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Abstract: In this paper, a new numerical approach “Modified cubic UAH tension B-spline DQM” is projected to find 

the numerical approximation of 1D and 2D Reaction-Diffusion system. The modified cubic UAH tension B-spline is 

used in space to discretize the partial derivatives. The obtained system of ODE is dealt with SSP-RK43 scheme. To 

check the adaptability and efficiency of the proposed scheme, five numerical examples are discussed. The present 

method is easy to implement and economical as compared to the existing approaches available in literature for different 

types of linear and non-linear PDEs. 
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1. INTRODUCTION 

1D Reaction Diffusion System: 

1D non-linear Reaction Diffusion system of equations is as follows: 

𝑢𝑡 = 𝑎1𝑢𝑥𝑥 + 𝑔1(𝑢, 𝑣)                       (1) 

𝑣𝑡 = 𝑎2𝑣𝑥𝑥 + 𝑔2(𝑢, 𝑣)                       (2) 

with Dirichlet or Neumann Boundary conditions in the computational domain [a, b]. Where u(x, t) 
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and v(x, t) are the real valued functions, 𝑔1 and 𝑔2 are the arbitrary constants.  

Model of reaction Diffusion systems are the mathematical models related to several physical 

processes. Reaction Diffusion systems have a wide number of applications in different areas alike, 

geology, biology, physics, ecology and many others. Reaction Diffusion systems can represent 

several models like Semi linear partial differential equations including Brusselator model [1], Gray 

Scott model [2], Isothermal model [3], Schnakenberg model [4] and many more. Many researchers 

have solved Reaction-Diffusion systems numerically. Sahin [5] implemented FE method for 

getting numerical approximation. By different methods [6-8] represents the numerical 

approximation of Reaction Diffusion systems. 

2D Reaction Diffusion System: 

2D Reaction Diffusion Brusselator system of the non-linear system of partial differential equations 

is as follows: 

𝑢𝑡 = 𝐵1 + 𝑢
2𝑣 + [𝐴1 + 1]𝑢 + 𝛼[𝑢𝑥𝑥 + 𝑢𝑦𝑦]               (3) 

𝑣𝑡 = 𝐴1 𝑢 − 𝑢
2𝑣 + 𝛼[𝑣𝑥𝑥 + 𝑣𝑦𝑦]                     (4) 

Where x ∈ [0, l] and y ∈ [0, L]. Where 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) are the provided in 2D region 

𝑅2 closed by the curve C along with  

Initial conditions: 

𝑢(𝑥, 𝑦, 0) = 𝑓1(𝑥, 𝑦) and 𝑣(𝑥, 𝑦, 0) = 𝑓2(𝑥, 𝑦)              (5) 

and Neumann Boundary conditions on boundary 𝜕𝐶 are defined by the lines 𝑥 = 0, 𝑥 = 𝐿, 𝑦 =

0 𝑎𝑛𝑑 𝑦 = 𝐿. 

𝑢𝑥(0, 𝑦, 𝑡) = 𝑢𝑥(𝐿, 𝑦, 𝑡) = 0, 𝑡 ≥ 0                   (6) 

𝑢𝑦(𝑥, 0, 𝑡) = 𝑢𝑦(𝑥, 𝐿, 𝑡) = 0, 𝑡 ≥ 0                   (7) 

𝑣𝑥(0, 𝑦, 𝑡) = 𝑣𝑥(𝐿, 𝑦, 𝑡) = 0, 𝑡 ≥ 0                   (8) 

𝑣𝑦(𝑥, 0, 𝑡) = 𝑣𝑦(𝑥, 𝐿, 𝑡) = 0, 𝑡 ≥ 0                   (9) 

Where 𝐴1, 𝐵1, α are the given constants. 𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦) are the prescribed functions. The 

non-linear system represented by equations (3) and equation (4) validates an important model to 

study the processes in the chemical kinetics, like evolution of Brusselator system in the formation 

of ozone by oxygen by means of the triple collision. Also it is related to the processes of some 

chemical Reaction Diffusion processes like, enzyme reaction, in laser physics, in plasma and others. 

Because of such importance, these equations are very important from the numerical point of view. 

