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1. INTRODUCTION

For a topological property P and a set X , let P(X) denote the collection of all topologies on X

with property P. Then P(X) is a partially ordered set under the natural order of set inclusion. A

topological space (X ,I) with property P is minimum P (maximum P) if P(X) is non-empty and

I is a minimum (maximum) element the set P(X). In 1970, Roland E. Larson characterizes all

minimum and maximum P spaces [4]. He proved that a topological space (X ,I) is minimum P

(maximum P
′
) for some topological property P (P

′
) if and only if it is completely homogeneous,

where completely homogeneous means that every one-to-one function of X onto itself is a

homeomorphism. He then proved that the only completely homogeneous topologies on a set X
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are the indiscrete topology, the discrete topology and those topologies in which the closed sets

are the space X and all subsets of X of cardinality less than m, where m is an infinite cardinal

not greater than the cardinality of X .

T.P. Johnson has defined the concept of a complete homogeneous fuzzy topological space

in an analogous way and studied some of its properties [2]. P. Sini et al. have characterized

completely homogeneous L-topological spaces when X is a finite set and L = {0,a,1}, where

a 6= 0,1 [5].

However, we consider an equivalence relation R on the set of all completely homogeneous L-

topologies on a non-empty set X when membership lattice L is a complete chain and investigate

all disjoint equivalence classes with respect to the relation R.

2. PRELIMINARIES

Throughout this paper, X stands for a non-empty set, L for a complete chain with the least

element 0 and the greatest element 1, S(X) stands for the set of all permutations of the set X .

The constant function in LX , taking value α is denoted by α and xγ , where γ(6= 0) ∈ L denotes

the L- fuzzy point defined by xγ(y) =

γ if y = x

0 otherwise
. Any f ∈ LX is called as an L-subset

of X . The following are some important definition reported in [3,6] :

Definition 2.1. Let δ be a non-empty subset of LX . We call δ an L-topology on X , if δ satisfies

the following conditions :

(1) 0,1 ∈ δ .

(2) if f ,g ∈ δ , then f ∧g ∈ δ .

(3) if δ1 ⊆ δ , then
∨

f∈δ1
f ∈ δ .

The pair (LX ,δ ) is called an L-topological space. The elements of δ are said to be open

L-subsets of X .

Definition 2.2. Let X and Y be two sets and θ : X → Y be a function. Then for any L-subset g

in X , θ(g) is an L-subset in Y defined by

θ(g)(y) =

 sup {g(z) : z ∈ θ−1(y)} if θ−1(y) 6= φ

0 otherwise
,

where θ−1(y) = {x ∈ X : θ(x) = y}.
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For an L-subset f in Y , we define

θ−1( f )(x) = f [θ(x)],∀x ∈ X . Obviously θ−1( f ) is an L-subset in X .

Definition 2.3. Let (X ,δ ) and (Y,δ
′
) be two L-topological spaces. Then a function θ : X → Y

is said to be L-continuous if θ−1(g) ∈ δ for every g ∈ δ
′

and θ is said to be open if θ( f ) ∈ δ
′

for every f ∈ δ .

Definition 2.4. Let (X ,δ ) and (Y,δ
′
) be two L-topological spaces. Then a bijection θ : X →Y

is said to be L-homeomorphism if both θ and θ−1 are L-continuous.

By an L-homeomorphism of (X ,δ ), we mean an L-homeomorphism from (X ,δ ) to itself.

The set of all L-homeomorphism of an L-topological space (X ,δ ) onto itself is a group under

composition, which is a subgroup of the group of all permutations on the set X . It is called the

group of L-homeomorphisms of (X ,δ ).

Definition 2.5. An L-topological space (X ,δ ) is called a completely homogeneous space if

every bijection of X onto itself is an L-homeomorphism.

Notations:

• |A| stands for the cardinality of a given set A.

• If (X ,δ ) is an L-topological space, then define

(1) δ = δ \{0,1}.

(2) ℜ f = { f (x) : x ∈ X}.

(3) ŁX
ℜ f

= {g : X →ℜ f }.

(4) ℜ
δ
= { f (x) : x ∈ X and f ∈ δ}.

• For any A⊆ L, define ŁX
A = { f : X → A}.

• For any H ⊆ L, define H? = {α ∈ L : α =
∨

γ∈M γ, where M ⊆H}. Then H is said to be

closed with respect to arbitrary join if H? ⊆ H i.e. if H contains all the possible join of

its elements.

