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Abstract. In this paper we give an algorithm to calculate the coefficients of the p-adic expansion of a rational

numbers, and we give a method to decide whether this expansion is periodic or ultimately periodic.
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1. INTRODUCTION

It is known that in R, an element is rational if and only if its decimal expansion is ultimately

periodic. An important analogous theorem for the p-adic expansion of rational number, is given

by the following statement (see [1]):

Theorem 1.1. The number x ∈Qp is rational if and only if the sequence of digits of its p-adic

expansion is periodic or ultimately periodic.

For example, in Q3, the 3-adic expansion of−1
2 is 1+3+32+33+ ...= 111111111111, it is

clear that this expansion is purely periodic. In the second example in Q3, the 3-adic expansion

of 11
5 is given by 1+1.3+1.32+2.33+1.34+0.35+ ...= 1112101210121012101210..... This
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expansion is ultimately periodic, with periodic block 1210. Another example in Q5, the 5-adic

expansion of 213
7 is given by 4+ 1.5+ 3.52 + 1.53 + 4.54 + 2.55 + 3.56 + 0.57 + 2.58 + ... =

413142302142302... This expansion is ultimately periodic, with periodic block 142302.

Evertse in [3], gave an algorithm to calculate the coefficients of p-adic expansion of an el-

ement in Zp. We continue the study of the characterization of p-adic numbers (see [2]), we

inspired by the works of Evertse, we propose the algorithm (1), to calculate the sequence of

digits of a rational number
c
d

, then we prove that this sequence defines the p-adic expansion

of
c
d

(see lemma 2.2), and it satisfies the relationship (2) (see lemma 2.3). Finally, in the main

theorem, we demonstrate the periodicity of the p-adic expansion of
c
d

.

2. DEFINITIONS AND PROPERTIES

We will recall some definitions and basic facts from p-adic numbers (see [4]). Throughout

this paper p is a prime number, Q is the field of rational numbers, Q+ is the field of nonnegative

rational numbers and R is the field of real numbers. We use |.| to denote the ordinary absolute

value, vp the p-adic valuation and |.|p the p-adic absolute value. The field of p-adic numbers

Qp is the completion of Q with respect to the p-adic absolute value. We denote the ring of

p-adic integers by Zp. Every element of Qp can be expressed uniquely by the p-adic expansion
+∞

∑
n=− j

αn pn with αi ∈ {0,1, .., p−1} for i≥− j. In Zp we have simply j = 0.

Now, we give in the following definition the requested algorithm for a rational number

Definition 2.1. Let
c
d
∈ Q+∩Zp , with c ∈ N , d ∈ N∗, and (c, p) = 1, (d, p) = 1, (c,d) = 1.

We define the sequences (αi)i∈N and (βi)i∈N by

(1)


β0 = c

αi = βid−1modp,∀i≥ 0

βi+1 =
βi−αid

p
∈ Z,∀i≥ 0

Lemma 2.2. Under the hypothesis of the definition (2.1), the p-adic expansion of
c
d

is given

by
+∞

∑
i=0

αi pi, with αi ∈ {0,1, .., p− 1}, ∀i ≥ 0. The opposite is true, i.e, if
c
d
=

+∞

∑
i=0

αi pi, then the

sequences (αi)i∈N and (βi)i∈N satisfies the algorithm (1).
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Proof. Let (αi)i∈N and (βi)i∈N as in the definition (2.1). We have

c
d

= α0 +
β1

d
p

= α0 +α1 p+
β2

d
p2

...

= α0 +α1 p+ ...+αn pn +
βn+1

d
pn+1

So ∣∣∣∣∣ cd − n

∑
i=0

αi pi

∣∣∣∣∣
p

≤ 1
pn+1

therefore
+∞

∑
i=0

αi pi =
c
d

.

For the second part, we suppose
c
d
=

+∞

∑
i=0

αi pi, and we prove by recursion that the sequences

(αi)i∈N and (βi)i∈N satisfies the algorithm (1). For i = 0, we have
c
d
= α0modp, then α0 =

cd−1modp. Now, we suppose that αi = βid−1modp and βi+1 =
βi−αid

p
, so we have

αi = βid−1modp =⇒ αi+1 p+αi = βid−1modp

=⇒ αi+1 p =
(
βid−1−αi

)
modp

=⇒ αi+1 =

(
βi−αi

p

)
d−1modp = βi+1d−1modp

therefore ∀i≥ 0 : αi = βid−1modp. �

Lemma 2.3. Under the hypothesis of the definition (2.1), we have

(2) c = d

(
i−1

∑
n=0

αn pn

)
+βi pi , ∀i ∈ N∗

Proof. We prove this lemma, also, by induction. For i = 1, it’s obvious.

