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Abstract. By making use of µIg-closed sets, we have made out µIg-Exterior, µIg-border, µIg-frontier and their

properties are listed out. Also qµIg-separated sets are introduced and their characters are contemplated. Some new

forms of µIg-closed sets are to be introduced. Also we introduce pre∗µI-closed sets and their attributes are to be

discussed.
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1. INTRODUCTION

Coker introduced intuitionistic set based on membership and non-membership degrees which

gives flexible approaches to represent the mathematical objects that plays a great role with

classical set logic . Later on using these concepts we made µIg–closed set in GITS. Here we

are yet to study about few operators in µIg–closed sets and their natures are described.
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2. PRELIMINARIES

In this section we list some definitions and basic results of generalized intuitionistic topolog-

ical space.

Definition 2.1. [1] Let X be a non-empty set. An intuitionistic set A is an object having the

form A =< X ,A1,A2 >, where A1 and A2 are subsets of X satisfying A1∩A2 = φ . The set A1 is

called the set of members of A while A2 is called the set of non- members of A.

Result 2.1. Let X be a non-empty set and let A, B be an intuitionistic sets in the form A =<

X ,A1,A2 > and B =< X ,B1,B2 > respectively. Then

1) A⊆ B if and only if A1 ⊆ B1 and B2 ⊆ A2.

2) A = B if and only if A⊆ B and B⊆ A.

3) A =< X ,A2,A1 >, (in intuitionistic, A = Ac)

4) A∪B =< X ,A1∪B1,A2∩B2 >.

5) A∩B =< X ,A1∩B1,A2∪B2 >.

6) A−B = A∩B.

7) φ∼ =< X ,φ ,X >; X∼ =< X ,X ,φ >.

Definition 2.2. [1] An intuitionistic topology on a non-empty set X is a family τ of intuitionistic

sets in X containing φ∼ , X∼ and closed under finite union and arbitrary intersection. The pair

(X ,τ) is called an intuitionistic topological space. Any intuitionistic set in τ is known as an

intuitionistic open set (IOS) in X and the complement of IOS is called an intuitionistic closed

set (ICS).

Definition 2.3. [7] Let X be a non-empty set and µI be the collection of intuitionistic subset of

X. Then µI is called generalized intuitionistic topology on X if φ ∈ µI and µI is closed under

arbitrary unions. The elements of µI are called µI-open sets and their complements are called

µI-closed sets.

Definition 2.4. [7] The µI-closure of A is the intersection of all µI-closed sets containing A,

and the µI-interior of A (its denoted by iµI(A)) is the union of all µI-open sets contained in A.
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Definition 2.5. [12] In (X ,µI), an intuitionistic set A of X is said to be an intuitionistic gener-

alized closed sets in generalized intuitionistic topological space (GITS) if cµI(A)⊆U whenever

A⊆U and U is µI–open set and it is denoted by µIg–closed. The complement of µIg-closed set

is µIg–open set.

Definition 2.6. [12] The µIg–closure of A, denoted by c∗µI
(A), is the intersection of all µIg–closed

supersets of A.

Definition 2.7. [12] For any A⊆ X; the union of all µIg-open sets contained in A is defined as

the µIg-interior of A and is denoted by i∗µI
(A).

Result 2.2. [12] Let (X ,µI) be a GITS and A,B⊆ X.

1) c∗µI
(φ∼) 6= φ∼ ; c∗µI

(X∼) = X∼.

2) iµI(X∼) 6= X∼ ; iµI(φ∼) = φ∼.

3) Monotonicity:

a) If A⊆ B then c∗µI
(A)⊆ c∗µI

(B).

b) If A⊆ B then i∗µI
(A)⊆ i∗µI

(B).

4) Idempotent property: c∗µI
[c∗µI

(A)] = c∗µI
(A).

5) If A is µIg–closed (µIg–open) then c∗µI
(A) = A(i∗µI

(A)⊆ A).

6) c∗µI
(A)∪ c∗µI

(B)⊆ c∗µI
(A∪B).

7) c∗µI
(A∩B)⊆ c∗µI

(A)∩ c∗µI
(B).

8) A⊆ c∗µI
(A)⊆ cµI(A).

9) i∗µI
(A)∪ i∗µI

(B)⊆ i∗µI
(A∪B).

10) i∗µI
(A∩B)⊆ i∗µI

(A)∩ i∗µI
(B).

11) iµI(A)⊆ i∗µI
(A)⊆ A.

12) a) c∗µI
(A) = (i∗µI

(A))

b) (c∗µI
(A)) = i∗µI

(A)

c) (c∗µI
(A)) = i∗µI

(A)

d) c∗µI
(A) = (i∗µI

(A))

13) Every µI– closed set is a µIg–closed set.
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Definition 2.8. [6] Consider (X1,τ1) be an ITS, then the intuitionistic subset M of X1 is said to

be an

i) Intuitionistic prefrontier (I pFr shortly) if I pFr(M) = I pcl(M)− I pint(M).

ii) Intuitionistic preborder (I pbr shortly) if I pbr(M) = M− I pint(M).

Definition 2.9. [6] For an intuitionistic subset N of X in ITS, intuitionistic α-exterior of N is

defined as Iαext(N) = Iαint(X∼−N).

Definition 2.10. [6] For an intuitionistic subset N of X in ITS, intuitionistic pre-exterior of N

is defined as I pext(N) = I pint(X∼−N).

Definition 2.11. [6] Let (X ,ψ) be an intuitionistic topological space. Two non-empty ISs M

and N of X are said to be intuitionistic q-separated if M∩ Icl(N) = φ∼ and Icl(M)∩N = φ∼.

These both conditions are similar to the single condition (M∩ Icl(N))∪ (Icl(M)∩N) = φ∼.

Definition 2.12. [7] Let (X ,τ) be an ITS. Then intuitionistic set A of X is said to be

i) µI α-closed set if cµI(iµI(cµI(A)))⊆ A.

ii) µI semi-closed set if iµI(cµI(A))⊆ A.

iii) µI pre-closed set if cµI(iµI(A))⊆ A.

iv) µI β -closed set if iµI(cµI(iµI(A)))⊆ A.

Definition 2.13. [13] Let (X ,µI) be a GTS and A⊆ X. Then the µ-pre∗-closure of A, denoted

by pre∗cµ(A), is the intersection of all µ- pre∗closed sets containing A.

3. µIg- EXTERIOR OF GITS

Definition 3.1. An intuitionistic subset A of X in GITS is said to be µIg-Exterior (denoted by

E∗µI
(A)) if E∗µI

(A) = i∗µI
(A).