Such problems have been solved by eminent researchers. Dehghan et al. [9-14] gave the numerical 
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schemes for 1D heat equation and 1D Advection Diffusion equation, 3D Advection-Diffusion 

equation, 2D Transport equation and Coupled Burgers’ equation. Different researchers have 

proposed the numerical approximation as well as the stability analysis for the Brusselator system 

given in equation (3) and equation (4). Adomian [15] and Wazwaz [16] gave the decomposition 

method. Twizell et a. [17] proposed 2D FD scheme for the solution of Brusselator RD system. Ang 

[18] gave the dual-Reciprocity Boundary element approximation for the solution of Brusselator 

system numerically.  

B-spline is an important tool to develop some effective numerical regimes to solve the complex 

linear and non-linear partial differential equations. Different researchers have developed the 

numerical methods by using a series of B-splines. Bashan et al. [19] used quintic B-spline to solve 

KdVB equation. Bashan et al. [20] implemented quintic B-spline to get the solution of modified 

Burgers’ equation. Mittal and Dahiya [21] employed the notion of modified cubic B-spline to solve 

Hyperbolic-Diffusion equation. Bashan et al. [22] used quintic B-spline for attaining the numerical 

solution of complex modified KdV equation. Singh et al. [23] implemented the notion of modified 

cubic B-spline for the approximation of 3D non-linear wave equation. Arora and Joshi [24] used 

the B-spline and Trigonometric B-spline to solve 1D Hyperbolic Telegraph equation. Mittal and 

Rohila [25] implemented the concept of the modified cubic B-spline to solve Reaction-Diffusion 

systems. Tamsir et al. [26] implemented exponential modified cubic B-spline to solve the non-

linear Burgers’ equation. Arora and Joshi [27] implemented the notion of modified trigonometric 

cubic B-spline for the solution of 1D and 2D Burgers’ equation. 

Differential Quadrature Method: 

DQM has attained the noticeable attention over some previous decades. The initial knowledge was 

based upon the work of Bellman and Casti [28]. This regime owes it’s higher popularity due to its 

simplification and higher accuracy and efficiency. It is included in several applications of 

engineering and sciences. A comprehensive review of DQM was proposed by Bert and Malik [29]. 

DQM is actually a numerical discretization technique, in which several test functions can be used 

to get the weighting coefficients for the approximation of derivatives [30-32]. A lot of work has 

been reported in literature related to DQM. Korkmaz and Dag [33] implemented the notion of 

DQM to solve non-linear Schrodinger equation. Korkmaz [34] gave the numerical solution of KdV 

equation by using DQM. Shukla et al. [35] implemented exponential modified cubic B-spine DQM 

for solving 3D non-linear wave equation. Bashan and Esen [36] used DQM to solve the fourth 

order extended Fisher-Kolmogorov equation. Korkmaz and Dag [37] implemented Crank-



1653 

NUMERICAL APPROXIMATION OF 1D AND 2D REACTION DIFFUSION SYSTEM 

Nicolson-DQM for Kawahara equation. Korkmaz and Dag [38] gave the solitary wave solutions 

of the complex modified KdV equation using DQM.  

After exploring the literature in detail, it is noticed that UAH tension B-spline has never been used 

to get the numerical approximation of 1D and 2D system of Reaction-Diffusion equations. As per 

author’s knowledge, this scheme will open some new dimensions in the research of the numerical 

approximation of complex non-linear partial differential equations. This paper is organized into 

different sections. In Section 2, complete detail of the numerical scheme is provided. In Section 3, 

five test problems are provided. In Section 4, the crux of this research is given as conclusion. 

 

2. NUMERICAL METHODOLOGY 

[Modified Cubic UAH tension B-spline DQM] 

Uniform algebraic hyperbolic tension B-spline of order 4 is defined as follows: 

𝑼𝑨𝑯𝑩𝒊,𝟒(x)  = 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝛿𝑖,3𝛿𝑖,2 

τsinh(𝜏ℎ)
[ (𝑥𝑖−2 − 𝑥) +

sinh[𝜏(𝑥 − 𝑥𝑖−2)]

𝜏
 ],                                    [𝒙𝒊−𝟐,  𝒙𝒊−𝟏)

𝛿𝑖,3[
 𝛿𝑖,2

𝜏 sinh(𝜏ℎ)
{(𝑥𝑖−2 − 𝑥𝑖−1) +

sinh[𝜏(𝑥𝑖−1 − 𝑥𝑖−2)]