3. COMPLETELY HOMOGENEOUS L-TOPOLOGICAL SPACES

Definition 3.1. Let CHLT(X) be the collection of all completely homogeneous L-topologies on

X .
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Let δ1,δ2 ∈ CHLT(X) and define the relation R on the set CHLT(X) as :

δ1 R δ2 if and only if |ℜ
δ1
|= |ℜ

δ2
|.

Clearly, R is an equivalence relation.

For 0≤ m≤ |L|, define[
m
]
(class of m) = {δ : δ is a completely homogeneous L-topology on X and |ℜ

δ
|= m}.

Definition 3.2. Let A⊆ L be any subset and |A|> 1. Then a subset M ⊆ A is called a c-subset

of A if

(i) M? ⊆M.

(ii) |M|> 1.

(iii) if α,β ∈M and α < γ < β for some γ ∈ A, then γ ∈M.

Definition 3.3. Two c-subsets 4i and 4 j of a subset A ⊆ L are said to be distinct if ∃ at least

one αi ∈4i and α j ∈4 j such that αi /∈4 j and α j /∈4i.

4. COMPLETELY HOMOGENEOUS L-TOPOLOGICAL SPACES WHEN X IS A FINITE SET

Throughout this section, X stands for a finite set.

Theorem 4.1. Let X be a finite set and L be a complete chain. Then (X ,δ ) is a completely

homogeneous L-topological space if and only if ŁX
ℜ f
⊂ δ ,∀ f ∈ δ .

Proof. First suppose that (X ,δ ) is a completely homogeneous L-topological space.

Let k1 =
∧

k∈ℜ f
k and x

′
ki
(y) =

ki if y = x

k1 otherwise
.

We claim that x
′
ki
∈ δ ,∀ki ∈ℜ f .

Clearly, k1 ∈ ℜ f . Since k1 ∈ ℜ f ,∃ an element x0 ∈ X such that f (x0) = k1. For each x ∈

X \{x0}, define fx = f ohx, where hx : X → X is defined as :

hx(y) =


x0 if y = x

x if y = x0

y otherwise

.

Then fx(y) =


k1 if y = x

f (x) if y = x0

f (y) otherwise

.
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Clearly, fx ∈ δ ,∀x ∈ X \{x0}.

Let k ∈ℜ f . So ∃ an element z ∈ X such that f (z) = k.

Now
∧

x∈X\{z} fx(y) =

 k if y = z

k1 otherwise
.

⇒
∧

x∈X\{z} fx(y) = x
′
k ∈ δ .

Hence ŁX
ℜ f
⊂ δ ,∀ f ∈ δ .

Conversely, suppose that ŁX
ℜ f
⊂ δ ,∀ f ∈ δ . Then f oh ∈ δ ,∀ f ∈ δ and ∀h ∈ S(X). Hence δ

is a completely homogeneous L-topology on X .

Remark 4.2. It can be checked that following are the disjoint equivalence classes with respect

to the relation R when X is a finite set :

•
[
0
]

contains only one completely homogeneous L-topology {0,1}.

•
[
1
]

contains only one type of completely homogeneous L-topologies {0,1,α}, where

α ∈ L\{0,1} i.e.[
1
]
=
{
{0,1,α} : α ∈ L\{0,1}

}
.

•
[
2
]

contains following two types of completely homogeneous L-topologies :

(i)
{
{0,1,α1,α2} : α1,α2 ∈ L\{0,1}

}
.

(ii) {0,1,g : g ∈ ŁX
H , where H ⊆ L and |H|= 2}.

• For m≥ 3,
[
m
]

contains following three types of completely homogeneous L-topologies

:

(i) {0,1,α : α ∈ H1, where H1 ⊆ L\{0,1} such that H?
1 ⊆ H1 and |H1|= m}.

(ii) {0,1,g : g ∈ ŁX
H2

, where H2 ⊆ L such that H?
2 ⊆ H2 and |H2|= m}.

(iii) Let H ⊆ L be any subset such that H? ⊆ H and |H| = m. Consider a family

4i, i ∈Ω of distinct c-subsets of H.

Let E= {β ∈ H : β /∈
⋃

i∈Ω4i}.

The L-topologies of the form {0,1,β , f : β ∈ E and f ∈
⋃

i∈Ω ŁX
4i
}.