Theorem 3.1. For intuitionistic subsets A and B of X in GITS, the following are hold.

i) If A⊆ B then E∗µI
(B)⊆ E∗µI

(A).

ii) EµI(A)⊆ E∗µI
(A) where EµI(A) is the µI-Exterior of A.

iii) E∗µI
(A∪B)⊆ E∗µI

(A)∪E∗µI
(B).

iv) E∗µI
(A)∩E∗µI

(B)⊆ E∗µI
(A∩B).
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Proof. (i) Suppose A⊆ B, then B⊂ A which implies i∗µI
(B)⊆ i∗µI

(A). Hence E∗µI
(B)

⊆ E∗µI
(A).

(ii) Suppose x ∈ EµI(A), then x ∈ iµI(A), which gives x ∈ cµI(A) and so x /∈ cµI(A). By the

definition of cµI(A) , x /∈ ∩F , F is µI-closed superset of A. Since every µI-closed set is a µIg-

closed set, x /∈ ∩F , F is µIg-closed superset of A. Hence we have x /∈ c∗µI
(A). Then x ∈ c∗µI

(A)

= i∗µI
(A) = E∗µI

(A). Therefore EµI(A)⊆ E∗µI
(A).

(iii) We know that A ⊆ A∪B and also B ⊆ A∪B. Then A∪B ⊆ A and A∪B ⊆ B. Hence

i∗µI
(A∪B)⊆ i∗µI

(A) and i∗µI
(A∪B)⊆ i∗µI

(B). Therefore E∗µI
(A∪B)⊆ E∗µI

(A)∪E∗µI
(B).

(iv) We know that A∩B⊆ A and also A∩B⊆ B. Then we have A⊆ A∩B and B⊆ A∩B. Hence

i∗µI
(A)⊆ i∗µI

(A∩B) and i∗µI
(B)⊆ i∗µI

(A∩B). Therefore E∗µI
(A)∩E∗µI

(B)⊆ E∗µI
(A∩B).

�

Theorem 3.2. i∗µI
(E∗µI

(A)) = E∗µI
(A).

Proof. i∗µI
(E∗µI

(A)) = i∗µI
(i∗µI

(A)) = i∗µI
((c∗µI

(A))) = (c∗µI
(c∗µI

(A))) = (c∗µI
(A)) = i∗µI

(A) = E∗µI
(A).

�

Result 3.1. i) E∗µI
(φ∼) = i∗µI

(X∼) ii) E∗µI
(X∼) = i∗µI

(φ∼)

iii) E∗µI
(A) is the largest µ1g-open subset of A.

Proof. i) E∗µI
(φ∼) = i∗µI

(φ∼) = i∗µI
(X∼).

ii) E∗µI
(X∼) = i∗µI

(X∼) = i∗µI
(φ∼).

iii) Since i∗µI
(A) is the largest µ1g-open subset of A, E∗µI

(A) is the largest µ1g-open subset of

A. �

Theorem 3.3. i) E∗µI
(A)⊆ A ii) E∗µI

(A)⊆ A

Proof. i) E∗µI
(A) = i∗µI

(A) = (c∗µI
(A))⊆ A

ii) E∗µI
(A) = i∗µI

(A)⊆ A �

Theorem 3.4. Let A be an intuitionistic subset of a GITS (X ,µI) . Then

i) E∗µI
(A) = X− c∗µI

(A).

ii) i∗µI
(c∗µI

(A))⊆ E∗µI
(E∗µI

(A)).
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iii) i∗µI
(A)⊆ E∗µI

(E∗µI
(A)).

Proof. i) E∗µI
(A) = i∗µI

(A) = c∗µI
(A) = X− c∗µI

(A).

ii) Let x 6∈ E∗µI
(E∗µI

(A)) = E∗µI
(c∗µI

(A)). Take B = c∗µI
(A) Then x 6∈ i∗µI

(B) = i∗µI
(c∗µI

(A)) and

hence i∗µI
(c∗µI

(A))⊆ E∗µI
(E∗µI

(A)).

iii). We know that A⊆ c∗µI
(A). Then i∗µI

(A)⊆ i∗µI
(c∗µI

(A)) = i∗µI
(i∗µI

(A) = i∗µI
(E∗µI

(A))

= E∗µI
(E∗µI

(A)). Therefore i∗µI
(A)⊆ E∗µI

(E∗µI
(A)). �

Note 3.1. From all the above discussions, we conclude that some properties such as enhancing,

monotonicity and idempotency does not hold in µIg-Exterior of GITS. µIg-Exterior need not be

µIg-open since the union of µIg-closed sets need not be µIg-closed sets. Hence E∗µI
(A) need not

be µIg-open whenever i∗µI
(A) = A.

4. µIg-BORDER OF GITS

Definition 4.1. The µIg-border of A (denoted by b∗µI
(A)) is defined as b∗µI

(A) = A− i∗µI
(A).

Theorem 4.1. Let A be an intuitionistic subset of a GITS (X ,µI). Then subsequent results are

hold.

i) b∗µI
(A) = A∩ c∗µI

(X−A).

ii) b∗µI
(φ∼) = φ∼.

iii) b∗µI
(A)⊆ i∗µI

(A).

iv) b∗µI
(A)⊆ A⊆ c∗µI

(A).

Proof. i) b∗µI
(A) = A− i∗µI

(A) = A∩ i∗µI
(A) = A∩ c∗µI

(A) = A∩ c∗µI
(X−A).

ii) b∗µI
(φ∼) = φ∼∩ i∗µI

(φ∼) = φ∼∩φ∼ = φ∼.

iii) b∗µI
(A) = A− i∗µI

(A) = A∩ i∗µI
(A)⊆ i∗µI

(A).

iv) By the definition of µIg-border of A, b∗µI
(A) ⊆ A. We know that A ⊆ c∗µI

(A). Therefore

b∗µI
(A)⊆ A⊆ c∗µI

(A). �

Theorem 4.2. Let A be an intuitionistic subset of a GITS (X ,µI) . Then

i) i∗µI
(b∗µI

(A))⊆ A.

ii) b∗µI
(i∗µI

(A))⊆ A.
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iii) b∗µI
(A)⊆ bµI(A), where bµI(A) is the µI-border of A.

Proof. i) i∗µI
(b∗µI

(A))⊆ b∗µI
(A)⊆ A.

ii) b∗µI
(i∗µI

(A))⊆ i∗µI
(A)⊆ A.

iii) Suppose x 6∈ bµI(A) = A∩ cµI(X −A), then x 6∈ A and x 6∈ cµI(X −A), which implies x 6∈ A

and x 6∈ ∩F ,F is µI-closed set and (X −A) ⊆ F . Then x 6∈ A and x 6∈ ∩F ,F is µIg-closed set

and (X−A)⊆ F and hence x 6∈ b∗µI
(A).Thereforeb∗µI

(A)⊆ bµI(A). �

Theorem 4.3. Let A and B be two intuitionistic subset of a GITS (X ,µI). Then

i) b∗µI
(A∪B)⊆ b∗µI

(A)∪b∗µI
(B).

ii) b∗µI
(A)∩b∗µI

(B)⊆ b∗µI
(A∩B).

