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 , },0{, 0  NNmNp  ,0  and   a real 

number  with .0  p  Few interesting results of differential subordination and superordination are 

obtained using the new operator 



,
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m

pRI . Further, we also consider the sandwich-type results for this operator. 
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Denote by U the open unit disc of the complex plane, }.1:{  zCzU Let  )(U  

be the space of analytic functions inU . For CaNp  ,  we define: 

,...},)(:)({],[ 1

1 UzzazaazfUfpa p

p

p

p  

  

,},...,)(:)({ 2

2

1

1 UzzazazzfUfA p

p

p

p

p

p  





  

and we set ,1 AA   a well-known class of normalized analytic functions in .U
 

   

For ),(, Ugf   we say that the function f is subordinate to g , or the function g is 

superordinate to f , if there exists  a Schwarz function ,w  analytic in U , with 0)0( w  and 

1)( zw , for all ,Uz such that )),(()( zwgzf  for .Uz  In such a case we write 

.gf  Furthermore, if the function g is univalent in U ,then we have the following 

equivalence (See [15],[16] and [17]): 

       )()( zgzf   if and only if )0()0( gf    and ).()( UgUf   

Supposing that h and g are two analytic functions in ,U let .:);,,( 3 CUCztsr  If 

h and ));(),(),(( ''2' zzhzzzhzh are univalent functions in U and if h satisfies the second-order 

superordination  

(1.1)    ),);(),(),(()( ''2' zzhzzzhzhzg   

then g is called to be a solution of the differential superordination (1.1). A function )(Uq  is 

called a subordinant of (1.1), if )()( zhzq  for all the functions h satisfying (1.1). A univalent 

subordinant 
~

q that satisfies )()(
~

zqzq  for all of the subordinants q of (1.1), is said to be the best 

subordinant. 

Recently, Miller and Mocanu [20] obtained sufficient conditions on the functions qg, and 

 for which the following implication holds: 

).()());(),(),(()( ''2' zhzgzzhzzzhzhzg    
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 Using the results of Miller and Mocanu [20], Bulboaca [7] considered certain classes of first 

order differential superordinations. Ali et. al. [2], have used the results of Bulboaca [7] to obtain 

sufficient conditions for normalised analytic functions to satisfy: 

  ),(
)(

)(
)( 2

'

1 zq
zf

zzf
zq   

where )(1 zq and )(2 zq are given univalent normalised functions in .U  

 Very recently, Macovei ([13] and [14]) obtained differential subordinations and 

superordinations for analytic functions defined by the Ruscheweyh linear operator and the 

author [30] extended and improved these results for certain subclasses of analytic functions 

defined by the Ruscheweyh derivative and a new generalized multiplier transformation(see 

[28]). 

 

We now state the following definitions with few remarks. 

Definition 1.1 ([28]). For 0},0{, 0  NNmAf p  
and   a real number with 

,0  p  a new generalized multiplier operator 
m

pI  ,,  is defined by the following infinite 

series: 

(1.2)  .,)(
1

,, Uzza
p

k
zzfI k

k

m

pk

pm

p 











 



 


  

 

It follows from (1.2) that  

  ),()(0,, zfzfI m

p   

(1.3)  ,))(()()()( '

,,,,

1

,, zfIzzfIzfIp m

p

m

p

m

p    
 

   

 We note that  

 )()( ,,,1 zfIzfI mm

  (See [27]). 
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 pzfIzfI m

p

m

p   ),()()(1,, (See [1], [25] and [26]). 

 0,),(),()(,,   plzflIzfI m

p

m

pplp (See Catas [8]). 

 )()(,0, zfDzfI m

p

m

p  (See [5], [12] and [22]). 

Remark 1.3 i) )()( zfI m

p   was considered in [1], [25] and [26] for 0 and )(),( zflI m

p 
 

was defined in [8] for 0,0  l , ii) plzflIzflI m

p

m

p  ),(),1()()( , 

iii) )()()()0,( zfDzfI m

p

m

p   , ,0 was mentioned in Aouf et.al. [4], iv) 

,0),(1 mD was introduced by Al-Oboudi [3],v) )()()1(1 zfDzfD mm  was defined by 

Salagean [24] and was considered for m 0 in [6] , vi) ,0),()(1  zfI m was investigated in 

[9] and [10] and vii) )1(1

mI was due to Uralegaddi and Somanatha[33]. 

