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Abstract. In this paper, we compute spectrum, Laplacian spectrum, signless Laplacian spectrum and their corre-

sponding energies of commuting conjugacy class graph of the non-abelian p-group of order pn whose order of the

centre is pn−2, p is prime and n≥ 3. We derive some consequences along with the fact that commuting conjugacy

class graph of the above group is super integral. We also compare various energies and determine whether com-

muting conjugacy class graph of the group is hyperenergetic, L-hyperenergetic or Q-hyperenergetic. We compute

the genus of the graph. Finally we conclude the paper by noting the fact that the graph is neither toroidal nor

double-toroidal nor triple-toroidal.
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1. INTRODUCTION

Let G be any group and V (G) = {aG : a ∈ G \Z(G)}, where aG is the conjugacy class of a

in G and Z(G) is the center of G. We consider the graph Λ(G), called commuting conjugacy

class graph of G, with vertex set V (G) and two distinct vertices aG and bG are adjacent if there

exists some elements a′ ∈ xG and b′ ∈ yG such that a′ and b′ commute. Extending the notion

of commuting graph of a group pioneered by Brauer and Fowler [11], Herzog et al. [10] were
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introduced commuting conjugacy class graph of groups in the first decade of this millennium.

The second and third paper on this topic got published in the years 2016 and 2020 authered

by Mohammadian et al. [1] and Salahshour et al. [9] respectively, where Mohammadian et

al. characterize finite groups such that Λ(G) is triangle-free and Salahshour et al. describe the

structure of Λ(G) considering G to be dihedral groups (D2n for n ≥ 3), generalized quaternion

groups (Q4m for m ≥ 2), semidihedral groups (SD8n for n ≥ 2), the groups V8n = 〈a,b : a2n =

b4 = 1,ba = a−1b−1,b−1a = a−1b〉 (for n≥ 2), U(n,m) = 〈a,b : a2n = bm = 1,a−1ba = b−1〉 (for

m≥ 2 and n≥ 2) and G(p,m,n) = 〈a,b : apm
= bpn

= [a,b]p = 1, [a, [a,b]] = [b, [a,b]] = 1〉 (for

any prime p, m≥ 1 and n≥ 1).

If Λ = m1Kn1 then it is noteworthy that

(1.1) Spec(Λ) =
{
(−1)m1(n1−1),(n1−1)m1

}
(1.2) L-spec(Λ) =

{
0m1 ,nm1(n1−1)

1

}
and

Q-spec(Λ) =
{
(2n1−2)m1,(n1−2)m1(n1−1)

}
,(1.3)

where Spec(Λ),L-spec(Λ) and Q-spec(Λ) denote the spectrum, Laplacian spectrum and sign-

less Laplacian spectrum of Λ. Recall that Spec(Λ),L-spec(Λ) and Q-spec(Λ) contain eigenval-

ues with the multiplicities (written as exponents) of A(Λ), L(Λ) := D(Λ)−A(Λ) and Q(Λ) :=

D(Λ) + A(Λ) respectively, where A(Λ) and D(Λ) are adjacency and degree matrix of Λ re-

spectively. Also, energy (E (Λ)), Laplacian energy (L E (Λ)) and signless Laplacian energy

(L E +(Λ)) are defined as follows:

(1.4) E (Λ) = ∑
x∈Spec(Λ)

|x|,

(1.5) L E (Λ) = ∑
x∈L-spec(Λ)

∣∣∣∣x− 2|e(Λ)|
|V (Λ)|

∣∣∣∣ ,
(1.6) L E +(Λ) = ∑

x∈Q-spec(Λ)

∣∣∣∣x− 2|e(Λ)|
|V (Λ)|

∣∣∣∣ ,
where V (Λ) is the set of vertices and e(Λ) is the set of edges of Λ respectively.

In 2008, Gutman et al. [5] posed the following conjecture comparing E (Λ) and L E (Λ).
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Conjecture 1.1. E (Λ)≤L E (Λ) for any graph Λ.

However, in the same year, Stevanović et al. [2] disproved the above conjecture. In 2009, Liu

and Lin [7] also disproved Conjecture 1.1 by providing some counter examples.

2. SPECTRUM, ENERGIES & GENUS

We first find various spectra and energies of commuting conjugacy class graph of a group,

and then we compute the genus of the group and find whether the group is planar, toroidal,

double-toroidal, triple-toroidal.

Theorem 2.1. [8, Corollary 3.2] If G is a non-abelian p-group of order pn and |Z(G)|= pn−2,

p is prime and n≥ 3, then Λ(G) = (p+1)Kpn−3(p−1).

Theorem 2.2. If G is a non-abelian p-group of order pn and |Z(G)| = pn−2, p is prime and

n≥ 3, then

(1) Spec(Λ(G)) =
{
(−1)(p+1)(pn−3(p−1)−1),(pn−3(p−1)−1)p+1

}
.

(2) L-spec(Λ(G)) =
{

0p+1,(pn−3(p−1))(p+1)(pn−3(p−1)−1)
}

.

(3) Q-spec(Λ(G)) =
{
(2pn−3(p−1)−2)p+1,(pn−3(p−1)−2)(p+1)(pn−3(p−1)−1)

}
.

