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Abstract. In this paper, we have fabricated an HIV RTI model accompanied with humoral immunity. Positivity

solution for the model and boundedness of the model were derived. Stability analysis of the constructed model

about its steady states has been deliberated. Sensitivity analysis is performed on a delay differential equation model

for human immunodeficiency virus (HIV) with reverse transcription inhibitors (RTI) model.
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1. INTRODUCTION

Mathematical models have been used extensively in research into the epidemiology of human

immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) to improve our

understanding of major contributing factors in a giving epidemic. It has been more than three

decades that the HIV has reached a pandemic state. The worldwide emergence of this infectious

agent coincided with the advent of new modeling techniques in epidemiology, e.g. the adaptive
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dynamics framework. Consider the basic mathematical model for HIV infection containing the

density of uninfected cells, that of infected cells, and that of virus cells in [1]. They also present

models which incorporate the effect of the cell-mediated immunity to this model. It is observed

that, no HIV infection model with this type of infected-to-target infection has considered the

effect of immune response. In recent, some viral infection with mathematical models along with

therapy intervention have been studied in [2–6]. Recently, Virgin and Walker [7] and Roederer

et al. [8] revealed that humoral immunity plays an important role in the whole human immunity

and considered that only by understanding the both two immune responses in unprecedented

depth can we develop a protective HIV vaccine. Hence, mathematical modeling and analysis

of virus dynamics with humoral immunity can be helpful to design treatment strategies and to

provide insights on evaluating effective antiviral drug therapies. To prevent the dispersal of

infection within a host cell to cell and virus to cell, we expend reverse transcriptase inhibitor

therapy for our model. Moreover the model incorporated for RTI with different drug efficacies

on uninfected and infected cells and humoral immunity as:

dT
dt

= s−d1T (t)− (1−η1)β1T (t)V (t)− (1−η2)β2T (t)T ∗(t)

dT ∗

dt
= (1−η1)β1T (t− τ1)V (t− τ1)+(1−η2)β2T (t− τ2)T ∗(t− τ2)−d2T ∗(t)

dV
dt

= bT ∗(t− τ3)−d3V (t)− pV (t)Z(t),

dZ
dt

= gV (t)Z(t)−d4Z(t).(1)

The model describes four populations. These include: uninfected target cells T (t), produc-

tively infected cells T ∗(t), free virus, V (t) and B cells, Z(t). ‘s’ represents the rate at which

new T cells are created from sources. Parameter ‘di’, (i = 1,2,3,4) are death rate of the

T (t),T ∗(t),V (t) and Z(t). Target cells are infected by free viral particles and infectious cells

(productively infected cells) at rates β1T (t)V (t) and β2T (t)T ∗(t) respectively. ‘b’ denotes the

average production rate of virus from an infected cell. pV (t)Z(t) and gV (t)Z(t) are used to de-

scribe the virus killed by B cells and the new B cells produced by antigenic stimulation. Where

‘η1’ denotes the efficacy of the RTI inhibiting the virus to cell infection and ‘η2’ represents the
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efficacy of the RTI with respect to the cell to cell channel. Parameters η1,η2 ∈ [0,1], the value

of 0 is associated with non-treatment and a value of 1 with full efficacy in the treatment. Drug

resistance is a result of genetic mutations. t− τ1 describes the time delay between healthy cells

and containing with viruses and complete production of viral RNA and protein. t−τ2 describes

the period between healthy cells and containing with infected cells. In addition, a cell that is

infected at time t− τ3 starts to generate new infectious HIV-1 particles at time t.

Humoral immunity has been incorporated into virus dynamics models in several works [9,

10]. however, in these papers, only virus-to-cell transmission has been considered. Therefore,

reasonable mathematical models for HIV-1 with virus-to-target and infected-to-target infections

should take humoral immunity into consideration. Model 1 has three steady states, infection-

free steady state, immune inactivated and immune activated steady state. Moreover, the dynam-

ics is governed by only one threshold parameter R0 (the basic reproduction number) which is

defined as the average total number of newly infected cells that arise from any one infected cell

in the beginning of the infection. All parameters are assumed to be positive.

