad .

We take h= u−v∗ and we use (37)-(38) then J
′
(v∗)(u− v∗)=

∫ T
0 〈L∗p+αu∗,(u− v∗)〉L2(Ω) dt.

We conclude that J
′
(v∗)(u− v∗) ≥ 0 equivalent to

∫ T
0 〈L∗p+αv∗,(u− v∗)〉L2(Ω) dt ≥ 0 for all
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u ∈Uad . By standard arguments varying u, we obtain ρv∗ =−L∗p Then

ρv∗ =

 ρ1v∗1

ρv∗2

=

 −βλ
y∗1y∗3

(y∗1+y∗2+y∗3+y∗4)
+βλ

y∗1y∗3
(y∗1+y∗2+y∗3+y∗4)

0 0

0 0 y∗3 −y∗3




p1

p2

p3

p4


As v∗ ∈Uad , we have

v∗1 =min

vmax
1 , max

0,
βλ

y∗1y∗3
(y∗1+y∗2+y∗3+y∗4)

(p2− p1)

ρ1

 , v∗2 =min
(

vmax
2 , max

(
0,

y∗3(p3− p4)

ρ2

))
�

6. NUMERICAL RESULTS

In this section, we present the results obtained by the numerical resolution of the optimality

system ((2-4),(34)(35)), based on a discrete iterative scheme that converges following a test

appropriate to the forward-backward scanning method (FBSM) [23]. We adopt two situations

for the resolution: the first is that the disease starts with the middle of domain Ω(1) , and in the

second situation the disease begins with the lower corner Ω(2). A rectangular area of 30 km

× 40 km is considered, and the parameter values and the initial values are given in Table 1.The

upper limits of the optimality condition are considered to be vmax
1 = 1,vmax

2 = 1, . The constant

weighting values in the objective function are K1 = 0.1,K2 = 0.1, ρ1 = ρ2 = 2 .
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Notations Value Description(Units)

S0 (x,y)
4 f or (x,y) ∈Ωi i = 1,2

10 f or (x,y) /∈Ωi

Initial susceptible population(
people/km2

)
E0 (x,y)

3 f or (x,y) ∈Ωi i = 1,2

0 f or (x,y) /∈Ωi

Initial exposed population(
people/km2

)
I0 (x,y)

2 f or (x,y) ∈Ωi i = 1,2

0 f or (x,y) /∈Ωi

Initial in f ected population(
people/km2

)
R0 (x,y)

1 f or (x,y) ∈Ωi i = 1,2

0 f or (x,y) /∈Ωi

Initial recovered population(
people/km2

)
λ 1 T he probability f or anindividual totake part inacontact

α 0.01 Ratethat exposed individualsbecomein f ectious

β 1 E f f ectivecontact rate

γ 0.04 Recoveryrate

Θ 0.112 Recruitement rate intothe population

dS 0.05
di f f usionrate f or susceptible

km2/day

dE 0.5
di f f usionrate f or susceptible

km2/day

dI 0.5
di f f usionrate f or in f ected

km2/day

dR 0.1
di f f usionrate f or recovered

km2/day

d 0.01 Natural mortalityrate

p 0.01 Rateo f exposed individuals innewmemberso f the population

q 0.001 Rateo f in f ected individuals innewmemberso f the population

b 0.001 Rateo f recovred individuals innewmemberso f the population

ε 0.09 Disease induced deathrate

t [1,55]
time period

(day)
TABLE 1. Initial conditions and parameters values
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To illustrate the effectiveness of the control and its impact on the spread of the disease, we

have chosen three scenarios:

-In the first scenario, we illustrate the dynamics of the system without intervention.

-In the second scenario, from the 48 day of onset of the disease, we simultaneously apply

the strategy that reduces contact between infectious and susceptible individuals, and that of

treatment.

-In the third scenario, we repeat the second scenario, but from the first days of the onset of

the epidemic.

6.1. Simulations without optimal control. For the time interval from t = 1 to t = 55 days,

when the disease starts at the corner or in the middle, the numerical results (Figures 1,2,3 and 4)

in the absence of controls show a spread of the epidemic to all sides and the number of infected

people is rising rapidly.