d

(
0

∑
n=0

αn pn

)
+β1 p = dα0 +

(
c−α0d

p

)
p = c
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Suppose that, the relationship is true for i. From (1), we have βi = αid +βi+1 p. Then

c = d

(
i−1

∑
n=0

αn pn

)
+βi pi

= d

(
i−1

∑
n=0

αn pn

)
+(βi+1 p+αid) pi

= d

(
i

∑
n=0

αn pn

)
+βi+1 pi+1

So, the relationship is true for all i ∈ N. �

Remark 2.4. Let r =
c′

d′
∈ Q+, but not in Zp, i.e. the p-adic expansion of

c′

d′
is given by

+∞

∑
n=− j

αn+ j pn, with j 6= 0 and αi ∈ {0,1, .., p− 1} , ∀i ≥ − j. In this case, we can suppose

c′ = c ∈ N , d′ = p jd ∈ N∗, with (d, p) = 1, and (c, p) = 1. So, we have
c
d
=

+∞

∑
n=0

αn pn. We

define a sequence (βi)i∈N by the same way

(3)


β0 = c = c′

βi+1 =
βi−αid

p
=

βi p j−αid′

p j+1 ∈ Z

3. MAIN RESULTS

To show that the algorithm (2.1) stops after a certain rank, it suffices to prove that the se-

quence (|βn|)n∈N is bounded or decreasing. This is the subject of the main theorem.

Main Theorem 3.1. The sequence (βi)i∈N given in (1) verified the following cases:

Case1. If c < d, then

0≤ |βi|< d , ∀i ∈ N

Case2. If c > d and p≥ 3, we have, also, two cases:

Case2.1. If 0 < c(p−1)
2d p < 1, then for all i ∈ N∗, we have |βi|< d.

Case2.2. If 1 < c(p−1)
2d p , then for a fixed integer

(4) m =

 log
(

c(p−1)
2d p

)
log p
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it comes that 

d < |βi|< c for 0≤ i < m+1

0≤ |βi|< d for m+1 < i

0≤ |βi|< c for m+1 = i

Proof. We treat all cases:

Case1. Let c < d, we use the proof by induction. For i = 0 is trivial. We suppose that in the

rank n we have |βi|< d, and we prove the inequality |βi+1|< d . Indeed, we have

|βi+1| =

∣∣∣∣βi−αid
p

∣∣∣∣
<

1
p
|βi|+

1
p
|αid|

<
1
p

d +
p−1

p
d = d

Case2. For c > d and p≥ 3, we prove the two following cases:

Case2.1. We suppose 0 < c(p−1)
2d p < 1. Also, we prove by recurrence that |βi| < d. Starting

with i = 1, we have

0 <
c(p−1)

2d p
< 1⇐⇒−α0d

p
<

c
p
− α0d

p
<

2d
p−1

− α0d
p

So

−d <−α0d
p

< β1 < d
(

2
p−1

− α0

p

)
< d

Now, we assume that the property is true at rank i, and we show it at rank i+1. Indeed, we have

−d < βi < d⇐⇒−d <
−d (1+αi)

p
<

βi−αid
p

<
d (1−αi)

p
< d

then −d < βi+1 < d. Which means that for every i ∈ N∗, we have |βi|< d.

Case2.2. Let the integer m given in (4), we suppose that 1 <
c(p−1)

2d p
.

Firstly, we will prove that for all 0≤ i≤m the terms βi are strictly positive. Indeed, we assume

that there is k ∈ {1, ...,m}, such that βk < 0. From definition (2.1), we have

βk−1−αk−1d
p

< 0
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which means βk−1 < d p. Multiplying both sides by pk−1, and applying the lemma (2.3), it

comes

c < d

(
k−2

∑
n=0

αn pn

)
+d pk

The coefficients αn are strictly less than p, so

c < d p
(

pk−1−1
p−1

+ pk−1
)

Then, after simplification

c <
pd

p−1

(
pk−1

)
<

2pd
p−1

pk

Thus

log
(

c(p−1)
2d p

)
log p

< k

however m+ 1 ≤ k. Where does the contradiction come from. Which means that for every

0≤ i≤ m, we have βk > 0.

Now, we prove the inequalities d ≤ βi ≤ c for i ∈ {0, ...,m}.

The inequality in law is easily proved by recurrence for all 0 ≤ i ≤ m. To prove the inequality

in the left, we use the absurd. We assume that, there is a positive integer k ∈ {1, ...,m} such that

0 < βk < d (the condition d < c implies that k 6= 0). By lemma (2.3) we obtain

βk < d⇐⇒ c < d

(
k−1

∑
n=0

αn pn

)
+d pk

So c < d p(1+ p+ ...+ pk−1 + pk−1). Hence

c <
d p

p−1
(
2pk− pk−1−1

)
⇐⇒ c <

2pd
p−1

pk

It comes that

log
(

c(p−1)
2d p

)
log p

< k

However m+ 1 ≤ k, hence the contradiction. Which means that for all 0 ≤ i ≤ m, we have

c≥ βk ≥ d.



