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Abstract. The main aim of present study is to show the effect of gravity, initial stress and magnetic field on the

Rayleigh waves propagation in homogeneous orthotropic magneto-thermoelastic medium in the context of Three

Phase Lag (TPL) model at two temperature. The governing equations of thermoelasticity have been solved by

normal mode technique to deduce the frequency equation for Rayleigh wave with relevant boundary conditions.

Special cases have been derived for isothermal and thermally insulated surfaces. Computer simulation is used for

numerical discussion to show the effects of various parameters on phase velocity of Rayleigh waves. The variation

in phase velocity corresponding to wave number has been demonstrated graphically in the presence of gravity,

initial stress and magnetic field.
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1. INTRODUCTION

It is well known fact that classical coupled theory of thermoelasticity had major drawback

regarding thermal wave showing infinite speed with parabolic heat equation. To overcome this

inconsistency, various theories had been proposed in last five decades. Lord and Shulman [1]

proposed a theory in which one relaxation parameter was used in modified fourier law and the

∗Corresponding author

E-mail address: sangwan.sangeeta.ss@gmail.com

Received January 04, 2021
2681



2682 MANDEEP SINGH, SANGEETA KUMARI

heat conduction equation transformed into hyperbolic form. Green and Lindsay [2] formulated

a new theory of generalized thermoelasticity that involves heat conduction equation with two

relaxation times. Green and Nagdhi [3-5] formulated three generalized thermoelastic theories

are known as GN-I, II, III for homogeneous isotropic materials that involves propagation of

thermal waves with finite speed. GN-II & III theory involves the heat conduction equation

without and with energy dissipation respectively. Tzou [6] developed the Dual Phase Lag (DPL)

theory of thermoelasticity which consider interaction of phonon-electron at the microscopic

level. In Dual Phase Lag (DPL) theory, τq (heat flux gradient) and τT (temperature gradient)

are used in modified form of fourier law of heat conduction. Choudhri [7] formulated Three

Phase Lag (TPL) thermoelasticity that involves modified Fourier law using three phase lag in τq

(heat flux gradient), τT (temperature gradient) and τv (displacement gradient) in heat conduction

equation. Three Phase Lag (TPL) model have been used in catalytic reactions, phonon-electron

interactions and nuclear boiling problem.

During the last one-decade, extensive work has been done in analyzing the effect of various

parameters on the propagation of surface waves in thermoelastic medium. Abo-Dahab [8] in-

vestigated the impact of various parameter like rotation, initial stress and effects of voids on

P-waves. Abo-Dahab [9] and Ivanov and Savona [10] reviewed orthotropic half space for prop-

agation of surface waves in thermoelastic medium. Othman and Said [11] studied the influence

of diffusion and internal heat source on the thermoelastic medium at two temperature in the

context of Three Phase Lag (TPL) model. Singh and Verma [12] investigated the Rayleigh

wave propagation in thermoelastic medium in reference to various theories of generalised ther-

moelasticity. Rossikin and Shitikova [13] studied the polarized thermoelastic medium for the

propagation of surface waves in the presence of heat conduction and thermal relaxation times.

Sharma and Kaur [14] studied the impact of voids in the rotating thermoelastic medium on

the propagation of Rayleigh waves. Sharma et al. [15] discussed Rayleigh waves propagation

in isotropic solids under the effect of different parameters like relaxation times, micropolar-

ity and microstretch. Shaw and Mukhopadhyay [16] explained thermo-microstretch isotropic

half space in the presence of electromagnetic effects for the propagation of Rayleigh waves.
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Abd-Alla et al. [17] investigated the magneto-thermoelastic half space for Rayleigh wave prop-

agation under the influence of gravity, initial stress and rotation. Kumar and Kansal [18] studied

the propagation of Rayleigh waves in thermoelastic medium with thermally insulated bound-

ary within the framework of generalized thermoelasticity. Stroh [19] used the mathematical

methods to study the basic equations of elasticity in anisotropic medium. Vinh and Seriani [20]

analyzed the basic equations for the gravitational effect on Rayleigh wave propagation in a non-

homogeneous orthotropic thermoelastic medium. Kumar and Gupta [21] studied the influence

of phase lag on propagation of Rayleigh wave in thermoelastic medium with mass diffusion.

Kumar et al. [22] discussed the effect of viscosity on phase velocity of Rayleigh wave propa-

gation in anisotropic medium in the frame of Three Phase Lag (TPL) model. Biswas et al. [23]

examined the Rayleigh wave propagation in the context of Three Phase Lag (TPL) model of

thermoelasticity in orthotropic solid.