𝜏
} + (𝑥 − 𝑥𝑖−1 )

−
𝛿𝑖,2 

τsinh(𝜏ℎ)
{(𝑥𝑖−1 − 𝑥 ) +

1

𝜏
(sinh(𝜏(𝑥 − 𝑥𝑖)) + sinh(𝜏(𝑥𝑖 − 𝑥𝑖−1)))}

−
𝛿𝑖+1,2 

τsin ℎ(𝜏ℎ)
{(𝑥𝑖−1 − 𝑥) +

sinh(𝜏(𝑥 − 𝑥𝑖−1))

𝜏
}]

−
𝛿𝑖+1,3 𝛿𝑖+1,2 

τsinh(𝜏ℎ)
{(𝑥𝑖−1 − 𝑥) +

sin(𝜏(𝑥 − 𝑥𝑖−1))

𝜏
},                                           [𝒙𝒊−𝟏, 𝒙𝒊)

 1 − 
 𝛿𝑖,3 𝛿𝑖+1,2 

τsinh(𝜏ℎ)
 {(𝑥 −  𝑥𝑖+1) −

sinh(𝜏(𝑥 − 𝑥𝑖+1))

𝜏
}

−𝛿𝑖+1,3[ 
𝛿𝑖+1,2 

τsin ℎ(𝜏ℎ)
{(𝑥𝑖−1 − 𝑥𝑖) +

sinh(𝜏(𝑥𝑖 − 𝑥𝑖−1))

𝜏
}

+(𝑥 − 𝑥𝑖) −
𝛿𝑖+1,2 

τsinh(𝜏ℎ)
{(𝑥𝑖 − 𝑥) +

(sinh(𝜏(𝑥 − 𝑥𝑖+1)) + sinh(𝜏(𝑥𝑖 − 𝑥𝑖+1)))

𝜏
}

−
𝛿𝑖+2,2 

τsin ℎ(𝜏ℎ)
{(𝑥𝑖 − 𝑥) +

sinh(𝜏(𝑥 − 𝑥𝑖))

𝜏
}  ],                                            [𝒙𝒊, 𝒙𝒊+𝟏)

 
 𝛿𝑖+1,3 𝛿𝑖+2,2 

τsin ℎ(𝜏ℎ)
[(𝑥 − 𝑥𝑖+2) −

sinh(𝜏(𝑥 − 𝑥𝑖+2))

𝜏
],                                            [𝒙𝒊+𝟏, 𝒙𝒊+𝟐)

 0,                                                                                                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

   (10) 
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Table 1: Table for the values of  UAH tension B-spline of order 4 i.e. 𝑼𝑨𝑯𝑩𝒊,𝟒  x)   and 

UAH𝑩𝒊,𝟒 ′x)  at different node points is given below: 

 

 𝒙𝒊−𝟐 𝒙𝒊−𝟏 𝒙𝒊 𝒙𝒊+𝟏 𝒙𝒊+𝟐 

𝑼𝑨𝑯𝑩𝒊,𝟒(𝒙) 0 𝑏1 𝑏2 𝑏3 0 

𝑼𝑨𝑯𝑩𝒊,𝟒
′  (𝒙) 0 𝑏4 0 𝑏5 0 

 

By using following set of equations improvised values can be obtained [39].  

𝑀𝑈𝐴𝐻𝐵1(𝑥) =  𝑈𝐴𝐻𝐵1(𝑥) +  2 𝑈𝐴𝐻𝐵0(𝑥)

𝑀𝑈𝐴𝐻𝐵2 (𝑥) =  𝑈𝐴𝐻𝐵2(𝑥) − 𝑈𝐴𝐻𝐵0(𝑥)

𝑀𝑈𝐴𝐻𝐵𝑗  (𝑥) =  𝑈𝐴𝐻𝐵𝑗(𝑥),   (𝑗 = 3, 4, 5, …… . . , 𝑁 − 2)

𝑀𝑈𝐴𝐻𝐵𝑁−1 (𝑥) =  𝑈𝐴𝐻𝐵𝑁−1(𝑥) − 𝑈𝐴𝐻𝐵𝑁+1(𝑥)

𝑀𝑈𝐴𝐻𝐵𝑁 (𝑥) =  𝑈𝐴𝐻𝐵𝑁(𝑥) + 2 𝑈𝐴𝐻𝐵𝑁+1(𝑥)
  

            (11) 

Determination of weighting coefficients xUAH tension B-spline based DQM  

𝑀𝑈𝐴𝐻𝐵𝑘
(1)(𝑥𝑖) = ∑ 𝑞𝑖𝑗

(1) 𝑀𝑈𝐴𝐻𝐵𝑘(𝑥𝑗)
𝑛
𝑗=1                  (12) 

(Where  𝑖 =  1, 2 , 3, ……… . . , 𝑛) and (𝑘 =  1, 2 , 3, ……… . . , 𝑛). 