We adopt the following notation: R4 is a four-dimensional real Euclidean space with norm

|.|. For τ > 0, we denote by C = C([−τ,0],R4
+), the Banach space of continuous function

mapping the interval [−τ,0] into R4
+ with the topology of uniform convergence, where τ =

max{τ1,τ2,τ3}. By the standard theory of functional differential equation [11–13], we know

that for any φ ∈C([−τ,0],R4
+), there exists a unique solution

Y (t,φ) = (T (t,φ),T ∗(t,φ),V (t,φ),Z(t,φ)),

of the delayed system (1), which satisfy Y0 = φ , where φ = (φ1,φ2,φ3,φ4) ∈ R4
+ with φi(ξ ) ≥

0 : (ξ ∈ [−τ,0], i = 1, ...,4), and φ1(0),φ2(0),φ3(0),φ4(0) > 0. And the initial conditions are

given by,

T (ξ ) = φ1(ξ ), T ∗(ξ ) = φ2(ξ ), V (ξ ) = φ3(ξ ), Z(ξ ) = φ4(ξ ).(2)

This paper is structured as follows. In Section 2, we perform the stability analysis on system

(1). Sensitivity analysis is discussed in Section 3 and Section 4 is the conclusion.
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2. FEASIBLE EQUILIBRIA AND BOUNDEDNESS OF SOLUTIONS

Clearly, system (1) always has an infection-free equilibrium E0

(
s

d1
,0,0,0

)
, we define the

basic reproduction number as follows:

R0 = R01 +R02

=
(1−η1)β1T0b

d2d3
+

(1−η2)β2T0

d2
(3)

R0 is called the immune inactivated reproduction rate of system (1), which represents the

number of newly infected cells produced by one infected cell during its lifespan. In fact,
(1−η1)β1T0b

d2d3
is the average number of secondary viruses caused by a virus, that is the ba-

sic reproduction number corresponding to virus to cell transmission mode, while
(1−η2)β2T0

d2
is the average number of secondary infected cells caused by an infected cell, that is the basic

reproduction number corresponding to cell to cell transmission mode.

It is easy to show that if R0 > 1 system (1) has an immunity inactivated equilibrium E1(T1,T ∗1 ,V1,Z1)

, where

(T1,T ∗1 ,V1,Z1) =

(
T0

R0
,

d1d3

bβ1 +d3β2
(R0−1),

b
d3

T̂ ∗1 ,0
)
.

Denote R1 =
bT ∗2
d3v2

which is called immune-activated reproduction rate. If R1 > 1 , except for

E0 and E1 , system (1) has an immunity-activated equilibrium E2(T2,T ∗2 ,V2,Z2), where

(T2,T ∗2 ,V2,Z2) =

(
d2T ∗2

(1−η1)β1V2 +(1−η2)β2T ∗2
,
−B±

√
B2−4AC

2A
,
d4

g
,
d3

p
(R1−1)

)
where

A = (1−η2)β2d2,

B = (1−η1)β1V2d2 +d1d2− s(1−η2)β2,

C = −s(1−η1)β1V2

Next we discuss the positivity and boundedness of the solution to system (1)
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Theorem 1. Let Y (t,φ) be the solution of the delayed system (1) with the initial conditions (2).

Then T (t),T ∗(t),V (t) and Z(t) are all non-negative and ultimately uniformly bounded (∀ t ≥ 0)

at which the solution exists.

Proof. Let M1(t) = d1+(1−η1)β1V (t)+(1−η2)β2T ∗(t) and M2(t) = d2;M3(t) = d3+ pV (t)

From (1), we have

T (t) = e−
∫ t

0 M1(ζ )dζ T (0)+
∫ t

0
se−

∫ t
γ

M1(ζ )dζ dγ,

T ∗(t) = e−d2tT ∗(0)+
∫ t

0
{(1−η1)β1T (γ− τ1)V (γ− τ1)

+(1−η2)β2T (γ− τ2)T ∗(γ− τ2)}e−d2(t−γ)dγ.

V (t) = e
∫ t

0 M3(ζ )dζV (0)+
∫ t

0
bT ∗(γ− τ3)e

∫ t
γ

M3(ζ )dζ dγ

Z(t) = Z(0)e
∫ t

0(gV (γ)−d4)dγ

To prove the boundedness, first by the positivity of solutions we’ve

dT
dt

< s−d1T (t).

It follows that limsupt→∞ T (t)≤ s
d1

, implying that T (t) is bounded.

Next, we prove the boundedness of T ∗(t). Here, we define

H1(t) = T (t− τ1)+T (t− τ2)+T ∗(t).