Chen et al. [24-26] formulated the theory of heat conduction that based upon two temper-

atures Θ and T where Θ represent conductive temperature, T represent thermodynamic tem-

perature and a∗ represent material parameter. If a∗ → 0, this imply that Θ→ T , hence two

temperature theory coincide with classical theory. Warren and Chen [27] examined the effect of

two temperature on propagation of wave in thermoelastic medium. Youssef [28] formulated a

theory of generalized thermoelasticity by considering the hypothesis that heat supply in elastic

bodies depends upon conductive and thermodynamic temperature and derived the frequency

equation. Puri and Jordan [29] examined plane waves propagation in thermoelastic medium

with two temperature theory.

In this present study, orthotropic magneto-thermoelastic half space has been examined for

propagation of Rayleigh waves in context of Three Phase Lag (TPL) model with two temper-

ature. The frequency equation of Rayleigh wave has been derived using normal mode tech-

nique at two temperature with relevant boundary conditions. The variation of phase velocity of

Rayleigh waves corresponding to wave number are represented graphically to demonstrate the

effect of gravity, initial stress and magnetic field.
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2. FORMULATION OF THE PROBLEM AND GOVERNING EQUATIONS

Consider an orthotropic thermoelastic solid in the presence of initial stress P1 and plane strain

is parallel to x1− x3 plane whereas the boundary x3=0 is considered to be stress free. The

Rayleigh surface waves propagates along the direction of x1 axis. Body forces in the presence

of acceleration of gravity are X1=0; X3=-g if initial stress field is hydrostatic

(1) σ11 = σ33 = ϒ,τ13 = 0

where the function of depth represented by ϒ. The initial stress in equilibrium form is given by:

ϒ,1 = 0;ϒ,3−ρg = 0

Consider Maxwell equation for perfectly electric conductor in the absence of displacement

current by assuming medium perfectly conductor (Mukhopadhaya and Roy [30])

(2) O×~b = ~J

(3) O×~E =−µe
∂~b
∂ t

(4) O.~b = 0

Here~b is perturbed magnetic field~b = O× (~u×~B); ~B = ~B0 +~b;~u = (u1,0,u3); ~B = (0,B0,0)

g represent gravity, ~E represent the electric density, B0 represent primary magnetic field, µe

represent magnetic permeability.

σ11,1 + τ13,3−P1ω13,3 +µeB2
0(u1,11 +u3,13)−ρgu3,1 = ρ ü1(5)

σ33,3 + τ13,1−P1ω31,3 +µeB2
0(u3,33 +u1,13)−ρgu1,1 = ρ ü3(6)

(7) K3

[
1+ τT

∂

∂ t

]
∂

∂ t
T,33 +K1

[
1+ τT

∂

∂ t

]
∂

∂ t
T,11 +K∗3

[
1+ τv

∂

∂ t

]
T,33 +K∗1

[
1+ τv

∂

∂ t

]
T,11

=

[
1+ τq

∂

∂ t
+

τ2
q

2
∂ 2

∂ t2

]
∂ 2

∂ t2 [ρceΘ+T0(β1u1,1 +β3u3,3)]

Here τT represents temperature gradient, τq represents heat flux gradient, τv represents thermal

displacement gradient, Ki j represents the components of thermal conductivity, K∗i j represents
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material constant characteristics, βi jrepresents thermoelastic tensor, ρ represents mass density.

The two temperature relation is given by

(8) Θ = T −a∗[T,11 +T,33]

In two temperature relation Θ represents conductive temperature, T represents absolute temper-

ature, a∗ represents two temperature parameter.

The stress-displacement relation for incremental are given by

(9) σ11 = (C11 +P1)u1,1 +(C13 +P1)u3,3−β1Θ

(10) σ33 =C13u1,1 +C33u3,3−β3Θ

(11) τ13 =
1
2
(C11−C13)(u1,3 +u3,1)

(12) ωi j =
1
2
(ui, j +u j,i)

Substituting the equations (9)-(12) in (5)-(6), hence we obtained as:

(13) (C11 +P1 +µeB2
0)u1,11 +

1
2
(C11−C13−P1)u1,33 +

[
C11 +C13

2
+

3P1

2
+µeB2

0

]
u3,13

−β1Θ,1−ρgu3,1 = ρ ü1

(14)
[

C11 +C13

2
+

P1

2
+µeB2

0

]
u1,13 +

1
2
[C11−C13 +P1]u3,11−β3Θ,3

+(C33 +µeB2
0)u3,33 +ρgu1,1 = ρ ü3

3. SOLUTION OF THE PROBLEM

The relationship between displacement potentials φ(x1,x3, t), ψ(x1,x3, t) and displacement

components u1, u3 are assumed as follows:

(15)


u1 = φ,1−ψ,3

u3 = φ,3 +ψ,1
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Substituting the value of expression (15) in (13)-(14) and (7), it is observed Φ and Ψ satisfied

the equations:

(16) (C11 +P1 +µeB2
0)(φ,11 +φ,33)−ρgφ,3−ρgψ,1−β1Θ = ρφ̈

(17)
[

C33−C13−C11−P1

2

]
ψ,33 +

1
2
(C11−C13 +P1)ψ,11 +ρgφ,1 = ρψ̈

(18) K3

[
1+ τT

∂

∂ t

]
∂

∂ t
T,33 +K1

[
1+ τT

∂

∂ t

]
∂

∂ t
T,11 +K∗3

[
1+ τv

∂

∂ t

]
T,33 +K∗1

[
1+ τv

∂

∂ t

]
T,11

=

[
1+ τq

∂

∂ t
+

τ2

2
∂ 2

∂ t2

]
∂ 2

∂ t2 [ρceΘ+T0[β1(φ,11−ψ,13]+β3(φ,33 +ψ,31)]

Equations (16) and (17) are in equivalence to (13) and (14) respectively in the context of

boundary conditions. Here equations (16), (17) and (18) are considered as the solutions.

The following are mechanical and thermal boundary conditions assumed in case of thermally

stress free surface:

1 Normal stress component vanished σ33 = 0

2 Tangential stress component vanished τ13 = 0

3 Thermal conditions q3 + hΘ = 0 and for thermally insulated surface h → 0 and for

isothermal Surface h→ ∞

4. NORMAL MODE ANALYSIS

Consider the harmonic waves propagates along x1 axis and φ , ψ and T can be assumed in the

following form using normal mode technique.

(19)


φ =U(x3)eiα(x1−ct)

ψ =V (x3)eiα(x1−ct)

T =W (x3)eiα(x1−ct)

Here phase velocity is represented by c and wave number is represented by α . Using the

value of φ ,ψ and T in the Equation (16), (17) and (18)

(20) [(C11 +P1 +µeB2
0)(D

2−α
2)−ρgD+ρα

2c2]U−ρgiαV −β1(1+a∗α2−a∗D2)W = 0
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(21) ρgiαU +

[(
2C33−C13−C11−P1

2

)
D2−α

2
(

C11−C13 +P1

2

)
+ρα

2c2
]

V = 0

(22) [(iα3cK1m1−α
2m2K∗1 +ρce(1+a∗α2−a∗D2)α2c2)+(K∗3 m2− iK3αcm1)D2]W

+(T0β3D2−T0β1α
2)α2c2U +(iαT0β3− iαT0β1)α

2c2)DV = 0

Where D2 = d2

dx2
3
, m1 =

m3
m5
, m2 =

m4
m5
, m3 = 1− iαcτT , m4 = 1− iαcτv,

m5 = 1− iαcτq−
α2c2τ2

q
2

Eliminating U,V and W from equations (20),(21) and(22). Hence we get

(D6− ID4 + JD2−K)(U(x3),V (x3),W (x3)) = 0

In other words it can be reduced to as follows :

(23) (D2−Γ
2
1)(D

2−Γ
2
2)(D

2−Γ
2
3)(U(x3),V (x3),W (x3)) = 0

Where Γ1, Γ2 and Γ3 are positive solutions of following characteristic equation

(24) Γ
6− IΓ

4 + JΓ
2−K = 0

Equation (24) gives the positive roots as follows:

Γ1 =

√
1
3
[2dsin(e)− I],Γ2 =

√
1
3
[−I−d(

√
3cose+ sine)],Γ3 =

√
1
3
[−I +d(

√
3cose+ sine)]