(4) E (Λ(G)) = L E (Λ(G)) = L E +(Λ(G)) = 2(p+1)(pn−3(p−1)−1)

Proof. By Theorem 2.1 we have,

Λ(G) = (p+1)Kpn−3(p−1).

Let m1 = p+1 and n1 = pn−3(p−1). Then, by (1.1)-(1.3), it follows that

Spec(Λ(G)) = {(−1)(p+1)(pn−3(p−1)−1),(pn−3(p−1)−1)p+1},

L-spec(Λ(G)) = {0p+1,(pn−3(p−1))(p+1)(pn−3(p−1)−1)}

and

Q-spec(Λ(G)) = {(2pn−3(p−1)−2)p+1,(pn−3(p−1)−2)(p+1)(pn−3(p−1)−1)}.
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Now, by (1.4), we get,

E (Λ(G)) = (p+1)(pn−3(p−1)−1)×1+(p+1)× (pn−3(p−1)−1)

= 2(p+1)(pn−3(p−1)−1).

We have, |V (Λ(G))|= m1n1 = (p+1)× pn−3(p−1) = pn−3(p2−1) and

|e(Λ(G))|= m1n1(n1−1)
2

=
1
2

pn−3(p2−1)(pn−3(p−1)−1).

Therefore,

2|e(Λ(G))|
|V (Λ(G))|

= pn−3(p−1)−1.

Also, ∣∣∣∣0− 2|e(Λ(G))|
|V (Λ(G))|

∣∣∣∣= 2|e(Λ(G))|
|V (Λ(G))|

= pn−3(p−1)−1,

and ∣∣∣∣pn−3(p−1)− 2|e(Λ(G))|
|V (Λ(G))|

∣∣∣∣= ∣∣pn−3(p−1)− (pn−3(p−1)−1)
∣∣

= 1.

Now, by (1.5), we have,

L E (Λ(G)) = (p+1)× (pn−3(p−1)−1)+(p+1)(pn−3(p−1)−1)×1

= 2(p+1)(pn−3(p−1)−1).

Again, we have,∣∣∣∣(2pn−3(p−1)−2)− 2|e(Λ(G))|
|V (Λ(G))|

∣∣∣∣= ∣∣(2pn−3(p−1)−2)− (pn−3(p−1)−1)
∣∣

= pn−3(p−1)−1
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and ∣∣∣∣(pn−3(p−1)−2)− 2|e(Λ(G))|
|V (Λ(G))|

∣∣∣∣= ∣∣(pn−3(p−1)−2)− (pn−3(p−1)−1)
∣∣

= 1.

By (1.6), we have

L E +(Λ(G)) = (p+1)× (pn−3(p−1)−1)+(p+1)(pn−3(p−1)−1)×1

= 2(p+1)(pn−3(p−1)−1),

This completes the proof. �

By Theorem 2.2, it follows that Spec(Λ),L-spec(Λ) and Q-spec(Λ) contain only integers for

the group G given in Theorem 2.1. Therefore, the commuting conjugacy class graph of G is

super integral. In Theorem 2.2, various energies of commuting conjugacy class graphs of G are

compared. It is also observed that E (Λ) ≤L E (Λ). Thus, it follows that E-LE Conjecture of

Gutman et al. [5] holds for Λ = Λ(G).

A graph Λ having n vertices is called hyperenergetic, L-hyperenergetic or Q-hyperenergetic

according as E (Kn)< E (Λ),L E (Kn)< L E (Λ) or L E +(Kn)< L E +(Λ). Also, Λ is called

borderenergetic, L-borderenergetic and Q-borderenergetic if E (Kn)=E (Λ),L E (Kn)=L E (Λ)

and L E +(Kn) = L E +(Λ) respectively. We consider commuting conjugacy class graph Λ(G)

for the groups considered in Theorem 2.1 and determine whether they are hyperenergetic, L-

hyperenergetic or Q-hyperenergetic. We shall also determine whether they are borderenergetic,

L-borderenergetic or Q-borderenergetic.

Lemma 2.3. If Kn is the complete graph of order n then

E (Kn) = L E (Kn) = L E +(Kn) = 2(n−1).

Theorem 2.4. If G is a non-abelian p-group of order pn and |Z(G)| = pn−2, p is prime and

n ≥ 3, then Λ(G) is neither hyperenergetic nor L-hyperenergetic nor Q-hyperenergetic. Also

Λ(G) is neither borderenergetic nor L-borderenergetic nor Q-borderenergetic.
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Proof. By Theorem 2.1 we have

Λ(G) = (p+1)Kpn−3(p−1).

Therefore, |V (Λ(G))|= pn−3(p2−1) and hence by the Lemma 2.3

E (K|V (Λ(G))|) = L E +(K|V (Λ(G))|) = L E (K|V (Λ(G))|) = 2(pn−3(p2−1)−1).

Now,

E (Kn)−E (Λ(G)) = 2(pn−3(p2−1)−1)−2(p+1)(pn−3(p−1)−1) = 2p > 0.