From above set of equation at grid point 𝑥𝑖  and for the values of k = 1, 2, 3, ……., n, following 

tridiagonal system of algebraic equations will be obtained: 

A �⃗�(1)[𝑖] = �⃗⃗�[𝑖], Where i = 1, 2, 3, ……..,n 

A = 

(

 
 
 
 

𝑏2 + 2𝑏3
𝑏1 − 𝑏3

𝑏3
𝑏2
𝑏1

𝑏3
𝑏2 𝑏3

⋯

⋮ ⋱ ⋮

⋯
𝑏1 𝑏2

𝑏1

𝑏3
𝑏2
𝑏1

0
𝑏3 − 𝑏1
𝑏2 + 2𝑏1)
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�⃗�(1)[𝑖] = 

(

 
 
 
 
 
 
 

𝑞𝑖,1
(1)

𝑞𝑖,2
(1)

𝑞𝑖,3
(1)

..

..

𝑞𝑖,𝑁−1
(1)

𝑞𝑖,𝑁
(1)

)

 
 
 
 
 
 
 

 and  �⃗⃗�[1] =  

(

 
 
 
 
 

2𝑏5
𝑏4 − 𝑏5
0
..
..
.
0 )

 
 
 
 
 

 �⃗⃗�[2] =  

(

 
 
 
 
 

𝑏5
0
𝑏4
0
0
..
.
0 )

 
 
 
 
 

, ….., �⃗⃗�[𝑛] =  

(

 
 
 
 
 

0
0.
..
.
0

𝑏5 − 𝑏4
2𝑏4 )

 
 
 
 
 

 

Second and higher order partial derivatives can be obtained by using the recurrence relation [40] 

given as follows, 

𝑎𝑖𝑗
(𝑟)

 = r [𝑎𝑖𝑗
(1)
 𝑎𝑖𝑖
(𝑟−1)

− 
𝑎𝑖𝑗
(𝑟−1)

𝑥𝑖−𝑥𝑗
]  for  𝑖 ≠ 𝑗            (13) 

Where 𝑖 =  1, 2, 3, … . . , 𝑁 and 𝑟 =  2, 3, 4, … . . , 𝑁 − 1 

   𝑎𝑖𝑖
(𝑟)

 = - ∑ 𝑎𝑖𝑗
(𝑟)𝑁

𝑗=1,   j ≠ 𝑖             for 𝑖 =  𝑗         (14) 

Similarly the weighting coefficients 𝑏𝑖𝑗
(𝑟)

 for second or higher order derivatives can be obtained 

by following formula [40], 

𝑏𝑖𝑗
(𝑟)

 = r [𝑏𝑖𝑗
(1)
 𝑏𝑖𝑖
(𝑟−1)

− 
𝑏𝑖𝑗
(𝑟−1)

𝑦𝑖−𝑦𝑗
]  for  𝑖 ≠ 𝑗             (15) 

Where 𝑖 =  1, 2, 3, … . . , 𝑁 and 𝑟 =  2, 3, 4, … . . , 𝑁 − 1 

        𝑏𝑖𝑖
(𝑟)

 = - ∑ 𝑏𝑖𝑗
(𝑟)𝑁

𝑗=1,   j ≠𝑖              for 𝑖 =  𝑗          (16) 

After spatial discretization of the partial derivatives, the system of partial differential equations got 

transformed in to the system of ordinary differential equation, which is tackled by SSP-RK43 

scheme [41]. 

 

3. NUMERICAL EXPERIMENTS AND DISCUSSION 

In present section five numerical examples are elaborated to check the adaptability and efficiency 

of the proposed scheme. Among these five examples, first two examples are concerned to 1D 

Reaction-Diffusion system of equations and rest three examples are associated the notion of 2D 

Reaction-Diffusion system of equations. 