Where d =
√

I2−3J, e = sin−1 f
3 and f = 2I3−9IJ+27K

2d3

I =
a1a2a9 +a1a2a7a10−a∗a1a8a10 +a1a8a11−a∗a2a4a10 +a2a4a11 +a∗β1a2a13−a∗β1a8a12

a1a2a11−a∗a1a2a10−a∗β1a2a12

+
β1a2a7a12 +a∗a2a5a10−a2a5a11

a1a2a11−a∗a1a2a10−a∗β1a2a12

J =
a1a8a9 +a1a7a8a11 +a2a4a9 +a2a4a7a10−a∗a4a8a10 +a4a8a11−a∗a2

6a10 +a2
6a11

a1a2a11−a∗a1a2a10−a∗β1a2a12

+
a∗β1a8a13−β1a2a7a13 +β1a7a8a12 +a∗a5a8a10−a5a8a11 +a∗β1a6a14

a1a2a11−a∗a1a2a10−a∗β1a2a12
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K =
a4a8a9 +a4a7a8a10 +a2

6a9 +a2
6a7a10−β1a7a8a13−a5a8a9−a5a7a8a10−β1a6a7a14

a1a2a11−a∗a1a2a10−a∗β1a2a12

a1 =C11 +P1 +µeB2
0, a2 =

(
2C33−C13−C11−P1

2

)
, a3 =

(
C11−C13 +P1

2

)
, a4 =−a1α

2 +ρα
2c2

a5 =−ρg, a6 = ρgiα, a7 = 1+a∗α2, a8 =−a3α
2 +ρα

2c2, a9 = iα3cK1m1−α
2m2K∗1 ,

a10 = ρceα
2c2, a11 = K∗3 m2− iK3αcm1, a12 = T0β3α

2c2, a13 = T0β3α
4c2, a14 = (iαT0β3− iαT0β1)α

2c2

when x3→ ∞ the equation is bounded and in other words it can be drafted as follows:

(25)



U(x3) =
3
∑

i=1
Aiexp[−Γix3]

V (x3) =
3
∑

i=1
Biexp[−Γix3]

W (x3) =
3
∑

i=1
Ciexp[−Γix3]

Where Ai,Bi,Ci are constants for i=1,2,3

Bi = biAi and Ci = diAi

Where

di =
−a6(a12Γ2

i −a13)

a6[a9 +a10(a7−a∗Γ2
i )+a11Γ2

i ]+a14Γi[β1(a7−a∗Γ2
i )]

bi =
(a1Γ2

i +a4 +a5Γi)−β1(a7−a∗Γ2
i )di

a6

Hence the solutions of equations (16), (17) and (18) are given by

(26)



φ =
3
∑

i=1
Aiexp[−Γix3 + iα(x1− ct)]

ψ =
3
∑

i=1
biAiexp[−Γix3 + iα(x1− ct)]

T =
3
∑

i=1
diAiexp[−Γix3 + iα(x1− ct)]
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5. FREQUENCY EQUATION

The stress components in context of thermoelastic potentials at two temperature is given by:

(27) σ33 = c13φ,11 + c33φ,33− (c13− c33)ψ,31−β3Θ = 0

(28) τ13 =

(
C11−C13

2

)
[2φ,13−ψ,33 +ψ,31] = 0

Two temperature gradient is associated to each other q3 (Normal component of heat flux vector)

by the following relation:

(29) q3 =

−K3(1+ τT D
′
)D
′−K∗3 (1+ τvD

′
)

D′(1+ τqD′+(
τ2

q
2 )D

′2)

 ∂Θ

∂x3

Where
∂

∂ t
= D

′
, Θ = T −a∗[T,11 +T,33]

Using the boundary conditions in equations (27), (28) and (29). The linear equations in terms

of A1,A2 and A3 are obtained as follows:

(30)
3

∑
i=1

(a7−a∗Γ2
i )(ηΓi +h)diAi = 0

(31)
3

∑
i=1

[c33Γ
2
i − c13α

2− (c13− c33)iαΓibi−β3(a7−a∗Γ2
i )di]Ai = 0

(32)
3

∑
i=1

[biΓ
2
i +2iαΓi +α

2bi]Ai = 0
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Here η =
−iK3αcτ3+K∗3 τ4
−iαcτ5

The non trivial solutions of equations (30), (31) and (32) exist if

(33)

[c33Γ
2
1−c13α

2−(c13−c33)iαΓ1b1−β3(a7−a∗Γ2
1)d1]×[(b2Γ

2
2+2iαΓ2+α

2b2)(a7−a∗Γ2
3)(ηΓ3+h)d3−

(b3Γ
2
3+2iαΓ3+α

2b3)(a7−a∗Γ2
2)(ηΓ2+h)d2][c33Γ

2
2−c13α

2−(c13−c33)iαΓ2b2−β3(a7−a∗Γ2
2)d2]×

[(b3Γ
2
3 +2iαΓ3 +α

2b3)(a7−a∗Γ2
1)(ηΓ1 +h)d1− (b1Γ

2
1 +2iαΓ1 +α

2b1)(a7−a∗Γ2
3)(ηΓ3 +h)d3]