Proof. i). b∗µI
(A∪B) = (A∪B)− i∗µI

(A∪B) = (A∪B)∩ i∗µI
(A∪B) = (A∪B)∩ c∗µI

(A∪B)

= (A∪B)∩ c∗µI
(A∩B) ⊆ (A∪B)∩ [c∗µI

(A)∩ c∗µI
(B)] ⊆ (A∩ c∗µI

(A))∪ (B∩ c∗µI
(B)) = b∗µI

(A)∪

b∗µI
(B).

ii). The proof is similar to (i). �

Example 1. The inclusion may be strict or equal, now we explain with an example.

i). Let X = {i, j,k}. Then µIg-closed set = {X∼,< X ,φ ,{i}>,< X ,φ ,{i, j}>,< X ,{ j},{i}>

,< X ,{k},φ >,< X ,{k},{i}>,< X ,{k},{ j}>,< X ,{k},{i, j}>,< X ,{ j,k},φ >,

< X ,{ j,k},{i}>,< X ,{k, i},φ >,< X ,{k, i},{ j}> .

Let A=<X ,{ j,k},φ >,B=<X ,{i,k},φ > .A∪B=<X ,X ,φ >⇒ b∗µI
(A∪B)=<X ,φ ,{i, j}>

.b∗µI
(A)∪b∗µI

(B) =< X ,{k},φ >. Therefore b∗µI
(A∪B)⊂ b∗µI

(A)∪b∗µI
(B). Let A=< X ,{k},{ j}

>,B =< X ,{k},{i, j} > .(A ∪ B) =< X ,{k},{ j} >⇒ b∗µI
(A ∪ B) =< X ,{k},{ j} >. Then

b∗µI
(A)∪b∗µI

(B) =< X ,{k},{ j}>. Therefore b∗µI
(A∪B) = b∗µI

(A)∪b∗µI
(B).

ii). Let X = {s, t}. Then µIg-closed set = {X∼,< X ,φ ,{s}>,< X ,φ ,φ >,< X ,{s},φ

>,< X ,{t},φ >,< X ,{t},{s} >}. Let A =< X ,{s},φ >,B =< X ,φ ,{t} >. Then A∩B =<

X ,φ ,{t} >⇒ b∗µI
(A ∩ B) =< X ,φ ,{t} >. Then b∗µI

(A) ∩ b∗µI
(B) =< X ,φ ,{s, t} >. There-

fore b∗µI
(A)∩ b∗µI

(B) ⊂ b∗µI
(A∩ B). Let A =< X ,{t},{s} >,B =< X ,φ ,{s} >. Then (A∩

B) =<X ,φ ,{s}>⇒ b∗µI
(A∩B) =<X ,φ ,{s}> and b∗µI

(A)∩b∗µI
(B) =<X ,φ ,{s}>. Therefore

b∗µI
(A)∩b∗µI

(B) = b∗µI
(A∩B).
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Remark 4.1. For any intuitionistic subset A in ITS, the following statements are valid.

i) b∗µI
(A)∪ i∗µI

(A) = A.

ii) b∗µI
(A)∩ i∗µI

(A) = φ∼.

But in GITS these are not valid. Now we explain with an example.

Let X = {0,1,2}. Then µIg-closed set = {X∼,< X ,φ ,{0}>,< X ,φ ,{0,1}>,< X ,{1},{0}>

,< X ,{2},φ >,< X ,{2},{0}>,< X ,{2},{1}>,< X ,{2},{0,1}>,< X ,{1,2},φ >,

< X ,{1,2},{0}>,< X ,{2,0},φ >,< X ,{2,0},{1}>}.

Now take A=<X ,{2,0},φ >. Then b∗µI
(A) =<X ,φ ,{0}> and i∗µI

(A) =<X ,{0},φ > . There-

fore b∗µI
(A)∪ i∗µI

(A)=<X ,{0},φ >6=A. Also b∗µI
(A)∩ i∗µI

(A)=<X ,φ ,{0}> which is not equal

to < X ,φ ,X >= φ∼.

Note 4.1. For µIg-border of GITS, the properties such as monotonicity, enhancing and idem-

potency does not hold.

5. µIg- FRONTIER OF GITS

Definition 5.1. If A is an intuitionistic subset of a GITS (X ,µI), then µIg-Frontier of A (denoted

by Fr∗µI
(A)) is defined as Fr∗µI

(A) = c∗µI
(A)− i∗µI

(A).

Theorem 5.1. Let A be an intuitionistic subset of a GITS (X ,µI). Then the subsequent results

are valid.

i) Fr∗µI
(A) = c∗µI

(A)∩ c∗µI
(A).

ii) Fr∗µI
(A) = Fr∗µI

(A).

iii) Fr∗µI
(A) = i∗µI

(A)∪ i∗µI
(A).

iv) Fr∗µI
(A)⊆ FrµI(A), where FrµI(A) is the µI-Frontier of A.

v) b∗µI
(A)⊆ Fr∗µI

(A).

Proof. i) Fr∗µI
(A) = c∗µI

(A)− i∗µI
(A) = c∗µI

(A)∩ i∗µI
(A) = c∗µI

(A)∩ c∗µI
(A).

ii) Fr∗µI
(A) = c∗µI

(A)∩ c∗µI
(A) = Fr∗µI

(A).

iii) Fr∗µI
(A) = c∗µI

(A)∩ c∗µI
(A) = c∗µI

(A)∪ c∗µI
(A) = i∗µI

(A)∪ i∗µI
(A).

(iv) Fr∗µI
(A) = c∗µI

(A)− i∗µI
(A)⊆ cµI(A)− iµI(A) = FrµI(A).

(v) b∗µI
(A) = A∩ c∗µI

(X−A) = A∩ i∗µI
(A)⊆ c∗µI

(A)∩ i∗µI
(A) = Fr∗µI

(A). �
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Theorem 5.2. If an intuitionistic subset A is µIg- closed in GITS (X ,µI), then A−Fr∗µI
(A)⊆ A.

Proof. We know that A−Fr∗µI
(A) = A∩Fr∗µI

(A) . Now Fr∗µI
(A) = c∗µI

(A)∩ (A)⇒ Fr∗µI
(A) =

c∗µI
(A)∪A⇒ A∩Fr∗µI

(A) = A∩c∗µI
(A)∪ (A∩A)⊆ (A∩ (A))∪A = A. Therefore A−Fr∗µI

(A)⊆

A. �

Remark 5.1. The inclusion may be strict or equal. Now let us seen the following example. Let

X = {x,y,z}. Then µIg-closed set = {X∼,< X ,φ ,{x} >,< X ,φ ,{x,y} >,< X ,{z},{x} >,<

X ,{z},φ >,<X ,{y},{x}>,<X ,{z},{y}>,<X ,{z},{x,y}>,<X ,{y,z},{x}>,<X ,{z,y},φ >

,< X ,{x,z},{y}>,< X ,{x,z},φ >}. Take A =< X ,φ ,{y}>.