In Figure 1, Numerical approximation of U(x, t) is provided at the mentioned time levels for N = 
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21, Δt = 0.00001, 𝑎1  = 10−4 , 𝑎2  = 10−4 , 𝜂1  = 1, 𝑏1  = 3.4 and τ = 0.01. In Figure 2, 

Numerical approximation of V(x, t) is provided at the mentioned time levels for N = 21, Δt = 

0.00001, 𝑎1 = 10−4, 𝑎2 = 10−4, 𝜂1 = 1, 𝑏1 = 3.4 and τ = 0.01. In Table 2, Numerical U(x, t) 

and V(x, t) are given at t = 0.1, 0.5 and 0.8 for N = 11, Δt = 0.001, τ = 0.01, 𝑎1 = 10−4, 𝑎2 =

10−4, 𝜂1 = 1, 𝑏1 = 3.4. In Figures 3 and 4 Numerical U(x, t) and V(x, t) are presented graphically 

for N = 101, Δt = 0.0001, τ = 0.01 and k = 9. In Table 3, Numerical U(x, t) and V(x, t) are evaluated 

at t = 10, 50 and 70 for N = 21, Δ t = 0.0001, τ = 0.01 and k = 0.9. In Figures 5 and 6, Numerical 

approximations of U(x, y, t) and V(x, y, t) are provided for N = 21, Δt = 0.0001, τ = 1, 𝐴1 = 1, 

𝐵1 = 3.4 and α = 0.002 at the mentioned time levels. In Table 4, Numerical approximation of  

U(x, y, t) and V(x, y, t) are given at time levels t = 1.0 and 3.0 for N = 11, Δ t = 0.0001, τ = 1, 𝐴1 

= 1, 𝐵1 = 3.4 and α = 0.002. In Figures 7 and 8 Numerical U and V are presented graphically at 

time levels 1.0, 2.0, 3.0 and 4.0 respectively. In Table 5, Numerical U and V are given at t = 0.1 

and 1.0 respectively for 𝐴1  = 0.5, 𝐵1  = 1 and α = 0.002. In Figures 9 and 10, Numerical 

approximations of U and V are given graphically at t = 1, 2, 3 and 4 respectively for 𝐴1 = 1, 𝐵1 = 

2 and α  = 0.002. In Table 6, Numerical U and V are evaluated at t = 5 and t = 10 respectively. 

E)ample 1: 

Brusselator model [42] was proposed by Brussels school of Prigogine. Present model represents 

the Hypo-theoretical tri-molecular natured reaction, having very important traits in the chemical 

science area.  

Problem is defined as [43], [25], 

𝑢𝑡 = 𝑎1𝑢𝑥𝑥 − (𝑏1 + 1)𝑢 + 𝑢
2𝑣 + 𝜂1                 (17) 

𝑣𝑡 = 𝑎2𝑣𝑥𝑥 + 𝑏1𝑢 − 𝑢
2𝑣                      (18) 

Computational domain : [0, 1] 

Initial conditions: 

𝑢(𝑥, 0)  =  0.5 and 𝑣(𝑥, 0)  =  1 +  5𝑥              (19) 

Boundary conditions: 

Natural boundary conditions are considered 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0                      (20) 

𝑣(0, 𝑡) = 0, 𝑣(1, 𝑡) = 0                      (21) 
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Figure 1: Numerical profiles of Ux), t  at different time levels for N = 21, Δt = 0.00001, 𝒂𝟏 = 

𝟏𝟎−𝟒, 𝒂𝟐 = 𝟏𝟎−𝟒, 𝜼𝟏 = 1, 𝒃𝟏 = 3.4 and τ = 0.01 

 

 

Figure 2: Numerical profiles of Vx), t  at different time levels for N = 21, Δt = 0.00001, 𝒂𝟏 = 

𝟏𝟎−𝟒, 𝒂𝟐 = 𝟏𝟎−𝟒, 𝜼𝟏 = 1, 𝒃𝟏 = 3.4 and τ = 0.01 
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Table 2: Numerical solutions for Ux), t  and Vx), t  at t = 0.1, 0.5 and 0.8 for N = 11, Δt = 

0.001, τ = 0.01, 𝒂𝟏 = 𝟏𝟎−𝟒, 𝒂𝟐 = 𝟏𝟎−𝟒, 𝜼𝟏 = 1 and 𝒃𝟏 = 3.4 

 t = 0.1 t = 0.5 t = 0.8 

) 