[c33Γ
2
3−c13α

2−(c13−c33)iαΓ3b3−β3(a7−a∗Γ2
3)d3]×[(b1Γ

2
1+2iαΓ1+α

2b1)(a7−a∗Γ2
2)(ηΓ2+h)d2−

(b2Γ
2
2 +2iαΓ2 +α

2b2)(a7−a∗Γ2
1)(ηΓ1 +h)d1] = 0

Equation (33) represents the required frequency equation for Rayleigh wave propagation in

orthotropic thermoelastic half space in the presence of gravity, initial stress and magnetic field.

6. SPECIAL CASES

Case 1: For thermally insulated surface

By applying the boundary condition q3 = 0 at x3 = 0 for thermally insulated surface, then

equation (33) transform into

(34)

[c33Γ
2
1−c13α

2−(c13−c33)iαΓ1b1−β3(a7−a∗Γ2
1)d1]×[(b2Γ

2
2+2iαΓ2+α

2b2)(a7−a∗Γ2
3)Γ3d3−

(b3Γ
2
3+2iαΓ3+α

2b3)(a7−a∗Γ2
2)Γ2d2][c33Γ

2
2−c13α

2−(c13−c33)iαΓ2b2−β3(a7−a∗Γ2
2)d2]×

[(b3Γ
2
3+2iαΓ3+α

2b3)(a7−a∗Γ2
1)Γ1d1−(b1Γ

2
1+2iαΓ1+α

2b1)(a7−a∗Γ2
3)Γ3d3][c33Γ

2
3−c13α

2−

(c13− c33)iαΓ3b3−β3(a7−a∗Γ2
3)d3]× [(b1Γ

2
1 +2iαΓ1 +α

2b1)(a7−a∗Γ2
2)Γ2d2−

(b2Γ
2
2 +2iαΓ2 +α

2b2)(a7−a∗Γ2
1)Γ1d1] = 0

Case 2: For isothermal surface

By applying the boundary condition T = 0 at x3 = 0 for isothermal surface, then equation
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(33)transform into

(35)

[c33Γ
2
1−c13α

2−(c13−c33)iαΓ1b1−β3(a7−a∗Γ2
1)d1]×[(b2Γ

2
2+2iαΓ2+α

2b2)(a7−a∗Γ2
3)d3−

(b3Γ
2
3+2iαΓ3+α

2b3)(a7−a∗Γ2
2)d2][c33Γ

2
2−c13α

2− (c13−c33)iαΓ2b2−β3(a7−a∗Γ2
2)d2]×

[(b3Γ
2
3+2iαΓ3+α

2b3)(a7−a∗Γ2
1)d1−(b1Γ

2
1+2iαΓ1+α

2b1)(a7−a∗Γ2
3)d3][c33Γ

2
3−c13α

2−

(c13−c33)iαΓ3b3−β3(a7−a∗Γ2
3)d3]×[(b1Γ

2
1+2iαΓ1+α

2b1)(a7−a∗Γ2
2)d2−(b2Γ

2
2+2iαΓ2+

α
2b2)(a7−a∗Γ2

1)d1] = 0

7. NUMERICAL RESULTS AND DISCUSSION

Relevant parameters for Cobalt material (Sharma et. al [31]) are assumed for numerical

discussion. The results are represented graphically for the impact of various parameters like

initial stress, gravity and magnetic field on phase velocity (c) of Rayleigh wave propagating in

orthotropic thermoelastic medium.

c11 = 3.07×1011Nm−2, c33 = 3.581×1011Nm−2, c13 = 1.650×1011Nm−2

c44 = 1.51×1011Nm−2, ce = 4.270×102J/KgK, T0 = 298K

β3 = 6.93×106N/m2K, ρ = 8.837×103kg/m3, β1 = 7.04×106N/m2K

K1 = 6.89×102W/mk, K∗1 = 1.313×102W/s, K3 = 7.011×102W/mk

K∗3 = 1.54×102W/s, τq = 2.0×10−7s, τT = 1.5×10−7s , τv = 1.01×10−8s

FIGURE 1. c (Phase velocity) corresponding to α (wave number) at distinct

value of a∗ in the presence of gravity (g =9.8)