Definition 1.3 (Goel and sohi [11]). For ,,0 pAfNm   the operator m

pR  is defined by 

,: pp

m

p AAR    

  )()(0 zfzfRp  , 

  pzzfzfRp /)(')(1  , 

  … 

(1.4)  .),())'(()()( 1 UzzfmRzfRzzfRpm m

p

m

p

m

p    

Remark 1.4.  The operator mm RR 1 was introduced and studied by Ruscheweyh in [23]. 

Definition 1.5. Let 0,0,0  Nm  and  a real number with .0  p Denote by 




,

,,

m

pRI the operator given by pp

m

p AARI :,

,,


 , 

  .),()()1()( ,,

,

,, UzzfIzfRzfRI m

p

m

p

m

p  

    

Remark 1.6. Clearly m

p

m

p RRI 0,

,,  and m

p

m

p IRI  ,,

1,

,,  .  The operator 





,

,

,

,,1

mm RIRI  was 

introduced in [29] and examined in [30], [31] and [32]. 
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 In this paper, we investigate interesting results of differential subordination and 

superordination, using the new operator 


,

,,

m

pRI . Further, we also consider the sandwich-type 

results for this operator. 

 

2. Preliminaries 

 In order to prove our results, we need the following definition and lemmas. 

Definition 2.1 ([20]). We denote by Q, the set of all functions q that are analytic and 

injective on U \ )(qE , where })(lim:{)( 


zqUqE
z 

 and are such that 0)(' q for 

U \ ).(qE  

Lemma 2. 2([21]). Let the function q  be univalent in U and let  and  be analytic in a 

domain D containing )(Uq , with 0)( w  , when ).(Uqw Set ))(()(')( zqzzqzQ   and 

).())(()( zQzqzh   Suppose that either 

i) h is convex inU  or  

ii)Q is starlike in U . 

In addition, assume that 

iii) .,0
)(

)('
Re Uz

zQ

zzh









      

If )()( Uzp  , with DUpqp  )(),0()0( and 

  ))(()('))(())(()('))(( zqzzqzqzpzzpzp    , 

then ),()( zqzp  and q is the best dominant. 

Lemma 2. 3([7]). let   and   be analytic in a domain D and let q  be univalent in U , with 

.)( DUq  Set ))(()(')( zqzzqzQ  and suppose that  

 i)Q is starlike in U  
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and 

 ii) .,0
))((

))((
Re

'

Uz
zq

zq













 

 If  ]1),0([)( qzp Q DUp )(, and ))(()('))(( zpzzpzp   is univalent in U and 

))(()('))(())(()('))(( zpzzpzpzqzzqzq    then Uzzpzq ),()(  and q is the best 

subordinant.  

 

3. Main Results 

Theorem 3.1. Let  ,0,0,0},0{, 0  NNmAf p a real number such that 

.0  p Let the function q be univalent in U and suppose that it satisfies the conditions  

(3.1)                    Uzzq  ,0))(Re(   

and 

(3.2)                .,01
)(

)('

)('

)("
Re Uz

zq

zzq

zq

zzq
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)(
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zfRI
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If 

(3.4)                ,,
)(

)('
)();,,,,( Uz

zq

zzq
zqzmp    

then 
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),(
)(,

,,
zq

z

zfRI
p

m
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and q  is the best dominant. 

Proof. Define the function )(zp  by  

(3.5)  .,
)(

)(

,

,,
Uz

z

zfRI
zp

p

m

p





















 

Differentiating (3.5) logarithmically, with respect to z, and making use of (1.3) and (1.4), we 

get, 

(3.6)              
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)(
)(

)(

)(

)(
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)(
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zfI
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m
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p

m
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From (3.3), (3.4) and (3.6), we obtain .,
)(

)('
)(

)(

)(
)(

'

Uz
zq

zzq
zq

zp

zzp
zp    

 By setting ww )( and ww /1)(  , it can easily be observed that )(w is analytic in 

the complex plane C  and )(w  is analytic in the complex plane }0{\C  and that 

}.0{\,0)( Cww  Also, by letting  

  
)(

)('
))(()(')(

zq

zzq
zqzzqzQ    

and 

  ,
)(

)('
)()())(()(

zq

zzq
zqzQzqzh   

we find that )(zQ is starlike in U  (on using (3.2)) and that Uz
zQ

zzh









,0

)(

)('
Re (on using 

(3.1) and (3.2)).Hence the result now follows by an application of Lemma 2.2.  