Theorem 4.3. Let X be a finite set and L be a complete chain. If F is a completely homogeneous

L-topology on X , then F is equal to one of the L-topologies defined in the remark 4.2.
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Proof. Let |ℜF |= m. If m = 0, then clearly F = {0,1}. So, assume that m > 0.

Case 1 : If F contains only constant L-subsets, then F = {0,1,α : α ∈ℜF}.

Case 2 : If ŁX
F ⊆ F, then F = {0,1,g : g ∈ ŁX

F}.

Case 3 : Suppose Case 1 and Case 2 do not hold.

Let f ∈ F be any non-constant L-subset.

We claim that f ∈ ŁX
4 for some c-subset4⊂ℜF .

Let4⊂ℜF be a subset such that

(i) ℜ f ⊆4.

(ii) ŁX
4 ⊂ F .

(iii)4? ⊆4.

(iv)4 is not properly contained in any proper subset of ℜF satisfying above three properties.

Let α,β ∈4 and γ ∈ℜF such that α < γ < β .

γ ∈ℜF and ŁX
ℜg
⊆ F,∀g ∈ F ⇒ γ ∈ F.

Let γ /∈ 4. Since L is a chain and ŁX
4 ⊂ F , it is easy to see that T = 4∪{γ} satisfies

properties (i)-(iii) and4⊂ T , a contradiction⇒ γ ∈4⇒4 is a c-subset.

Therefore, corresponding to every L-subset g of F , ∃ a c-subset ∇⊂ℜF such that g∈ŁX
∇
⊆F .

Let 4i, i ∈ Ω be the collection of those distinct c-subsets of ℜF such that ŁX
4i
⊂ F,∀i ∈ Ω

and for every non-constant L-subset h ∈ F,h ∈ ŁX
4i

for at-least one i ∈Ω.

Let E= {β ∈ℜF : β /∈
⋃

i∈Ω4i}.

Thus F = {0,1,β , f : β ∈ E and f ∈
⋃

i∈Ω ŁX
4i
}.

⇒ If F is a completely homogeneous L-topology on a finite set X , then F is equal to one of

the L-topologies defined in remark 4.2.

5. COMPLETELY HOMOGENEOUS L-TOPOLOGICAL SPACES WHEN X IS A COUNT-

ABLE SET

Throughout this section, X stands for a countable set.

Remark 5.1. It can be checked that following are the disjoint equivalence classes with respect

to the relation R when X is a countable set :

•
[
0
]

contains only one completely homogeneous L-topology {0,1}.
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•
[
1
]

contains only one type of completely homogeneous L-topologies {0,1,α}, where

α ∈ L\{0,1} i.e.[
1
]
=
{
{0,1,α} : α ∈ L\{0,1}

}
.

•
[
2
]

contains four types of completely homogeneous L-topologies :

(i)
{
{0,1,α,β} : α,β ∈ L\{0,1}

}
.

(ii) {0,1,g : g ∈ ŁX
H , where H ⊆ L and |H|= 2}.

Let α1,α2 ∈ L be two arbitrary elements such that α1 < α2 and g ∈ LX be defined by

g(x) =


α1 for at-most finitely many x ∈ X

α2 otherwise
.

(iii) L-topologies generated by the sets of the form {0,1,goh : h ∈ S(X)}.

(iv) L-topologies generated by the sets of the form {0,1,α1,goh : h ∈ S(X)}.

• For m≥ 3,
[
m
]

contains following types of completely homogeneous L-topologies :

(i) {0,1,α : α ∈ H1, where H1 ⊆ L\{0,1} such that H?
1 ⊆ H1 and |H1|= m}.

(ii) {0,1,g : g ∈ ŁX
H , where H ⊆ L such that H? ⊆ H and |H|= m}.

(iii) Let H ⊆ L be any subset such that H? ⊆ H and |H|= m.

Consider a c-subset4⊆ H, choose an arbitrary element γ ∈4 and define :

P1 = {α ∈4 : α < (≤)γ},

P2 = {β ∈4 : γ ≤ (<)β},

L4 =


f ∈ LX : f (x) ∈ P1 for finitely many x ∈ X

f (x) ∈ P2 otherwise
and L4,C = L4∪{α : α ∈ C⊆ P1}.

Consider a family 4i, i ∈ Ω of distinct c-subsets of H and corresponding to each c-

subset4i, i ∈Ω, choose exactly one set from the set
{

ŁX
4i
,L4i,L4i,C

}
and denote that

set by Σ4i .

Let E= {β ∈ H : β /∈
⋃

i∈Ω4i}.