2692 MANDEEP SINGH, SANGEETA KUMARI

FIGURE 2. c (Phase velocity) corresponding to α (wave number) at distinct

values of a∗ in the presence of initial stress (P1 = 109)

FIGURE 3. c (Phase velocity) corresponding to α (wave number) at distinct

values of a∗ in the presence of magnetic field (B0 = 1)

FIGURE 4. c (Phase velocity) corresponding to α (wave number) in isothermal

surface at distinct values of g, P1 = 109, B0=1
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FIGURE 5. c (Phase velocity) corresponding to α (wave number) in isothermal

surface at different values of P1, g=9.8, B0 = 1

FIGURE 6. c (Phase velocity) corresponding to α (wave number) in isothermal

surface at distinct values of B0, g=9.8, P1 = 109

FIGURE 7. c (Phase velocity) corresponding to α (wave number) in thermally

insulated surface at distinct values of g, B0 = 1, P1 = 109
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FIGURE 8. c (Phase velocity) corresponding to α (wave number) in thermally

insulated surface at distinct values of P1, g=9.8, B0 = 1

FIGURE 9. c (Phase velocity) corresponding to α (wave number) in thermally

insulated surface at distinct values of B0, g=9.8, P1 = 109

Figures 1-3 represents the variation of c (phase velocity) with respect to α (wave number) in the

presence of gravity ( g=9.8 ), initial stress ( P1 = 109 ) and magnetic field ( B0 = 1 ) at distinct

value of two temperature parameter (a∗). It has been observed that the phase velocity increases

with the increase of wave number for the value of a∗ = 0.9. The phase velocity increases

relatively fast for a∗ = 0.3 as compared to a∗ = 0.9, but this increment of phase velocity is even

more pronounced for the value of a∗ = 0.1.

Figures 4-6 represents the variation of c (phase velocity) corresponding to α (wave number)

at distinct values of gravity, initial stress and magnetic field in isothermal surface at the two

temperature parameter (a∗ = 0.1). It has been noticed that at low values of gravity, initial stress

and magnetic field, the variation in phase velocity with increasing wave number is more evident
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than at higher values of these parameters, but this enhancement of phase velocity is almost

identical in the case of initial stress (P1 = 1.2×109), (P1 = 1.4×109) and similar behaviour in

variation of phase velocity has been observed at magnetic field (B0 = 3) and (B0 = 5).

Figures 7-9 represents the variation of c (phase velocity) corresponding to α (wave number) for

distinct values of gravity, initial stress and magnetic field in thermally insulated surface at the

two temperature parameter (a∗ = 0.1). It has been noticed that phase velocity shows identical

trends in thermally insulated surfaces for all the parameters gravity, initial stress and magnetic

field like isothermal surface. It may be attributed to the fact that thermoelastic dissipation of

energy may not be dominant in isothermal surfaces because the Rayleigh wave propagates with

high phase velocity at low value of uniform absolute temperature. It shows that thermoelastic

dissipation is negligible with high phase velocity in isothermal surfaces, but insulated boundary

system retains the energy and has limited impact on Rayleigh wave’s phase velocity.

8. CONCLUSION

The Rayleigh waves propagation in magneto-thermoelastic medium in the context of Three

Phase Lag (TPL) model at two temperature has been studied for homogeneous orthotropic half

space. Normal mode analysis technique has been employed to derive frequency equations for

isothermal surfaces and thermally insulated surfaces with relevant boundary conditions. The

impact of various parameters like initial stress, gravity and magnetic field on phase velocity of

Rayleigh waves corresponding to wave number has been analysed. Based upon numerical and

analytical observation, it can be concluded that:

(1) The phase velocity of Rayleigh waves in orthotropic solids increases with the increase of

wave number and this trend of variation in phase velocity with respect to wave number

is almost identical in the presence of initial stress, gravity and magnetic field.

(2) The variation of phase velocity with respect to wave number is not so much pronounced

with the increase of two temperature parameter (a∗) in the presence of initial stress,

gravity and magnetic field.
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(3) The variation of phase velocity in reference to increase of wave number is more evident

at the low value of gravity, initial stress and magnetic field than at higher values of these

parameters.

(4) Even though this problem is considered as theoretical one, but all these observations can

provide useful information for analysing the vital parameters in the field seismology,

mine engineering and geophysics.
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