Choose a positive constant d̄2 small enough such that d2 < d̄2 and d̄2T̄ < m0, where m0 :=

maxT∈[0,T̄ ](s−d1T (t)). Then for small σ1 > 0, there is a t1 > 0 such that T (t−τ)< T̄ +σ1 for

t ≥ t1 and

dH1(t)
dt

≤ 2m0− d̄2H1(t)−m0 +σ1 + d̄2.

Since σ1 is an arbitrary constant, it implies

limsup
t→∞

H1(t)≤
2m0

d̄2
= Q1

From the positivity of T ∗(t), it holds that limsupt→∞ T ∗(t) ≤ Q1. Then for arbitrary σ2 > 0,

then there is a t2 > 0 such that T ∗(t)≤ Q1 +σ2 for t ≥ t2.
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We define H2(t) =V (t + τ3)+
p
g

Z(t)

dH2(t)
dt

= bT ∗(t)−min(d3,d4)H2(t),

≤ b(Q1 +σ2)−min(d3,d4).

Therefore, the solutions of the system (1) with initial condition in (2) are ultimately uniformly

bounded. �

2.1. Stability analysis. In this section, we are concerned with the local asymptotic stability

of feasible equilibria. Corresponding results can be certified by analyzing the distribution of

characteristic equation roots.

Proposition 2. The immune inactivated equilibrium E1 of (1), is positive if and only if R0 > 1.

Proof. The coordinates of the immune inactivated equilibrium E1, if they exist, satisfy the equal-

ities:

s = d1T1 +(1−η1)β1T1V1 +(1−η2)β2T1T ∗1

(1−η1)β1T1V1 +(1−η2)β2T1T ∗1 = d2T ∗1 ,

bT ∗1 = d3V1.

�

Proposition 3. The immune activated equilibrium E2 of (1), is positive if and only if R1 < 1.

Proof. The coordinates of the immune activated equilibrium E2, if they exist, satisfy the equal-

ities:

s = d1T2 +(1−η1)β1T2V2 +(1−η2)β2T2T ∗2

(1−η1)β1T2V2 +(1−η2)β2T2T ∗2 = d2T ∗2 ,

bT ∗2 = d3V2 + pV2Z2,

gV2Z2 = d4Z2.(4)

�
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Theorem 4. If R0 < 1, E0 of model (1) is locally asymptotically stable for any time delay τi > 0.

If R0 > 1, E0 of model (1) is unstable for any time delay τi > 0 (i = 1,2,3). �

Now, we have to ascertain the stability at E1 so the linearization of the system (1) at E1 and

obtain the characteristic equation as follows.

−a11−λ −(1−η2)β2T1 −(1−η1)β1T1 0

a21 −a22−λ (1−η1)β1T1e−λτ1 0

0 be−λτ3 −d3−λ 0

0 0 0 −d4−λ

= 0,

where

a11 = d1 +(1−η1)β1V1 +(1−η2)β2T ∗1 , a21 = (1−η1)β1V1e−λτ1 +(1−η2)β2T ∗1 e−λτ2

a22 =−(1−η2)β2T1e−λτ2 +d2.

The stationary equation of (1)

s = d1T1 +(1−η1)β1T1V1 +(1−η2)β2T1T ∗1 ,

(1−η1)β1T1V1 +(1−η2)β2T1T ∗1 = d2T ∗1 ,

bT ∗1 = d3V1.

Thus, the characteristic equation as follows

λ
4 +A1λ

3 +A2λ
2 +A3λ +A4 + e−λτ1(C1λ

2 +C2λ +C3)

+e−λτ2(B1λ
3 +B2λ

2 +B3λ +B4)+ e−λ (τ1+τ3)(D1λ
2 +D2λ +D3)

+e−λ (τ2+τ3)(F1λ +F2) = 0,(5)
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where Ai = Ai(τ1,τ2,τ3), Bi = Bi(τ1,τ2,τ3), Ci =Ci(τ1,τ2,τ3), Di = Di(τ1,τ2,τ3),

Fi = Fi(τ1,τ2,τ3), and

A1 = d4 +a11 +d3 +d2;

A2 = d4a11 +d3d2 +(d4 +a11)(a11 +d3 +d2);

A3 = d4 +a11 +(d4 +a11)(a11 +d3 +d2);