FIGURE 1. Susceptible behavior within Ω without control
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FIGURE 2. Exposed behavior within Ωwithout control

FIGURE 3. Infectied behavior within Ω without control
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FIGURE 4. Recovered behavior within Ω without control

6.2. The control strategy starts from the 48 day. In this subsction, we present the numerical

results obtained during the application of the second scenario: the controls are introduced after

48 days of the onset of the disease. Figures 5, 6 and 7 show the impact of the controls adopted

against the spread of the epidemic, since the number of infected decreased from a density of 10

infected to 2 infected (Fig 6), and the number of recovered increased by a density of 1 recovered

to 5 recovered (Fig 7). But despite these results, the disease is not completely gone, as there are

still infected individuals, which can be a major source of the spread of the epidemic.
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FIGURE 5. Susceptible behavior within Ω with control (control strategy after 48 days)

FIGURE 6. Infectied behavior within Ω with control (control strategy after 48 days)
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FIGURE 7. Recovered behavior within Ω with control (control strategy after 48 days)

6.3. The control strategy starts from the first day. Figures 8, 9 and 10 present the numerical

results obtained when applying our control strategy from the first day of the disease. The

effectiveness of our approach is clear, since the number of infected and exposed individuals has

remained almost zero, due to the combination of efforts to reduce contact between susceptible

individuals and infected individuals, and treatment performed on the infected.
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FIGURE 8. Susceptible behavior within Ω with control (control strategy starts

from the first day)

FIGURE 9. Exposed behavior within Ω with control (control strategy starts from

the first day)
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FIGURE 10. Infected behavior within Ω with control (control strategy starts

from the first day)

7. CONCLUSION

In this article, we present a theoretical work that can be used in the study of several infectious

diseases in the form of SEIR model, we have also expanded this model to take into account the

spatial spread of the disease, we studied a couple Optimal control for this SEIR spatio-temporal

model, the first control has the role of reducing contact between susceptible and infected, and the

second is in the form of a therapeutic treatment. Theoretically, we demonstrate the existence of

optimal controls and the solution of the state system. The characterization of the optimal control

torque is determined in terms of state functions and adjoint functions. The numerical resolution

is based on the forward / backward scanning method (FBSM). The numerical results have shown

that the introduction of control from the first day of the disease, which reduces the contact

between the susceptible and the infected, and that of the treatment plus the corresponding cost,

constitutes the best optimal strategy for obtaining better results. This strategy has made it

possible to block the spread of the epidemic.
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8. APPENDIX

First recall a general existence result which we use in the sequel (Proposition 1.2, p. 175,

[28]; see also[27,29]. Consider the initial value problem

(39)


∂ z
∂ t

= Az(t)+g(t,z(t)) , t ∈ [0,T ]

z(0) = z0

where A is a linear operator defined on a Banach space X , with the domain D(A) and g :

[0,T ]×X→ X is a given function. If X is a Hilbert space endowed with the scalar product (·, ·),

then the linear operator A is called dissipative if (Az,z)≤ 0, (∀z ∈ D(A)).

Theorem 6. X be a real Banach space, A : D(A) ⊆ X → X be the infinitesimal generator of

a C0−semigroup of linear contractions S(t), t ≥ 0 on X, and g : [0,T ]×X → X be a function

measurable in t and Lipschitz continuous in x ∈ X, uniformly with respect to t ∈ [0,T ].

(i) If z0 ∈ X , then problem (39) admits a unique mild solution, i.e. a function z ∈C([0,T ];X)

which verifies the equality z(t) = S(t)z0 +
∫ t

0 S(t− s)g(s,z(s))ds,(∀t ∈ [0,T ] .

(ii) If X is a Hilbert space, A is self-adjoint and dissipative on X and z0 ∈D(A), then the mild

solution is in fact a strong solution and z ∈W 1,2([0,T ] ;X)∩L2(0,T ;D(A))
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