The L-topologies of the form
{

0,1,β , f : β ∈ E and f ∈ Σ4i, i ∈Ω

}
.
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Theorem 5.2. Let X be a countable set and L be a complete chain. If F is a completely

homogeneous L-topology on X , then F is equal to one of the L-topologies defined in the remark

5.1.

Proof. Let |ℜF |= m. If m = 0, then clearly F = {0,1}. So, assume that m > 0.

Case 1: If F contains only constant L-subsets, then F = {0,1,α : α ∈ℜF}.

Case 2: If ŁX
F ⊆ F, then F = {0,1,g : g ∈ ŁX

F}.

Case 3: Suppose Case 1 and Case 2 do not hold.

Let f ∈ F be any non-constant L-subset.

Let4⊂ℜF be a subset such that

(i) ℜ f ⊆4.

(ii)4? ⊆4.

(iii) for any two elements α,β ∈ 4,∃ an L-subset g ∈ F such that g(x) = α,g(y) = β for

some x,y ∈ X .

(iv)4 is not properly contained in any proper subset of ℜF satisfying above three properties.

Let α,β ∈4 and γ ∈ℜF such that α < γ < β .

Let γ /∈4. γ ∈ℜF and F is a completely homogeneous L-topological space so ∃ an L-subset

h1 ∈ F such that h1(x) = h1(y) = γ for some x,y ∈ X .

Since α,β ∈4⇒ ∃ an L-subset h2 ∈ F such that h2(x) = α,h2(y) = β .

Then (h1∧h2)(x) = α and (h1∧h2)(y) = γ .

(h1∨h2)(x) = γ and (h1∨h2)(y) = β .

In the same way, it can be shown that for any two elements η1,η2 ∈ T =4∪{γ},∃ an L-

subset g ∈ F such that g(x) = η1,g(y) = η2 for some x,y ∈ X and ℜ f ⊂ T , a contradiction

⇒ γ ∈4⇒4 is a c-subset.

Case (i) : If ŁX
4 ⊂ F , then f ∈ ŁX

4.

Case (ii) : Let ŁX
4 * F .

Let D= {h ∈ F : ℜh ⊆4}.

ŁX
4 * F ⇒ ∃ some element(s) λ ∈ 4 such that if h ∈ D and h(x) = λ for some x ∈ X , then

h(y) = λ for at-most finitely many y ∈ X .

Let P= {λ ∈4 : if λ ∈ℜh for some h ∈D, then h(x) = λ for at-most finitely many x ∈ X}.
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It can be checked that

(i) if α,β ∈ P and η ∈4 such that α < η < β , then η ∈ P.

(ii) if α ∈ P and η ∈4 such that η < α , then η ∈ P.

L4 =


g ∈ LX : g(x) ∈ P for at-most finitely many x ∈ X

g(x) ∈4\P otherwise .

.

Now two cases arise:

Case (a) : when α /∈ F,∀α ∈ P.

Then L4 ⊆ F .

Case (b) : when α ∈ F for all / some α ∈ P.

Let C= {α ∈ P : α ∈ F} and L4,C = L4∪C⊆ F .

Thus either f ∈ L4 or f ∈ L4,C.

Let 4i, i ∈ Ω be the collection of those distinct c-subsets of ℜF such that corresponding

to each c-subset 4i, i ∈ Ω, exactly one set from the set
{

ŁX
4i
,L4i,L4i,C

}
denoted by Σ4i ⊂

F,∀i ∈Ω and for every non-constant L-subset h ∈ F,h ∈ Σ4i for at-least one i ∈Ω.

Let E= {β ∈ℜF : β /∈
⋃

i∈Ω4i}.

Thus F =
{

0,1,β , f : β ∈ E and f ∈ Σ4i, i ∈Ω

}
.

⇒ If F is a completely homogeneous L-topology on a countable set X , then F is equal to one

of the L-topologies defined in the remark 5.1.

6. COMPLETELY HOMOGENEOUS L-TOPOLOGICAL SPACES WHEN X IS AN UNCOUNT-

ABLE SET

Throughout this section, X stands for an uncountable set.

Remark 6.1. It can be checked that following are the disjoint equivalence classes with respect

to the relation R when X is an uncountable set :

•
[
0
]

contains only one completely homogeneous L-topology {0,1}.

•
[
1
]

contains only one type of completely homogeneous L-topologies {0,1,α}, where

α ∈ L\{0,1} i.e.[
1
]
=
{
{0,1,α} : α ∈ L\{0,1}

}
.