Theorem 3.2. Let the function q be convex in U and suppose that it satisfies the relations 

(3.2) and  
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(3.7)                   .,0))(')(Re( Uzzqzq   

Let  ,0,0,0},0{, 0  NNmAf p a real number such that ,0  p  and   















]1),0([

)(,

,,
q

z

zfRI
p

m

p





Q. If the function ),;,,,,( zmp  given by (3.3), is  

univalent in U  and  );,,,,(
)(

)('
)( zm

zq

zzq
zq p   , then 

     

,
)(

)(

,

,,



















p

m

p

z

zfRI
zq  and q  is the best subordinant. 

Proof. It can be proved easily by using the same technique of Theorem 3.1 and by an 

application of Lemma 2.3.  

 Combining the results of Theorem 3.1 and Theorem 3.2, we state the following 

Sandwich theorem. 

Theorem 3.3. Let  ,0,0,0},0{, 0  NNmAf p a real number such that 

,0  p and 













]1),0([

)(,

,,
q

z

zfRI
p

m

p





Q. Let );,,,,( zmp  , given by (3.3), be 

univalent in .U Let 1q be convex in U and 2q be univalent inU . Suppose that the function 

1q satisfy relations (3.2) and (3.7) and the function 2q satisfy relations (3.1) and (3.2). If  

  

);,,,,(
)(

)('
)(

1

1
1 zm

zq

zzq
zq p  

 

,
)(

)('
)(

2

2
2

zq

zzq
zq   

then 

    

),(
)(

)( 2

,

,,

1 zq
z

zfRI
zq

p

m

p



















 

1q and 2q are respectively the best subordinant and best dominant. 
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Theorem 3.4. Let  ,0,0,0},0{, 0  NNmAf p a real number such that 

.0  p Let the function q be univalent in U and suppose that it satisfies the conditions 

(3.1) and (3.2). Let 

(3.9)   
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If  

(3.10)        
)(

)('
)();,,,,(

zq

zzq
zqzmp    

then 
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and q  is the best dominant.  

Proof. Let .
)(
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)(
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zfRI

z

z

zfRI
zp

m

p

p

p

m

p
Then the function )(zp  is analytic in U and 

.1)0( p Differentiating this function logarithmically, with respect to z, and making use of 

(1.3) and (1.4), we obtain  

(3.11)    
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From (3.10) and (3.11), we have .,
)(

)('
)(

)(

)(
)(

'

Uz
zq

zzq
zq

zp

zzp
zp    

 We apply now Lemma 2.2, with the functions ww )( and ww /1)(  to obtain the 

conclusion of our theorem. 

Theorem 3.5.  Let  ,0,0,0},0{, 0  NNmAf p a real number such that 

,0  p and 


























 

]1),0([
)(

)(
,

,,

,1

,,
q

zfRI

z

z

zfRI
m

p

p

p

m
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Q. Let );,,,,( zmp  , 

defined by (3.9), be univalent in .U  Let the function q be convex in U and suppose that it 

satisfies the relations (3.2) and (3.7). If 

(3.12)                  ,),;,,,,(
)(

)('
)( Uzzm

zq

zzq
zq p    

then 

                             

,,
)(

)(
)(

,

,,

,1

,,
Uz

zfRI

z

z

zfRI
zq

m

p

p

p

m
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and q  is the best subordinant.  

Proof. Theorem 3.5 follows by using the same technique of proof of Theorem 3.4 and by an 

application of Lemma 2.3. 