Then A−Fr∗µI
(A) =< X ,φ ,{y,z}>⊂ A. Also we take J =< X ,{y},φ >. Then J−Fr∗µI

(J) = J.

Theorem 5.3. If an intuitionistic subset A is µIg- closed in GITS (X ,µI), then Fr∗µI
(A)⊆ A.

Proof. Fr∗µI
(A) = c∗µI

(A)− i∗µI
(A). Since A is µIg- closed, Fr∗µI

(A) = A− i∗µI
(A) = b∗µI

(A) ⊆

A. �

Note 5.1. If an intuitionistic subset A is µIg-closed in GITS (X ,µI), then its border and frontier

are equal.

Theorem 5.4. If an intuitionistic subset A is µIg-open in GITS, then Fr∗µI
(A)⊆ A.

Proof. Fr∗µI
(A) = c∗µI

(A)∩ cµI
∗(A) = c∗µI

(A)∩A⊆ A. �

Theorem 5.5. Let A be an intuitionistic subset of a GITS (X ,µI), then A∪Fr∗µI
(A)⊆ c∗µI

(A).

Proof. Now A∪Fr∗µI
(A) = A∪ [c∗µI

(A)∩ c∗µI
(A)] = [A∪ c∗µI

(A)]∩ [A∪ c∗µI
(A)] = c∗µI

(A)∩ [A∪

c∗µI
(A)]⊆ c∗µI

(A).

The inclusion may be strict or equal,we discuss in the following example.

Let X = {x,y,z}. Then µIg-closed set = {X∼,< X ,φ ,{x} >,< X ,φ ,{x,y} >,< X ,{z},{x} >

,< X ,{z},φ >,< X ,{y},{x}>,< X ,{z},{y}>,< X ,{z},{x,y}>,< X ,

{y,z},{x}>,< X ,{z,y},φ >,< X ,{x,z},{y}>,< X ,{x,z},φ >}. Take A =< X ,{x},

φ >. Then Fr∗µI
(A) =< X ,φ ,{x} > and c∗µI

(A) =< X ,{z,x},φ >. Therefore A∪Fr∗µI
(A) ⊂

c∗µI
(A). Take A=<X ,{x},{z}>. Then Fr∗µI

(A)=<X ,{z},{x}> and c∗µI
(A)=<X ,{z,x},φ >.

Therefore A∪Fr∗µI
(A) = c∗µI

(A). �
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Theorem 5.6. Let A be an intuitionistic subset of a GITS (X ,µI). Then Fr∗µI
[c∗µI

(A)]

⊆ Fr∗µI
(A).

Proof. Let A be an intuitionistic subset of X . Now Fr∗µI
[c∗µI

(A)] = c∗µI
[c∗µI

(A)]∩ c∗µI
[c∗µI

(A)] =

c∗µI
(A)∩ c∗µI

[c∗µI
(A)]⊆ c∗µI

(A)∩ c∗µI
(A) = Fr∗µI

(A). Hence Fr∗µI
[c∗µI

(A)]

⊆ Fr∗µI
(A). �

Theorem 5.7. Let A be an intuitionistic subset of a GITS (X ,µI). Then Fr∗µI
[i∗µI

(A)]

⊆ Fr∗µI
(A).

Proof. Let A be an intuitionistic subset of X . Now Fr∗µI
[i∗µI

(A)] = c∗µI
[i∗µI

(A)]∩ c∗µI
[i∗µI

(A)] ⊆

c∗µI
(A)∩ c∗µI

(A) = Fr∗µI
(A). Hence Fr∗µI

[i∗µI
(A)]⊆ Fr∗µI

(A). �

Remark 5.2. In GITS we give some examples to show that the following statements are not

valid.

i) c∗µI
(A) = Fr∗µI

(A)∪ i∗µI
(A).

ii) < X ,φ ,X >= Fr∗µI
(A)∩ i∗µI

(A).

Let X = {u,v,w}. Then µIg-closed set = {X∼,< X ,φ ,{u}>,< X ,φ ,{u,v}>,< X ,φ ,{v}>

,< X ,φ ,X >,< X ,φ ,{v,w}>,< X ,φ ,{w,u}>,< X ,{v},{u}>,< X ,{v},

{w,u}>,< X ,{w},φ >,< X ,{w},{u}>,< X ,{w},{v}>,< X ,{w},{u,v}>,< X ,{v

,w},φ >,< X ,{v,w},{u}>,< X ,{w,u},φ >,< X ,{w,u},{v}>}. Take A =< X ,{u},

φ >. Then i∗µI
(A) =< X ,{u},φ > and c∗µI

(A) =< X ,{u,w},φ >. Also Fr∗µI
(A) =< X ,φ ,{u}>.

Therefore c∗µI
(A) 6= Fr∗µI

(A)∪ i∗µI
(A).

Let X = {u,v,w}. Then µIg-closed set = {X∼,< X ,φ ,φ >,< X ,φ ,{v}>,< X ,φ ,{w

}>,< X ,φ ,{v,w}>,< X ,{u},{v}>,< X ,{u},{w}>,< X ,{u},φ >,< X ,{u},{v,w}

>,< X ,{w},{v}>,< X ,{v,u},φ >,< X ,{v,u},{w}>,< X ,{w},φ >,< X ,{w,u},φ

>,<X ,{w,u},{v}>,<X ,{v},{w}>,<X ,{v,w},φ >}. Take A=<X ,{u},φ >. Then i∗µI
(A)=<

X ,φ ,φ > and Fr∗µI
(A) =< X ,φ ,φ >. Therefore < X ,φ ,X >6= Fr∗µI

(A)

∩ i∗µI
(A).

In µIg-Frontier the properties such as enhancing, monotonicity and idempotency fails. Also

Fr∗µI
(A∩B) and Fr∗µI

(A)∩Fr∗µI
(B) do not depends on each other. Hence there is no relation
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between Fr∗µI
(A∩B) and Fr∗µI

(A)∩Fr∗µI
(B). Therefore both are independent. µIg-Frontier need

not be µIg-closed, since the intersection of µIg-closed sets need not be µIg-closed sets. Hence

Fr∗µI
(A) need not be µIg-closed whenever c∗µI

(A) = A.

6. qµIg- SEPARATED IN GITS

Definition 6.1. Two non-empty intuitionistic subsets A and B of a GITS (X ,µI) are said to be

intuitionistic qµIg-separated if A∩ c∗µI
(B) = φ∼ and c∗µI

(A)∩B = φ∼. These both conditions

are similar to the single condition (A∩ c∗µI
(B))∪ (c∗µI

(A)∩B) = φ∼.

Note that any two intuitionistic qµIg-separated sets are intuitionistic disjoint. But two intu-

itionistic disjoint sets are not necessarily intuitionistic qµIg-separated. This condition can be

seen in the following example.