A4 = d4a11d3d2;

B1 = (1−η2)β2T1;

B2 = (d4 +a11)(1−η2)β2T1 +(1−η2)β2T1d3 +(1−η2)
2
β2T1T ∗1 ;

B3 = (1−η2)β2T1d4a11 +(1−η2)β2T1d3(d4 +a11)+(d3 +d4)(1−η2)
2
β2T1T ∗1 ;

B4 = (1−η2)β2T1d3d4a11 +d3d4(1−η2)
2
β2T1T ∗1 ;

C1 = (1−η2)β2T1(1−η1)β1V1;

C2 = (d3 +d4)(1−η2)β2T1(1−η1)β1V1;

C3 = d3d4(1−η2)β2T1(1−η1)β1V1;

D1 = −(1−η1)β1T1;

D2 = (1−η1)
2
β1

2T1V1b− (d4 +a11)(1−η1)β1T1;

D3 = (1−η1)
2
β1

2T1V1bd4−a11d4(1−η1)β1T1;

F1 = (1−η1)β1T1b(1−η2)β2T ∗1 ;

F2 = (1−η1)β1T1b(1−η2)β2T ∗1 d4;

Theorem 5. If τ1 = τ2 = τ3 = 0 vanishes and R1 < 1, then the immune inactivated steady state

of the system (5) is stable.

2.2. Stability of the endemic steady state. To determine the stability of the delayed model,

we linearized, the system (1) around E2 and obtained the characteristic equation as,
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−a11−λ −(1−η2)β2T2 −(1−η1)β1T2 0

a21 −a22−λ (1−η1)β1T2e−λτ1 0

0 be−λτ3 −d3− pZ2−λ −pV2

0 0 gZ2 gV2−d4−λ

= 0,

The stationary equation of (1)as

s = d1T2 +(1−η1)β1T2V2 +(1−η2)β2T2T ∗2 ,

(1−η1)β1T2V2 +(1−η2)β2T2T ∗2 = d2T ∗2 ,

bT ∗2 = d3V2 + pV2Z2,

gV2Z2 = d4Z2.

Thus, the characteristic equation as follows

λ
4 +b1λ

3 +b2λ
2 +b3λ +b4 + e−λτ1(c1λ

2 + c2λ + c3)

+e−λτ2( f0λ
3 + f1λ

2 + f2λ + f3)+ e−λ (τ1+τ3)(g1λ
2 +g2λ +g3)

+e−λ (τ2+τ3)(h1λ +h2)+ e−λ (τ1+τ2+τ3)k1 = 0,(6)

where bi = bi(τ1,τ2,τ3), ci = ci(τ1,τ2,τ3), gi = gi(τ1,τ2,τ3), fi = fi(τ1,τ2,τ3),

hi = hi(τ1,τ2,τ3), ki = ki(τ1,τ2,τ3), and

b1 = −gV2 +d4 +d3 + pZ2 +d2 +d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 ;

b2 = (d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 )d2;

b3 = (d3 + pZ2)(−gV2 +d4)(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 +d2)

−(1−η1)β1T2bgZ2(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 +d2)

+gpV2Z2(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 +d2);
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b4 = gpV2Z2(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 +d2)

+(−gV2 +d4 +d3 + pZ2)(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 )d2

+(d3 + pZ2)(−gV2 +d4)(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 )d2;

f0 = (1−η2)β2T2;

f1 = (1−η2)β2T2(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 )+(1−η2)
2
β

2
2 T2T ∗2 ;

f2 = (d3 + pZ2)(−gV2 +d4)(1−η2)β2T2 +gpV2Z2(1−η2)β2T2

+(1−η2)
2
β

2
2 T2T ∗2 (−gV2 +d4 +d3 + pZ2);

f3 = (1−η2)
2
β

2
2 T2T ∗2 gpV2Z2− (1−η1)β1β

2
2 pgV2Z2(1−η2)T ∗2

+(1−η2)
2
β

2
2 T2T ∗2 (d3 + pZ2)(−gV2 +d4)

+gpV2Z2(1−η2)β2T2(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 )

+(−gV2 +d4 +d3 + pZ2)(1−η2)β2T2(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 )