 Combining the results of Theorem 3.4 and Theorem 3.5, we get the following   

sandwich theorem. 
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 Theorem 3.6.  Let  ,0,0,0},0{, 0  NNmAf p a real number such that 

,0  p and 
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zfRI
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p

p

m

p









Q. Let );,,,,( zmp  , 

given by (3.9), be univalent in .U  Let 1q be convex in U and 2q be univalent in U . Suppose 

the function 1q satisfies relations (3.2) and (3.7) and the function 2q satisfies relations (3.1) 

and (3.2). If  

                            


)(

)('
)(

1

1
1

zq

zzq
zq  );,,,,( zmp 
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)(
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)(
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where 1q and 2q are respectively the best subordinant and best dominant. 

        1 in Theorem 3.6 yields 

Corollary 3.7.  Let  ,0,0},0{, 0  NNmAf p a real number such that 

,0  p and 
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11
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)(
);,,,,(                           

 be univalent in .U  Let 1q be convex in U and 2q be univalent in U . Suppose the function 

1q satisfies relations (3.2) and (3.7) and the function 2q satisfies relations (3.1) and (3.2). If  
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)('
)(

1

1
1

zq

zzq
zq  );,,,( zmp 
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2
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where 1q and 2q are respectively the best subordinant and best dominant. 

Theorem 3.8. Let  ,0,0},0{, 0  NNmAf p a real number such that 

.0  p Let the function q be univalent in U and suppose that it satisfies the conditions 

(3.1) and (3.2). If  

(3.13)        1
)(

)(
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)(
)1();,,,(
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If 

(3.14)                   ,,
)(

)('
)();,,,( Uz
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zzq
zqzmp    

then ,),(
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,,
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,,
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and q  is the best dominant. 

Proof. Define the function )(zp by 
)(

)(
)(

,

,,

,1
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zfRI

zfRI
zp

m

p

m

p









 .Then  

);,,,(
)(

)('
)( zm

zp

zzp
zp p   which, in light of hypothesis (3.14) of Theorem 3.8, yields 

the following subordination 
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zzp
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          The assertion of Theorem 3.8 now follows by an application of Lemma 2.3 with  

ww )( and ww /1)(  . 

Theorem 3.9. Let  ,0,0},0{, 0  NNmAf p  
a real number such that 

,0  p and 
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Q. Let );,,,( zmp  , as given in (3.13),                    

be univalent in .U  Let the function q be convex in U and suppose that it satisfies the relations 

(3.2) and (3.7). If
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zq p  

       

then ,,
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)(
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,1
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zfRI
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m

p

m

p










 and q  is the best subordinant.  

Proof. Theorem 3.9 follows by using the same technique of proof of Theorem 3.8 and by an 

application of Lemma 2.3. 

 Combining the results of Theorem 3.8 and Theorem 3.9, we have the following 

sandwich result. 

Theorem 3.10. Let  ,0,0},0{, 0  NNmAf p  
a real number such that 

,0  p and 
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 Q. Let );,,,( zmp  , as defined in (3.13), 

 be univalent in .U   Let 1q be convex in U and 2q be univalent in U . Suppose the function 

1q satisfies relations (3.2) and (3.7) and the function 2q satisfies relations (3.1) and (3.2). If
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1q and 2q are respectively the best subordinant and 

best dominant. 
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                       );(
)(

)('
)(

1

1
1 zm

zq

zzq
zq p ,,

)(

)('
)(

2

2
2 Uz

zq

zzq
zq     

 

then ,),(
)(

)(
)( 2

1

1 Uzzq
zfR

zfR
zq

m

p

m

p




 1q and 2q are respectively the best subordinant and best 

dominant. 

Remark 3.12. For 1p in Theorem 3.1 to Theorem 3.10, we obtain Theorem 3.1 to 

Theorem 3.9 of the author [30], respectively. For 0 in Theorem 3.1 to Theorem 3.6, we 

obtain results of Macovei [15] (Corrected versions).  For 1 and 1 in Theorem 3.1 to 

Theorem 3.3 and also in Theorem 3.8 to Theorem 3.10, we get corresponding results proved 

by Macovei in [16], for the operator ),()( ,1,, zfIzfI m

p

m

p    considered for 0 . But our 

results hold true for .p  
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