Similarly,

L E (Kn)−L E (Λ(G)) = 2p > 0

and

L E +(Kn)−L E +(Λ(G)) = 2p > 0.

Therefore,

E (Kn)> E (Λ(G)),

L E (Kn)> L E (Λ(G))

and

L E +(Kn)> L E +(Λ(G)).

Hence the result is true. �

The smallest non-negative integer l is called the genus of a graph Λ if Λ can be embedded on

the surface obtained by attaching l handles to a sphere. We write γ(Λ) to denote the genus of Λ.

It is easy to observe that, if Λo is a sub-graph of Λ then γ(Λo)≤ γ(Λ). Let Kn be the complete

graph on n vertices and mKn the disjoint union of m copies of Kn. then, by [13, Theorem 6-38],

we have

(2.1) γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
if n≥ 3.

A graph Λ is called planar, toroidal, double-toroidal and triple-toroidal if γ(Λ) = 0,1,2 and 3

respectively.

Lemma 2.5. [6, Corollary 2] If Λ is the disjoint union of Km and Kn, then γ(Λ)= γ(Km)+γ(Kn).
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Theorem 2.6. If G is a non-abelian p-group of order pn and |Z(G)| = pn−2, p is prime and

n≥ 3, then Λ(G) is planar if p = 2,n = 3,4,5; p = 3,n = 3; p = 5,n = 3.

Proof. By Theorem 2.1 we have

Λ(G) = (p+1)Kpn−3(p−1).

For p = 2 we have Λ(G) = 3K2n−3 , hence for n = 3,4,5 we get Λ(G) as 3K1,3K2,3K4 respec-

tively. Therefore Λ(G) is planar. Again for p = 3 we have Λ(G) = 4K2.3n−3 , hence for n = 3 we

get Λ(G) as 4K2. Therefore Λ(G) is planar. Also for p = 5 we have Λ(G) = 6K4.5n−3 , hence for

n = 3 we get Λ(G) as 6K4. Therefore Λ(G) is planar. �

Theorem 2.7. If G is a non-abelian p-group of order pn and |Z(G)| = pn−2, p is prime and

n≥ 3, then Λ(G) is neither toroidal nor double-toroidal nor triple-toroidal.

Proof. By Theorem 2.6, we have, Λ(G) is planar if p = 2,n = 3,4,5; p = 3,n = 3; p = 5,n = 3.

Now we consider the following cases.

Case 1. If p = 2;n≥ 6 then Λ(G) = 3K2n−3 . Therefore Λ(G) has a sub-graph 3K8. Since by

(2.1) and Lemma 2.5, γ(3K8) = 6, therefore γ(Λ(G)) ≥ 6. Hence Λ(G) is neither toroidal nor

double-toroidal nor triple-toroidal.

Case 2. If p = 3;n ≥ 4 then Λ(G) = 4K2.3n−3 . Therefore Λ(G) has a sub-graph 4K6. Since

by (2.1) and Lemma 2.5, γ(3K8) = 4, therefore γ(Λ(G)) ≥ 4. Hence Λ(G) is neither toroidal

nor double-toroidal nor triple-toroidal.

Case 3. If p = 5;n ≥ 4 then Λ(G) = 6K4.5n−3 . Therefore Λ(G) has a sub-graph 6K20. Since

by (2.1) and Lemma 2.5, γ(6K20) = 138, therefore γ(Λ(G)) ≥ 138. Hence Λ(G) is neither

toroidal nor double-toroidal nor triple-toroidal.

Case 4. If p ≥ 7;n ≥ 3 then Λ(G) = (p+ 1)Kpn−3(p−1). Therefore Λ(G) has a sub-graph

8K6. Since by (2.1) and Lemma 2.5, γ(8K6) = 8, therefore γ(Λ(G))≥ 8. Hence Λ(G) is neither

toroidal nor double-toroidal nor triple-toroidal. �
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Theorem 2.8. If G is a non-abelian p-group of order pn and |Z(G)| = pn−2, p is prime and

n≥ 3, then

γ(Λ(G)) =


0, if p = 2,n = 3,4,5; p = 3,n = 3;

p = 5,n = 3

(p+1)
⌈
(pn−3(p−1)−3)(pn−3(p−1)−4)

12

⌉
, otherwise.

The proof of Theorem 2.8 can be done by using (2.1) and Theorem 2.6.

Finally, in Theorem 2.4, various energies of Λ(G) and K|V (G)| are compared and obtained

that Λ(G) is neither hyperenergetic nor L-hyperenergetic nor Q-hyperenergetic. Also Λ(G) is

neither borderenergetic nor L-borderenergetic nor Q-borderenergetic. We find the condition for

the graph to be planar. We conclude this paper by proving the fact that the graph is neither

toroidal nor double-toroidal nor triple-toroidal.

ACKNOWLEDGEMENTS

The author is thankful to Council of Scientific and Industrial Research for the fellowship (File

No. 09/796(0094)/2019-EMR-I).

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] A. Mohammadian, A. Erfanian, D. G. M. Farrokhi, B. Wilkens, Triangle-free commuting conjugacy class

graphs, J. Group Theory. 19 (2016), 1049-1061.
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