+(d3 + pZ2)(−gV2 +d4)(1−η2)β2T2(d1 +(1−η1)β1V2

+(1−η2)β2T ∗2 );

c1 = (1−η2)β2T2(1−η1)β1V2;

c2 = (−gV2 +d4 +d3 + pZ2)(1−η2)β2T2(1−η1)β1V2;

c3 = (1−η2)β2T2gpZ2(1−η1)β1V 2
2 − (1−η1)

2
β

2
1 β2V 2

2 gpZ2

+(d3 + pZ2)(−gV2 +d4)(1−η2)β2T2(1−η1)β1V2;

g1 = −(1−η1)β1T2bgZ2;

g2 = (1−η1)
2
β1

2T2V2b− (1−η1)β1T 2
2 bgZ2(1−η2)β2;

g3 = (1−η1)β1T2b(1−η1)β1V2(−gV2 +d4)−d2(d1 +(1−η1)β1V2 +(1−η2)β2T ∗2 )

(1−η1)β1T2bgZ2;
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h1 = (1−η1)β1T2b(1−η2)β2T ∗2 ;

h2 = (1−η1)β1T2b(1−η2)β2T ∗2 (−gV2 +d4);

k1 = −(1−η1)β1T 2
2 bgZ2(1−η2)β2

Consider the case for τ1 = τ2 = 0 and τ3 > 0, then the above characteristic equation becomes

as follows:

λ
4 +ν1λ

3 +ν2λ
2 +ν3λ +ν4 + e−λτ3(m1λ

2 +m2λ +m3) = 0.(7)

where

ν1 = b1 + f0;

ν2 = b2 + c1 + f1;

ν3 = b3 + c2 + f2;

ν4 = b4 + c3 + f3;

m1 = g1;

m2 = g2 +h1;

m3 = g3 +h2 + k1;

2.3. Criterion for preservation of stability or instability and bifurcation Analysis. Now,

we put λ = γ(τ3)+ iω(τ3) in equation (7) and to determine the change of stability of E2 of

(1) for some τ3 for which γ(τ3) = 0,ω(τ3) 6= 0, i.e.,., when λ will be purely imaginary. Let

τ∗3 be such that γ(τ∗3 ) = 0 and ω(τ∗3 ) = ω0 6= 0. In this case the steady state loses stability and

eventually become unstable when γ(τ∗3 ) becomes positive. However, if such a ω(τ∗3 ) does not

exists i.e. if λ be not purely imaginary for τ3 = τ∗3 , then E2 of (1) is always stable. We will show

that it is the case with equation (7). Now we let λ = iω be a purely imaginary in (7) reduce to

ω
4−ω

2
ν2 +ν4 = (m1ω

2−m3)cos(ωτ3)−m2ω sin(ωτ3),(8)

ων3−ω
3
ν1 = (m1ω

2−m3)sin(ωτ3)−m2ω cos(ωτ3).(9)
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Now squaring and adding above equation (8) and (9) we get,

ω
8 + f11ω

6 + f22ω
4 + f33ω

2 + f44 = 0.(10)

Putting ω2 = u∗ into (10), we can get the following equation:

F(u∗) = u∗4 + f11u∗3 + f22u∗2 + f33u∗+ f44 = 0,(11)

where

f11 = ν
2
1 −2ν2;

f22 = ν
2
2 −m2

1 +2ν4−2ν1ν3;

f33 = ν
2
3 −2ν2ν4−m2

2;

f44 = ν
2
4 −m2

3,

Taking derivative with respect to u∗ of equation (11), we get

Ḟ(u∗) = 4u∗3 +3u∗2 f11 +2u∗ f22 + f33 = 0,(12)

Set

4u∗3 +3u∗2 f11 +2u∗ f22 + f33 = 0.(13)

Let m∗ = u∗+
f11

4
, then (13) becomes

m∗3 +α1m∗+α2 = 0,(14)

where

α1 =
f22

2
−

3 f 2
11

16
, α2 =

f 3
11

32
− f11 f22

8
+

f33

4
.
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Define

∆ =
(

α2

2

)2
+
(

α1

3

)3
; δ =

−1+ i
√

3
2

;

m∗1 = 3

√
−α2

2
+
√

∆+ 3

√
−α2

2
−
√

∆;

m∗2 = 3

√
−α2

2
+
√

∆δ + 3

√
−α2

2
−
√

∆δ 2;

m∗3 = 3

√
−α2

2
+
√

∆δ 2 + 3

√
−α2

2
−
√

∆δ ;

u∗i = m∗i −
f11

4
, i = 1,2,3.