Example 2. Let X = {1,2,3}. Then µIg-closed set = {X∼,< X ,φ ,{1}>,< X ,φ ,{3}

>,< X ,φ ,{3,1}>,< X ,{2},{1}>,< X ,{2},φ >,< X ,{2},{3}>,< X ,{2},{1,3}>,

< X ,{1,2},φ >,< X ,{2,3},{1}>,< X ,{2,3},φ >}. Let A =< X ,{1},{2,3}>,

B =< X ,{2,3},{1} >,c∗µI
(A) =< X ,{2,1},{3} > and c∗µI

(B) =< X ,{2,3},{1} >. Then A∩

c∗µI
(B) = φ∼ but c∗µI

(A)∩B 6= φ∼. Here A and B are intuitionistic disjoint sets but not intuition-

istic qµIg–separated.

Theorem 6.1. If A and B are intuitionistic qµIg–separated sets of GITS (X ,µI) and M ⊂ A and

N ⊂ B, then M and N are also intuitionistic qµIg–separated.

Proof. Given M ⊂ A⇒ c∗µI
(M) ⊂ c∗µI

(A) and N ⊂ B⇒ c∗µI
(N) ⊂ c∗µI

(B). Since A and B are

intuitionistic qµIg–separated sets, it gives A∩c∗µI
(B)= φ∼ and c∗µI

(A)∩B= φ∼. Hence c∗µI
(M)∩

N = φ∼ and M∩ c∗µI
(N) = φ∼. Therefore M and N are intuitionistic qµIg–separated. �

7. SOME NEW CLOSED SETS IN GITS

The intersection of all µIg-closed superset of A is called µIg-closure of A and it is denoted

c∗µI
(A). By using this operator c∗µI

,we define the following.

Definition 7.1. An intuitionistic subset A of X in GITS is said to be

i) α∗µI–closed set if c∗µI
(iµI(cµI(A)))⊆ A.
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ii) α∗µI–open set if A⊆ i∗µI
(cµI(iµI(A))).

iii) semi∗µI-closed set if i∗µI
(cµI(A))⊆ A.

iv) semi ∗µI-open set if A⊆ c∗µI
(iµI(A)).

v) pre∗µI-closed set if c∗µI
(iµI(A))⊆ A.

vi) pre∗µI-open set if A⊆ i∗µI
(cµI(A)).

vii) β ∗µI–closed set if i∗µI
(cµI(iµI(A)))⊆ A.

viii) β ∗µI–open set if A⊆ c∗µI
(iµI(cµI(A))).

Theorem 7.1. Every semi∗µI-closed set is β ∗µI-closed set but the converse is not true.

Proof. Suppose A is a semi∗µI-closed set then i∗µI
(cµI(A))⊆ A which implies i∗µI

(cµI

(iµI(A)))⊆ i∗µI
(cµI(A))⊆ A and hence A is a β ∗µI-closed set. �

Example 3. The converse of the above theorem need not be true. Let X = {s, t}. Then µIg-

closed set = {X∼,< X ,φ ,{s} >,< X ,φ ,φ >,< X ,{s},φ >,< X ,{t},φ >,< X ,{t},{s} >}.

Here < X ,{t},φ > is a β ∗µI-closed set but not a semi∗µI-closed set.

In GITS, we obtain that there is no relation between µIg-closed sets and semi ∗µI-closed set,

α∗µI-closed set, β ∗µI-closed set. So each one is independent to each other. But there is a rela-

tion between µIg-closed set and pre∗µI-closed set. Now we discuss about the characterization

of pre∗µI-closed set.

8. PRE∗µI -CLOSED SET

Theorem 8.1. Every µIg-closed set is a pre∗µI-closed set but the converse is not true.

Proof. Suppose A is a µIg–closed set, then c∗µI
(A) = A. Also we know that iµI(A) ⊆ A it gives

c∗µI
(iµI(A))⊆ c∗µI

(A) = A. Therefore A is a pre∗µI-closed set. �

Example 4. The converse of the above theorem need not be true. Now we can see in the fol-

lowing illustration. Let X = {a,b,c}. Then µIg–closed set = {< X ,X ,φ >,< X ,φ ,{a} >,<

X ,φ ,{c}>,< X ,φ ,{c,a}>,< X ,{b},{a}>,< X ,{b},φ >,< X ,{a,b}

,φ >,< X ,{b},{a,c}>,< X ,{a,b},{c}>,< X ,{b,c},φ >,< X ,{b,c},{a}>,< X ,{

b},{c}>} and pre ∗µI-closed set = {<X ,X ,φ >,<X ,φ ,{a}>,<X ,φ ,{c}>,<X ,{c},{a}>
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,< X ,φ ,{c,a}>,< X ,{b},{a}>,< X ,{b},φ >,< X ,{a,b},φ >,< X ,{

b},{a,c} >,< X ,{a,b},{c} >,< X ,{b,c},φ >,< X ,{b,c},{a} >,< X ,{b},{c} >} In this

example, < X ,{c},{a}> is a pre∗µI-closed set but not a µIg-closed set.

Theorem 8.2. Every α∗µI-closed set is a pre∗µI-closed set.

Proof. Suppose A is a α∗µI-closed set, then c∗µI
(iµI(cµI(A))) ⊆ A. Now c∗µI

(iµI(A)) ⊆ c∗µI
(A)

and hence A is a pre∗µI-closed set. �

Example 5. The converse of the above theorem need not be true.

Let X = {1,2,3}. Then pre∗µI-closed set = {X∼,< X ,φ ,{1}>,< X ,φ ,{3}>,< X ,φ ,{3,1}>

,< X ,{2},{3}>,< X ,{3},{1}>,< X ,{2,3},φ >,< X ,{2},φ >,< X ,{

2},{1}>,< X ,{2},{1,3}>,< X ,{1,2},{3}< X ,{1,2},φ >,< X ,{2,3},{1}>}. α∗

µI-closed set = {<X ,{2},{1}>,<X ,{2},{1,3}>,<X ,{3,2},{1}>,<X ,{2},φ >,X∼,φ∼,<

X ,φ ,{1}>,< X ,φ ,{3}>,< X ,φ ,{3,1}>,< X ,{2},{3}>,< X ,{3},{1}

>}. Here < X ,{1,2},φ >,< X ,{1,2},{3}>,< X ,{3,2},φ > are pre∗µI-closed sets but not a

α∗µI-closed sets.