Numerical 

U 

Numerical 

V 

Numerical 

U 

Numerical 

V 

Numerical 

U 

Numerical 

V 

0.1 0.153 0.4967 0.0898 0.0442 0.0884 0.0358 

0.2 0.2629 0.9453 0.1448 0.083 0.1422 0.0669 

0.3 0.3361 1.3074 0.1766 0.113 0.1729 0.0909 

0.4 0.3784 1.5496 0.193 0.1321 0.1887 0.106 

0.5 0.3943 1.6484 0.1984 0.139 0.1938 0.1115 

E)ample 2: 

Isothermal chemical system is given as [44], [25]: 

𝑢𝑡 = 𝑢𝑥𝑥 − 𝑢𝑣                        (22) 

𝑣𝑡 = 𝑣𝑥𝑥 − 𝑘𝑣 + 𝑢𝑣                     (23) 

Computational Domain: [0, 200] 

Initial conditions: 

𝑢(𝑥, 0) = 1 and 𝑣(𝑥, 0) = 𝑒𝑥𝑝(−𝑥2)             (24) 

Boundary conditions: 

𝜕𝑢

𝜕𝑥
(0, 𝑡) = 0, 𝑢(200, 𝑡) = 1                (25) 

𝜕𝑣

𝜕𝑥
(0, 𝑡) = 0, 𝑣(200, 𝑡) = 0                (26) 

 
Figure 3: Numerical profile of Ux), t  at the mentioned time levels for N = 101, Δt = 0.0001, τ 

= 0.01 and k = 0.9 
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Figure 4: Numerical profile of Vx), t  at the mentioned time levels for N = 101, Δt = 0.0001, τ 

= 0.01 and k = 0.9 

 

Table 3: Numerical Appro)imations of Ux), t  and Vx), t  for N = 21, Δt = 0.0001, τ = 0.01, k = 

0.9 at the time levels t = 10, 50 and 70 respectively 

) t = 10 t = 50 t = 70 

 

Numerical 

U 

Numerical 

V 

Numerical 

U 

Numerical 

V 

Numerical 

U 

Numerical 

V 

10 0.7892 0.0027 0.518 0 0.4508 0 

20 0.993 0.0006 0.8053 0.0004 0.7334 0.0001 

30 1.0009 -0.0001 0.904 0.0026 0.839 0.001 

40 0.9999 0 0.9669 0.0021 0.8781 0.0028 

50 1 0 0.9997 0 0.9481 0.0028 

 

E)ample 3:  

In present example, Brusselator system (3) and (4) is considered along with the Neumann boundary 

conditions (6)-(9) and the following initial conditions [45, 46]. 

Initial Conditions:  

𝑢(𝑥, 𝑦, 0) = 0.5 + 𝑦 and 𝑣(𝑥, 𝑦, 0) = 1 + 5𝑥                (27) 
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Figure 5: Numerical appro)imations of Ux), y, t  at t = 0.5, 1, 1.5 and 2 respectively for N = 

21, Δt = 0.0001, τ = 1, 𝑨𝟏 = 1, 𝑩𝟏 = 3.4 and α = 0.002 

 

 

Figure 6: Numerical appro)imations of Vx), y, t  at t = 0.5, 1, 1.5 and 2 respectively for N = 

21, Δt = 0.0001, τ = 1, 𝑨𝟏  = 1, 𝑩𝟏 = 3.4 and α = 0.002 
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Table 4: Numerical Ux), y, t  and Numerical Vx), y, t  for N = 11, Δt = 0.0001, τ = 1, 𝑨𝟏  = 1, 

𝑩𝟏 = 3.4 and α = 0.0002 

x), y  Numerical U Numerical V Numerical U Numerical 

 V 

 t = 1.0 t = 3.0 

x0.1, 0.1  2.371421 

 

0.435414 

 

2.357533 

 

0.388941 

 

x0.2, 0.3  3.364027 

 

0.302192 

 

3.356909 

 

0.299404 

 

x0.3,0.5  3.597468 

 

0.27674 

 

3.419233 

 

0.292093 

 

x0.5, 0.5  4.000117 

 

0.247439 

 

3.46825 

 

0.287738 

 

x0.7, 0.8  4.416162 

 

0.224095 

 

3.460378 

 

0.289474 

 

• Example 4:  

In this example non-linear PDE related to the Brusselator system (3) and (4) is considered with the 

Neumann boundary conditions (6)-(9) along with the following initial conditions [46, 47]. 