We cite the results in [14] about the existence of positive roots of the fourth-degree polynomial

equation, namely, we have the following lemma.

Lemma 6. (1) If f44 < 0, then (11) has at least one positive root.

(2) If f44 ≥ 0 and ∆≥ 0 then (11) has positive roots if and only if u1 > 0 and F(u1)< 0.

(3) If f44 ≥ 0 and ∆ < 0, then (11) has positive roots if and only if there exists at least one

u∗ ∈ {u1,u2,u3} such that u∗ > 0 and F(u∗)< 0.

Supposing one of the above three cases in Lemma 6, is satisfied, (11) has finite positive roots

u1,u2,u3, ...,uk,k ≤ 4. Therefore (10) has finite positive roots.

ω1 =
√

u1, ω2 =
√

u2, ..., ωk =
√

uk, k ≤ 4.

For every fixed ωi(i = 1,2, ...k), k ≤ 4), there exists a sequence

τ
j

3i =
1
ωi

arccos
(

η1

η2

)
where j = 0,1,2, ..., i = 1,2, ...,k, k ≤ 4,

where

η1 = (ω∗4i −ν2ω
∗2
i +ν4)(m1ω

∗2
i −m3)+(ν3ω

∗2
i −ν1ω

∗4
i )b2

η2 = (m1ω
2
i −m3)

2 +m2
2ω

2
i .
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Now, we determine sign
(

dRe(λ )
dτ3

)∣∣∣∣
τ3=τ∗3

where sign is the signum function and Re(λ ) is

a real part of λ . By using the following mathematical calculation we can say that the immune

activated equilibrium of model (1) remains stable for τ3 < τ∗3 and Hopf bifurcation occurs when

τ3 = τ∗3 .

Differentiating (7) with respect to τ3, we get

{
(4λ

3 +3λ
2
ν1 +2λν2 +ν3)+ e−λτ3(2λm1 +m2)− τ3e−λτ3(m1λ

2 +m2λ +m3)
}

dλ

dτ3
= λe−λτ3(m1λ

2 +m2λ +m3)

which implies,

(
dλ

dτ3

)−1

=
4λ 3 +3λ 2ν1 +2λν2 +ν3

λe−λτ3(m1λ 2 +m2λ +m3)
+

2λm1 +m2

λ (m1λ 2 +m2λ +m3)
− τ3

λ
,

=
4λ 3 +3λ 2ν1 +2λν2 +ν3

−λ (λ 4 +ν1λ 3 +ν2λ 2 +ν3λ +ν4)
+

2λm1 +m2

λ (m1λ 2 +m2λ +m3)
− τ3

λ
,

=
3λ 4 +2ν1λ 3 +ν2λ 2−ν4

−λ 2(λ 4 +ν1λ 3 +ν2λ 2 +ν3λ +ν4)
+

λ 2m1−m3

λ 2(m1λ 2 +m2λ +m3)
− τ3

λ
.

Therefore,

Ξ = sign
{

Re
(

3λ 4 +2ν1λ 3 +ν2λ 2−ν4

−λ 2(λ 4 +ν1λ 3 +ν2λ 2 +ν3λ +ν4)
+

λ 2m1−m3

λ 2(m1λ 2 +m2λ +m3)
− τ3

λ

)}
λ=iω∗

= sign
{

Re
(

(3ω∗4−ω∗2ν2−ν4)+ i(−2ω∗3ν1)

ω∗2(ω∗4−ω∗2ν2 +ν4)+ i(ω∗ν3−ω∗3ν1)
+

m1ω∗2 +m3

ω∗2(m3−m1ω∗2)+ i(m2ω∗)
− τ3

iω∗

)}
=

1
ω∗2

sign
{
(3ω∗4−ω∗2ν2−ν4)(ω

∗4−ω∗2ν2 +ν4)−2ω∗3ν1(ω
∗ν3−ω∗3ν1)

(ω∗4−ω∗2ν2 +ν4)2 +(ω∗ν3−ω∗3ν1)2

+
(m1ω∗2 +m3)(m3−m1ω∗2)

(m3−m1ω∗2)2 +(m2ω∗)2

}
=

1
ω∗2

sign
{
(3ω∗4−ω∗2ν2−ν4)(ω

∗4−ω∗2ν2 +ν4)−2ω∗3ν1(ω
∗ν3−ω∗3ν1)