1710 R. BELHADEF , H-A. ESBELIN

For the second part of this case, we suppose there is a positive integer k > m+ 1 such that

|βk|> d, that is βk > d or βk <−d. By lemma (2.3), we have

βk > d⇐⇒ c > d

(
k−1

∑
n=0

αn pn

)
+d pk > d pk

hence
c(p−1)

2d p
>

(
p−1

2

)
pk−1 > pk−1, therefore

log
(

c(p−1)
2d p

)
log p

> k−1

then

m+1 =

 log
(

c(p−1)
2d p

)
log p

+1 > k

Contradiction. For the second inequality, we have by the formula (1)

βk =
βk−1−αkd

p
≤−d

then βk−1 ≤ d(αk− p), however αk ≤ p− 1, thus βk−1 ≤ −d. And so on, until β0 = c ≤ −d,

which is another contradiction. So, for all i≥ m+2 we have |βi| ≤ d. The last part is easly.

�

Example 3.2. For p = 3, c = 7 and d = 11, the case 1 is verified (see table 1)

Table 1: Case 1

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 2 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1

βk 7 −5 −9 −3 −1 −4 −5 −9 −3 −1 −4 −5 −9 −3 −1 −4
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For p = 3, c = 8 and d = 5, the case 2.1 is verified (see table 2)

Table 2: Case 2.1

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 2 0 1 2 1 0 1 2 1 0 1 2 1 0 1

βk 8 1 −3 −1 −2 −4 −3 −1 −2 −4 −3 −1 −2 −4 −3 −1

For p = 3, c = 17 and d = 5, we have m = 0 and the case 2.2 is verified (see table 3)

Table 3: Case 2.2 for m=0

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 2 2 1 0 1 2 1 0 1 2 1 0 1 2 1

βk 17 4 −2 −4 −3 −1 −2 −4 −3 −1 −2 −4 −3 −1 −2 −4

For p = 3, c = 124 and d = 7, we have m = 1 and the case 2.2 is verified (see table 4)

Table 4: Case 2.2 for m=1

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 0 1 2 2 0 1 0 2 1 2 0 1 0 2 1

βk 124 39 2 −4 −6 −2 −3 −1 −5 −4 −6 −2 −3 −1 −5 −4

For p = 3, c = 247 and d = 7, we have m = 2 and the case 2.2 is verified (see table 5)

Table 5: Case 2.2 for m=2

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 2 1 2 0 2 1 2 0 1 0 2 1 2 0 1

βk 247 80 22 5 −3 −1 −5 −4 −6 −2 −3 −1 −5 −4 −6 −2
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In the following corollary, we give a particlar case p = 2.

Corollary 3.3. For p = 2, The sequence (βi)i∈N given in (1) verified the same cases:

Cas1. If c < d, then

0≤ |βi|< d , ∀i ∈ N

Cas2. : If c > d, we have also two cases:

Cas2.1. If 0 < c
2d < 1, then for all i ∈ N∗ we have |βi|< d.

Cas2.2. If 1 < c
2d , then for a fixed integer

m =

 log
( c

2d

)
log2


it comes that 

d ≤ |βi| ≤ c for 0≤ i < m+1

0≤ |βi| ≤ d for m+1≤ i

0≤ |βi|< c for m+1 = i

Proof. The proof is similar to that of the main theorem. �

Example 3.4. For p = 2, c = 5 and d = 9, the case 1 is verified (see table 6)

Table 6: Case 1

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1

βk 5 −2 −1 −5 −7 −8 −4 −2 −1 −5 −7 −8 −4 −2 −1 −5

For p = 2, c = 5 and d = 3, the case 2.1 is verified (see table 7)

Table 7: Case 2.1

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

βk 5 1 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2
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For p = 2, c = 7 and d = 3, we have m = 0 and the case 2.2 is verified (see table 8)

Table 8: Case 2.2 for m=0

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1

βk 7 2 1 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1

For p = 2, c = 13 and d = 3, we have m = 1 and the case 2.2 is verified (see table 9)

Table 9: Case 2.2 for m=1

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

βk 13 5 1 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1

For p = 2, c = 25 and d = 3, we have m = 2 and the case 2.2 is verified (see table 10)

Table 10: Case 2.2 for m=2

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

αk 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1

βk 25 11 4 2 1 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1
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