Initial Conditions:  

𝑢(𝑥, 𝑦, 0) = 0.5𝑥2 −
1

3
𝑥3and 𝑣(𝑥, 𝑦, 0) =  0.5𝑦2 −

1

3
𝑦3        (28) 

 

Figure 7: Numerical representation of Ux), y, t  at time levels t = 1, 2, 3 and 4 respectively for 

N = 11, Δt = 0.0001, τ = 1, 𝑨𝟏 = 0.5, 𝑩𝟏 = 1, α = 0.002 
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Figure 8: Numerical representation of Vx), y, t  at time levels t = 1, 2, 3 and 4 respectively for 

N = 11, Δt = 0.0001, τ = 1, 𝑨𝟏 = 0.5, 𝑩𝟏 = 1, α = 0.002 

 

Table 5: Numerical Ux), y, t  and Numerical Vx), y, t  at t = 0.1 and t = 1.0 respectively for N = 

11, τ = 1, 𝑨𝟏 = 0.5, 𝑩𝟏 = 1 and α = 0.002 

x), y  Numerical U Numerical V Numerical U Numerical V 

 t = 0.1 t = 1.0 

x0.1, 0.1  0.095021 

 

0.007259 

 

0.451174 

 

0.12438 

 

x0.2, 0.3  0.108066 

 

0.039338 

 

0.535286 

 

0.187069 

 

x0.3, 0.5  0.124037 

 

0.087301 

 

0.54291 

 

0.231837 

 

x0.5, 0.7  0.164821 

 

0.136566 

 

0.559991 

 

0.281197 

 

x0.7, 0.8  0.206027 

 

0.157547 

 

0.575987 

 

0.304336 

 

 

E)ample 5:  

Considered Brusselator system (3) and (4) along with the Neumann boundary conditions (6)-(9) 

with the following initial conditions [46, 48]. 

Initial Conditions: 

𝑢(𝑥, 𝑦, 0) = 2 + 0.25𝑦 and 𝑣(𝑥, 𝑦, 0) = 1 + 0.8𝑦        (29) 
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Figure 9: Numerical profiles of Ux), y, t  at time levels t = 1, 2, 3 and  respectively for N = 11, 

Δt = 0.0001, τ = 1, 𝑨𝟏 = 1, 𝑩𝟏 = 2, α = 0.002 

 

 

Figure 10: Numerical profiles of Ux), y, t  at time levels t = 1, 2, 3 and  respectively for N = 

11, Δt = 0.0001, τ = 1, 𝑨𝟏 = 1, 𝑩𝟏 = 2, α = 0.002 
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Table 6: Numerical appro)imation of Ux), y, t  and Vx), y, t  for N = 11, Delta t = 0.0001, τ = 

1, 𝑨𝟏 = 1, 𝑩𝟏 = 2, α = 0.002 

x), y  Numerical U Numerical V Numerical U Numerical V 

 t = 5 t = 10 

x0.1, 0.1  1.279108 

 

0.607737 

 

1.279679 

 

0.607713 

 

x0.1,0.3  1.589723 

 

0.572393 

 

1.590001 

 

0.572418 

 

x0.3, 0.5  1.999091 

 

0.499876 

 

1.99825 

 

0.500253 

 

x0.5, 0.7  1.999316 

 

0.499778 

 

1.99825 

 

0.500253 

 

x0.5, 0.8  1.970627 

 

0.514103 

 

1.970119 

 

0.514418 

 

 

4. CONCLUSION 

In present paper, modified cubic UAH tension B-spline based DQM is developed to solve the 

linear and non-linear partial differential equations. Solving such complex non-linear partial 

differential equations analytically is not always possible. That is why, it is a major need of time to 

develop some efficient and accurate numerical regimes. The obtained ODE system is dealt by SSP-

RK43 scheme. Five numerical examples are discussed in this paper. Numerical approximation of 

1D and 2D Reaction-Diffusion system is obtained. This scheme will help researchers in their future 

work to solve some other complex partial differential equations numerically, mainly where 

analytical solution is not available. 
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