(m3−m1ω∗2)2 +(m2ω∗)2

+
(m1ω∗2 +m3)(m3−m1ω∗2)

(m3−m1ω∗2)2 +(m2ω∗)2

}
=

1
ω∗2

sign
{

3ω∗8 +(ν2
1 −2ν2)ω

∗6 +(ν2
2 −2ν1ν3 +2ν4−m2

1)ω
∗4 +ν2

4 −m2
3

(m3−m1ω∗2)2 +(m2ω∗)2

}
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and this determines a set of possible eigenvalues of ω∗. Our aim is to determine the direction

of motion of λ as τ3 is varied. i.e., we determine

Ξ = sign
{(

d(Re(λ ))
dτ3

)}
λ=iω∗

= sign

{
Re
(

dλ

dτ3

)−1
}

λ=iω∗

As ν2
1 − 2ν2, ν2

2 − 2ν1ν3 + 2ν4−m2
1 and ν2

4 −m2
3 are both positive by virtue of equation

(10), we have
(

dRe(λ )
dτ3

)∣∣∣∣
τ3=τ∗3

> 0. Thus, the solution curve of the characteristic equation

(10) crosses the imaginary axis. This shows that a Hopf bifurcation occurs at 0 < τ3 = τ∗3 . By

continuity, the chronic infection equilibrium is locally asymptotically stable when τ3 < τ∗3 .

Remark 1. We find that incorporating of an delay can destroy the global intractability of E2

on proper conditions when R1 > 1, and a Hopf bifurcation occurs (i.e., a periodic oscillation

appears). Those results show new infectious of HIV-1 particles dominates intracellular delays

in this class of free viral particles.

3. SENSITIVITY ANALYSIS

In order to get an insight on the correct strategies to control the HIV described by model (1),

we perform a sensitivity analysis. The sensitivities of a system provide temporal information

on how states of the system respond to changes in the parameters [15]. They can, therefore,

be used to identify time intervals where the system is most sensitive to such changes. Noting

that the sensitivities are used to calculate the standard errors in estimates of parameters, direct

observation of the sensitivity function provides an indication of time intervals in which data

points carry more or less information for the estimation process. For instance, if the sensitivity

to some parameter is close to zero in some time interval, changes in the value of the parameter

would have little impact on the state variable. Conversely, more accurate knowledge of the state

variable at that time could not cause the estimated parameter value to change by much. Consider

model (1), with vector parameter q = [s,d1,β1,β2,η1,η2,d2,b,d3, p,g,d4]
T . The sensitivity
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functions with respect to the parameter qi (i = 1, ...,12), for the model (1) are denoted by,

u1,qi =
∂u1(t)

∂qi
,

u2,qi =
∂u2(t)

∂qi
,

u3,qi =
∂u3(t)

∂qi
,

u4,qi =
∂u4(t)

∂qi
.(15)

The corresponding sensitivity of system (1), with respect to the parameter ‘s’ is as follows,

(
du1

dt

)
t,s

= 1−d1u1,s(t,s)− (1−η1)(β1u1,s(t,s)V2 +β1u3,s(t,s)T2)

−(1−η2)(β2u2,s(t,s)T2 +β2u1,s(t,s)T ∗2 ),(
du2

dt

)
t,s

= (1−η1)(β1u1,s(t− τ1,s)V2 +β1u3,s(t− τ1,s)T2)

+(1−η2)(β2u2,s(t− τ2,s)T2 +β2u1,s(t− τ2,s)T ∗2 )−d2u2,s(t,s),(
du3

dt

)
t,s

= bu2,s(t− τ3,s)− pu3(t,s)Z2− pu4(t,s)V2,(
du4

dt

)
t,s

= gu3(t,s)Z2 +gu4(t,s)V2−d4u4,s(t,s).(16)

The corresponding sensitivity of system (1), with respect to the parameter ‘d1’ is as follows,

(
du1

dt

)
t,d1

= −u1(t)− (1−η1)(β1u1,d1(t,d1)V2 +β1u3,d1(t,d1)T2)

−(1−η2)(β2u2,d1(t,d1)T2 +β2u1,d1(t,d1)T ∗2 ),(
du2

dt

)
t,d1

= (1−η1)(β1u1,d1(t− τ1,d1)V2 +β1u3,d1(t− τ1,d1)T2)