Remark 8.1. Union of two pre∗µI-closed sets need not be pre∗µI-closed set. Now we can see

the successive illustration. Let (X ,µI) be a GITS where X = {a,b,c}. Then pre∗µI-closed set =

{<X ,φ ,{a}>,<X ,X ,φ >,<X ,φ ,{c}>,<X ,φ ,{c,a}>,<X ,{b},{a}>,<X ,{c},{a}><

X ,{b},φ >,< X ,{a,b},φ >,< X ,{b},{a,c}>,< X ,{a,b},{c}>,< X ,{b,c},φ >,

< X ,{b,c},{a} >,< X ,{b},{c} >}. Let A =< X ,φ ,{a} > and B =< X ,φ ,{c} > be pre∗µI-

closed sets. Then A∪B =< X ,φ ,φ > which is not a pre∗µI-closed set.

Theorem 8.3. Arbitrary intersection of pre∗µI-closed sets are pre∗µI-closed set.

Proof. Let {Fα} be the collection of pre∗µI-closed sets. Then c∗µI
(iµI(Fα)) ⊆ Fα , for each α .

Now c∗µI
(iµI(∩Fα))⊆ c∗µI

(∩iµI(Fα))⊆∩c∗µI
(iµI(Fα))⊆∩Fα . Therefore ∩Fα is a pre∗µI-closed

set. �

9. PRE∗µI -CLOSURE IN GITS

Definition 9.1. Let (X ,µI) be a GITS and A ⊆ X. Then the pre∗µI-closure of A, denoted by

c∗pµI
(A), is the intersection of all pre∗µI-closed sets containing A.
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Theorem 9.1. Let (X ,µI) be a GITS. Then A⊆ X is a pre∗µI-closed set iff c∗pµI
(A) = A.

Proof. Assume that A ⊆ X is a pre∗µI-closed set. By the definition:9.1, we have c∗pµI
(A) = A.

Conversely assume c∗pµI
(A) = A. Using theorem:8.3, we have A⊆ X is a pre∗µI-closed set. �

Note 9.1. i) c∗pµI
(φ∼) 6= φ∼.

ii) c∗pµI
(X∼) = X∼.

Theorem 9.2. (Enhancing Property) A⊆ c∗pµI
(A).

Proof. Since c∗pµI
(A) is the intersection of all pre∗µI-closed sets containing A, A⊆ c∗pµI

(A). �

Theorem 9.3. (Monotonicity Property) If A⊆ B then c∗pµI
(A)⊆ c∗pµI

(B).

Proof. Suppose x 6∈ c∗pµI
(B),then x 6∈ ∩F , F is pre∗µI-closed set and B⊆ F . This impiles x 6∈ F ,

for some pre∗µI-closed superset F of B. Since A ⊆ B, A ⊆ F . Hence x 6∈ F , for some pre∗µI-

closed superset of A. So x 6∈ c∗pµI
(A). Therefore c∗pµI

(A)⊆ c∗pµI
(B). �

Theorem 9.4. (Idempotency Property) c∗pµI
[c∗pµI

(A)] = c∗pµI
(A).

Proof. From theorem:9.2 and 9.3, we have c∗pµI
(A) ⊆ c∗pµI

[c∗pµI
(A)]. Let x 6∈ c∗pµI

(A). Then

x 6∈ F , for some pre∗µI-closed set F such that A ⊆ F ⇒ c∗pµI
(A) ⊆ c∗pµI

(F) = F and hence

x 6∈ c∗pµI
[c∗pµI

(A)]. Then we get c∗pµI
[c∗pµI

(A)]⊆ c∗pµI
(A). Therefore c∗pµI

[c∗pµI
(A)] = c∗pµI

(A). �

Theorem 9.5. A⊆ c∗pµI
(A)⊆ c∗µI

(A)⊆ cµI(A).

Proof. Suppose x 6∈ cµI(A),then x 6∈ ∩F , where F is a µI-closed superset of A and so x 6∈ ∩F,F

is a µIg-closed superset of A. That is x 6∈ c∗µI
(A) which implies x 6∈ ∩F,F is a pre∗µI-closed

superset of A. Then x 6∈ F for some pre∗µI-closed superset of A. Therefore x 6∈ A and hence we

have A⊆ c∗pµI
(A)⊆ c∗µI

(A)⊆ cµI(A). �

Theorem 9.6. c∗pµI
(A∩B)⊆ c∗pµI

(A)∩ c∗pµI
(B).

Proof. We know that A∩B⊆ A and A∩B⊆ B. Then c∗pµI
(A∩B)⊆ c∗pµI

(A) and c∗pµI
(A∩B)⊆

c∗pµI
(B). Therefore c∗pµI

(A∩B)⊆ c∗pµI
(A)∩ c∗pµI

(B). �
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Example 6. The inclusion may be strict or equal, we can see the ensuing illustration.

Let X = {a,b,c}. Then pre∗µI-closed set = {< X ,φ ,{a}>,< X ,X ,φ >,< X ,φ ,{c}

>,< X ,φ ,{c,a}>,< X ,{b},{a}>,< X ,{c},{a}>,< X ,{b},φ >,

< X ,{a,b},φ >,< X ,{b},{a,c} >,< X ,{a,b},{c} >,< X ,{b,c},φ >,< X ,{b,c},{a} >,<

X ,{b},{c}>}. Let A =< X ,{c},φ > and B =< X ,{b},{a,c}>. Then c∗pµI
(A) =< X ,{b,c},φ

>,c∗pµI
(B) =< X ,{b},{a,c} > which implies c∗pµI

(A)∩ c∗pµI
(B) =< X ,{b},{a,c} >. Now,

A ∩ B =< X ,φ ,{a,c} >.Thenc∗pµI
(A ∩ B) =< X ,φ ,{a,c} >.Hence c∗pµI

(A ∩ B) ⊂ c∗pµI
(A) ∩

c∗pµI
(B).Take A =< X ,φ ,φ >,B =< X ,φ ,{a} >. Then A∩ B =< X ,φ ,{a} > which gives

c∗pµI
(A∩B) =< X ,φ ,{a}>. c∗pµI

(A) =< X ,{b},φ >,c∗pµI
(B) =< X ,φ ,{a}

>. Hence c∗pµI
(A∩B) = c∗pµI

(A)∩ c∗pµI
(B).

Theorem 9.7. c∗pµI
(A)∪ c∗pµI

(B)⊆ c∗pµI
(A∪B).

Proof. We know that A ⊆ A∪B and B ⊆ A∪B. Then c∗pµI
(A) ⊆ c∗pµI

(A∪B) and c∗pµI
(B) ⊆

c∗pµI
(A∪B). Therefore c∗pµI

(A)∪ c∗pµI
(B)⊆ c∗pµI

(A∪B). �

Example 7. The inclusion may be strict or equal, we can see the ensuing illustration.