+(1−η2)(β2u2,d1(t− τ2,d1)T2 +β2u1,d1(t− τ2,d1)T ∗2 )−d2u2,d1(t,d1),(
du3

dt

)
t,d1

= bu2,d1(t− τ3,d1)− pu3(t,d1)Z2− pu4(t,d1)V2,(
du4

dt

)
t,d1

= gu3(t,d1)Z2 +gu4(t,d1)V2−d4u4,d1(t,d1).(17)
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The corresponding sensitivity of system (1), with respect to the parameter ‘β1’ is as follows,(
du1

dt

)
t,β1

= −d1u1,β1(t,β1)− (1−η1)(u1,β1(t,β1)V2 +u3,β1(t,β1)T2)

−(1−η2)(β2u2,β1(t,β1)T2 +β2u1,β1(t,β1)T ∗2 ),(
du2

dt

)
t,β1

= (1−η1)(β1u1,β1(t− τ1,β1)V2 +β1u3,β1(t− τ1,β1)T2)

+(1−η2)(β2u2,β1(t− τ2,β1)T2 +β2u1,β1(t− τ2,β1)T ∗2 )−d2u2,β1(t,β1),(
du3

dt

)
t,β1

= bu2,β1(t− τ3,β1)− pu3(t,β1)Z2− pu4(t,β1)V2,(
du4

dt

)
t,β1

= gu3(t,β1)Z2 +gu4(t,β1)V2−d4u4,β1(t,β1).(18)

The corresponding sensitivity of system (1), with respect to the parameter ‘β2’ is as follows,(
du1

dt

)
t,β2

= −d1u1,β2(t,β2)− (1−η1)β1(u1,β2(t,β2)V2 +u3,β2(t,β2)T2)

−(1−η2)(u2,β2(t,β2)T2 +u1,β2(t,β2)T ∗2 ),(
du2

dt

)
t,β2

= (1−η1)(β2u1,β2(t− τ1,β2)V2 +β2u3,β2(t− τ1,β2)T2)

+(1−η2)(β2u2,β2(t− τ2,β2)T2 +β2u1,β2(t− τ2,β2)T ∗2 )−d2u2,β2(t,β2),(
du3

dt

)
t,β2

= bu2,β2(t− τ3,β2)− pu3(t,β2)Z2− pu4(t,β2)V2,(
du4

dt

)
t,β2

= gu3(t,β2)Z2 +gu4(t,β2)V2−d4u4,β2(t,β2).(19)

The corresponding sensitivity of system (1), with respect to the parameter ‘b’ is as follows,(
du1

dt

)
t,b

= −d1u1,b(t,b)− (1−η1)β1(u1,b(t,b)V2 +u3,b(t,b)T2)

−(1−η2)β2(u2,b(t,b)T2 +u1,b(t,b)T ∗2 ),(
du2

dt

)
t,b

= (1−η1)(bu1,b(t− τ1,b)V2 +bu3,b(t− τ1,b)T2)

+(1−η2)(bu2,b(t− τ2,b)T2 +bu1,b(t− τ2,b)T ∗2 )−d2u2,b(t,b),(
du3

dt

)
t,b

= u2,b(t− τ3,b)− pu3(t,b)Z2− pu4(t,b)V2,(
du4

dt

)
t,b

= gu3(t,b)Z2 +gu4(t,b)V2−d4u4,b(t,b).(20)

Similarly, the sensitivity functions to perturbations in the rest of the parameters can also

be obtained. The semi-relative sensitivity solutions are calculated by simply multiplying the
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unmodified sensitivity solutions by a chosen parameter which provides information concerning

the amount the state will change when that parameter is doubled. It is best to calculate this type

of sensitivity solution to obtain a more thorough understanding of the dynamics.

4. CONCLUSION

In this study, we have considered the HIV RTI model with humoral immunity. We have

described the new HIV RTI model with humoral immunity and discussed the non-negativity

and boundedness of the solution of the developed model. We have also analyzed the stability

of the developed model about the infection-free, immune-free and endemic steady states of

the system individually. We have also obtained the sensitivity functions of the model due to

perturbing the parameters appearing in delay differential system (1) using the direct approach.

This work can be extended in finding the global stability of HIV-1 RTI model with general

incidence rate and humoral immunity, which is considered as our future work.
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