Let X = {p,q,r} be a GITS (X ,µI). Then pre∗µI-closed set = {< X ,φ ,{p} >,< X ,X ,φ >

,< X ,φ ,{r}>,< X ,φ ,{r, p}>,< X ,{q},{p}>,< X ,{r},{p}>,< X ,{q},φ

>,< X ,{p,q},φ >,< X ,{q},{p,r}>,< X ,{p,q},{r}>,< X ,{q,r},φ >,< X ,{q,r},

{p}>,< X ,{q},{r}>}. Let A =< X ,φ ,{p}> and B =< X ,φ ,{r}>. Then c∗pµI
(A)

=< X ,φ ,{p} >,c∗pµI
(B) =< X ,φ ,{r} >which implies c∗pµI

(A)∪ c∗pµI
(B) =< X ,φ ,φ >. Now,

A∪B =< X ,φ ,φ >. Then c∗pµI
(A∪B) =< X ,{q},φ >. Hence c∗pµI

(A)∪c∗pµI
(B)⊂ c∗pµI

(A∪B).

Take A =< X ,φ ,φ >,B =< X ,φ ,{p}>. Then A∪B =< X ,φ ,φ > which gives c∗pµI
(A∪B) =<

X ,{q},φ >. c∗pµI
(A) =< X ,{q},φ >,c∗pµI

(B) =< X ,φ ,{p}>. Hence c∗pµI
(A∪B) = c∗pµI

(A)∪

c∗pµI
(B).

10. PRE∗µI -OPEN IN GITS

Definition 10.1. Let (X ,µI) be a GITS. Then A⊆ X is called pre∗µI-open (denoted by i∗pµI
(A))

if the complement of A is a pre∗µI-closed set.

Theorem 10.1. Every µIg-open set is a pre∗µI-open set but the converse is not true.
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Proof. Suppose A is a µIg-open set then i∗µI
(A) = A. Also we know that A⊆ cµI(A) which gives

i∗µI
(cµI(A))⊇ i∗µI

(A) = A. Therefore A is a pre∗µI-open set. �

Example 8. The converse of the above theorem need not be true. Now we can see the following

illustration.

Let X = {a,b,c}. Then µIg-open set = {<X ,φ ,X >,<X ,{a},φ >,<X ,X ,φ >,<X ,{b},φ >

,< X ,{a,b},φ >,< X ,{a},{b}>,< X ,{a,c},{b}>,< X ,φ ,{c}>,< X ,{a},{c}>,

< X ,{b},{c}>,< X ,{a,b},{c}>,< X ,φ ,{b,c}>,< X ,{a},{b,c}>,< X ,φ ,{c,a}>,

< X ,{c,a},φ >,< X ,{b},{c,a} >,< X ,{b,c},φ >} and pre∗µI-open set = {< X ,φ ,X >,<

X ,{a},φ >,< X ,X ,φ >,< X ,{b},φ >,< X ,{a,b},φ >,< X ,{a},{b} >,< X ,{a,c},{b} >

,< X ,φ ,{c}>,< X ,{a},{c}>,< X ,{b},{c}>,< X ,{a,b},{c}>,< X ,φ ,{b,c}>,

< X ,{a},{b,c}>,< X ,φ ,{c,a}>,< X ,{c,a},φ >,< X ,{b},{c,a}>,< X ,{b,c},φ >,

<X ,{c},φ >,<X ,{c},{a}>,<X ,{b,c},{a}>,<X ,{c},{b}>,<X ,{c},{a,b}>,<X ,φ ,φ >

}. In this example, < X ,{c},{a}>,< X ,{c},φ >,< X ,{b,c},{a}>,< X ,{c},{b}>,

< X ,{c},{a,b}> and < X ,φ ,φ > are pre∗µI-open sets but not a µIg-open sets.

Theorem 10.2. Arbitrary union of pre∗µI-open sets are pre∗µI-open set.

Proof. Let {Uα} be a collection of pre∗µI-open sets. Then {X−{Uα}} is a collection of pre∗µI-

closed sets. By theorem:8.3, ∩{X −{Uα}} is a pre∗µI-closed sets. Therefore ∪{Uα} is a

pre∗µI-open set. �

Remark 10.1. Intersection of any two pre∗µI-open sets need not be pre∗µI-open set. Now we

can see the following example. Let X = {a,b,c} be a GITS (X ,µI).

Then pre∗µI-open set = {<X ,{a},φ >,<X ,φ ,X >,<X ,{c},φ >,<X ,{c,a},φ >,<X ,{a},{b}>

,< X ,{a},{c}>,< X ,φ ,{b}>,< X ,φ ,{a,b}>,< X ,{a,c},{b}>,< X ,{c},{a,b}>,

<X ,φ ,{b,c}>,<X ,{a},{b,c}>,<X ,{c},{b}>}. Let A=<X ,{a},φ > and B=<X ,{c},φ >

be pre∗µI-open sets. Then A∩B =< X ,φ ,φ > which is not a pre∗µI-open set.

11. PRE∗µI -INTERIOR IN GITS

Definition 11.1. Let (X ,µI) be a GITS and A ⊆ X. Then the pre∗µI-interior of A, denoted by

i∗pµI
(A), is the union of all pre∗µI-open sets contained in A.
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Theorem 11.1. Let (X ,µI) be a GITS. Then A⊆ X is a pre∗µI-open set iff i∗pµI
(A) = A.

Proof. Suppose A ⊆ X is a pre∗µI-open set, by the definition we get i∗pµI
(A) = A. Conversely

suppose i∗pµI
(A) = A. By theorem:10.2, we get A is a pre∗µI-open set. �

Note 11.1. (i) i∗pµI
(φ∼) = φ∼.

(ii) i∗pµI
(X∼) 6= X∼.

Theorem 11.2. (Enhancing Property) i∗pµI
(A)⊆ A.

Proof. Since i∗pµI
(A) is the union of all pre∗µI-open sets contained in A, i∗pµI

(A)⊆ A. �

Theorem 11.3. (Monotonicity Property) If A⊆ B then i∗pµI
(A)⊆ i∗pµI

(B).

Proof. Given that A⊆ B,then x ∈ i∗pµI
(A). Then x ∈ ∪G, G is a pre∗µI-open set and G⊆ A. This

impiles x ∈ G, for all pre∗µI-open set G contained in B. Hence x ∈ ∪G,G is a pre∗µI-open set

contained in B. So x ∈ i∗pµI
(B). Therefore i∗pµI

(A)⊆ i∗pµI
(B). �

Theorem 11.4. (Idempotency Property) i∗pµI
[i∗pµI

(A)] = i∗pµI
(A).

Proof. From theorem:11.2 and 11.3, we have i∗pµI
[i∗pµI

(A)] ⊆ i∗pµI
(A). Let x ∈ i∗pµI

(A). Then

x ∈ G, for some pre∗µI-open set G such that G ⊆ A⇒ G = i∗pµI
(G) ⊆ i∗pµI

(A) and hence x ∈

i∗pµI
[i∗pµI

(A)]. Then we get i∗pµI
(A)⊆ i∗pµI

[i∗pµI
(A)]. Therefore i∗pµI

[i∗pµI
(A)] = i∗pµI

(A). �

Theorem 11.5. iµI(A)⊆ i∗µI
(A)⊆ i∗pµI

(A)⊆ A.

Proof. Suppose x ∈ iµI(A). Then x ∈ ∪G, where G is a µI– open set contained in A. It gives

x ∈ ∪G, where G is a µIg– open set contained in A. That is x ∈ i∗µI
(A) which implies x ∈ ∪G,

where G is a pre∗µI-open set contained in A. Then x ∈ i∗pµI
(A) and by theorem:11.2, we have

x ∈ A. Therefore iµI(A)⊆ i∗µI
(A)⊆ i∗pµI

(A)⊆ A. �

Theorem 11.6. i∗pµI
(A∩B)⊆ i∗pµI

(A)∩ i∗pµI
(B).

Proof. We know that A∩B ⊆ A and A∩B ⊆ B. Then i∗pµI
(A∩B) ⊆ i∗pµI

(A) and i∗pµI
(A∩B) ⊆

i∗pµI
(B). Therefore i∗pµI

(A∩B)⊆ i∗pµI
(A)∩ i∗pµI

(B). �



SOME NEW OPERATORS ON µIg-CLOSED SETS IN GITS 1885

Example 9. The inclusion may be strict or equal, we can see the ensuing illustration, Let

X = {a,b,c}. Then pre∗µI-closed set = {<X ,φ ,X >,<X ,φ ,{a}>,<X ,X ,φ >,<X ,φ {b} ,<

X ,φ ,{a,b}>,< X ,{b},{a}>,< X ,{a,c},{b}>,< X ,φ ,{c}

>,< X ,{c},φ >,< X ,{b},{c}>,< X ,{a,b},{c}>,< X ,φ ,{b,c}>,< X ,{a},{b,c}

>,< X ,φ ,{c,a}>,< X ,{c,a},φ >,< X ,{b},{c,a}>,< X ,{b,c},φ >,< X ,{c},{a}

>,< X ,{b,c},{a}>,< X ,{c},{b}>,< X ,{c},{a,b}>,< X ,φ ,φ >}. Let A =< X ,{a},φ >

and B =< X ,{c},{a}>. Then i∗pµI
(A) =< X ,{a},φ >, i∗pµI

(B) =< X ,{c},

{a} > which implies i∗pµI
(A)∩ i∗pµI

(B) =< X ,φ ,{a} >. Now,A∩ B =< X ,φ ,{a} >. Then

i∗pµI
(A∩B) =< X ,φ ,{a,c} >. Hence i∗pµI

(A∩B) ⊂ i∗pµI
(A)∩ i∗pµI

(B). Take A =< X ,φ ,φ >

,B =< X ,φ ,{a} >. Then A∩B =< X ,φ ,{a} > which gives i∗pµI
(A∩B) =< X ,φ ,{c,a} >.

i∗pµI
(A) =< X ,φ ,φ >, i∗pµI

(B) =< X ,φ ,{c,a}>. Hence i∗pµI
(A∩B) = i∗pµI

(A)∩ i∗pµI
(B).

Theorem 11.7. i∗pµI
(A)∪ i∗pµI

(B)⊆ i∗pµI
(A∪B).

Proof. We know that A ⊆ A∪ B and B ⊆ A∪ B. Then i∗pµI
(A) ⊆ i∗pµI

(A∪ B) and i∗pµI
(B) ⊆

i∗pµI
(A∪B). Therefore i∗pµI

(A)∪ i∗pµI
(B)⊆ i∗pµI

(A∪B). �

Example 10. The inclusion may be strict or equal, we can see the following illustration, Let X =

{u,v,w} be a GITS (X ,µI). Then pre∗µI-closed set = {< X ,φ ,{v} ,< X ,X ,φ >,< X ,φ ,{w}>

,< X ,φ ,{v,w}>,< X ,{u},{v}>,< X ,{u},{w}>,< X ,{u},

φ >,< X ,{w},φ >,< X ,{u},{v,w}>,< X ,{w},{v}>,< X ,{u,v},φ >,< X ,{u,v},{

w}>,< X ,{u,w},{v}>,< X ,φ ,φ >,< X ,{u,w},φ >}. Let A =< X ,{v,w},{u}> and B =<

X ,{w,u},{v}>. Then i∗pµI
(A) =< X ,{v,w},{u}>, i∗pµI

(B) =< X ,{w},{u,

v} > which implies i∗pµI
(A)∪ i∗pµI

(B) =< X ,{v,w},{u} >. Now, A∪B =< X ,X ,φ >. Then

i∗pµI
(A∪B) =< X ,{v,w},φ >. Hence i∗pµI

(A)∪ i∗pµI
(B) ⊂ i∗pµI

(A∪B). Take A =< X ,φ ,φ >

,B=<X ,φ ,{v}>. Then A∪B=<X ,φ ,φ > which gives i∗pµI
(A∪B) =<X ,φ ,φ >. i∗pµI

(A) =<

X ,φ ,φ >, i∗pµI
(B) =< X ,φ ,{u,v}>. Hence i∗pµI

(A∪B) = i∗pµI
(A)∪ i∗pµI

(B).

Relation between Pre∗µI-Closure and Pre∗µI-Interior in GITS.

Property 11.1. Let (X ,µI) be a GITS and A be a subset of X. Afterwards the subsequent

statements are hold.
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i) c∗pµI
(A) = i∗pµI

(A)

ii) c∗pµI
(A) = i∗pµI

(A)

iii) c∗pµI
(A) = i∗pµI

(A)

iv) c∗pµI
(A) = i∗pµI

(A).

Proof. i) Let x∈ c∗pµI
(A) . Then x∈∩F,F is a pre∗µI-closed set and A⊆F , which implies x∈F ,

for all pre∗µI-closed set F such that A⊆ F . Therefore x 6∈ X−F , for all pre∗µI-open set X−F

such that X −F ⊆ A. Then x 6∈ i∗pµI
(A) and hence x ∈ i∗pµI

(A) which implies c∗pµI
(A)⊆ i∗pµI

(A).

Suppose x 6∈ c∗pµI
(A), then x 6∈ ∩F,F is pre∗µI-closed set and A ⊆ F , which implies x 6∈ F , for

some pre∗µI-closed set contains A. Therefore x ∈ X−F , for some pre∗µI-open set X−F such

that X−F ⊆ A and consequently x∈ i∗pµI
(A) which implies x 6∈ i∗pµI

(A). Then i∗pµI
(A)⊆ c∗pµI

(A)

and we get a result.

ii) Proof is similar to i).

iii) Following by taking complements in i).

iv) Replacing A by (A) in i). �

12. CONCLUSION

In this article, we dealt with µIg-Exterior, µIg-border and µIg-Frontier,pre∗µI-closed and

pre∗µI-open set. In future we wish to do our research in µIg-dence, µIg-connected, µIg-compact

and µIg-continuous and so on.
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