•
[
2
]

contains following types of completely homogeneous L-topologies :
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(i)
{
{0,1,α,β} : α,β ∈ L\{0,1}

}
.

(ii) {0,1,g : g ∈ ŁX
H , where H ⊆ L and |H|= 2}.

Let α1,α2 ∈ L be two arbitrary elements such that α1 < α2 and g1,g2 ∈ LX be defined

by

g1(x) =


α1 for at-most finitely many x ∈ X

α2 otherwise

and g2(x) =


α1 for at-most countably many x ∈ X

α2 otherwise
.

(iii) L-topologies generated by the sets of the form

{0,1,g1oh : h ∈ S(X)}.

(iv) L-topologies generated by the sets of the form

{0,1,α1,g1oh : h ∈ S(X)}.

(v) L-topologies generated by the sets of the form

{0,1,g2oh : h ∈ S(X)}.

(vi) L-topologies generated by the sets of the form

{0,1,α1,g2oh : h ∈ S(X)}.

• For m≥ 3,
[
m
]

contains following types of completely homogeneous L-topologies :

(i) {0,1,α : α ∈ H1, where H1 ⊆ L\{0,1} such that H?
1 ⊆ H1 and |H1|= m}.

(ii) {0,1,g : g ∈ ŁX
H , where H ⊆ L such that H? ⊆ H and |H|= m}.

(iii) Let H ⊆ L be any subset such that H? ⊆ H and |H|= m.

Consider a c-subset4⊆ H, choose an arbitrary element γ ∈4 and define :

P1 = {α ∈4 : α < (≤)γ},

P2 = {β ∈4 : γ ≤ (<)β},

P?
1 = P1 \{γ},

P?
2 = P2 \{γ},

L1
4 =


f ∈ LX : f (x) ∈ P1 for at-most finitely many x ∈ X

f (x) ∈ P2 otherwise
,
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L2
4 =


f ∈ LX : f (x) ∈ P1 for at-most countably many x ∈ X

f (x) ∈ P2 otherwise
,

L3
4 =


f ∈ LX : f (x) ∈ P?

1 for at-most finitely many x ∈ X

f (x) = γ for at-most countably many x ∈ X

f (x) ∈ P?
2 otherwise

,

L1
4,C = L1

4∪{α : α ∈ C⊆ P1},

L2
4,C = L2

4∪{α : α ∈ C⊆ P1},

L3
4,C = L3

4∪{α : α ∈ C⊆ P?
1∪{γ}}.

Consider a family 4i, i ∈ Ω of distinct c-subsets of H and corresponding to each c-

subset4i, i ∈Ω, choose exactly one set from the set
{

ŁX
4i
,Lk
4i
,Lk
4i,C : k = 1,2,3

}
and

denote that set by Σ4i .

Let E= {β ∈ H : β /∈
⋃

i∈Ω4i}.

The L-topologies of the form
{

0,1,β , f : β ∈ E and f ∈ Σ4i, i ∈Ω

}
.

Theorem 6.2. Let X be an uncountable set and L be a complete chain. If F is a completely

homogeneous L-topology on X , then F is equal to one of the L-topologies defined in remark

6.1.

Proof. Let |ℜF |= m. If m = 0, then clearly F = {0,1}. So, assume that m > 0.

Case 1: If F contains only constant L-subsets, then F = {0,1,α : α ∈ℜF}.

Case 2: If ŁX
F ⊆ F, then F = {0,1,g : g ∈ ŁX

F}.

Case 3: Suppose Case 1 and Case 2 do not hold.

Let f ∈ F be any non-constant L-subset.

Let4⊂ℜF be a subset such that

(i) ℜ f ⊆4.

(ii)4? ⊆4.

(iii) for any two elements α,β ∈ 4,∃ an L-subset g ∈ F such that g(x) = α,g(y) = β for

some x,y ∈ X .

(iv)4 is not properly contained in any proper subset of ℜF satisfying above three properties.

In the same way, as in theorem 5.2, it can be shown that4 is a c-subset.
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Case (i) : If ŁX
4 ⊂ F , then f ∈ ŁX

4.

Case (ii) : Let ŁX
4 * F .

Let D= {h ∈ F : ℜh ⊆4}.

ŁX
4 * F ⇒ ∃ some element(s) λ ∈ 4 such that if h ∈ D and h(x) = λ for some x ∈ X , then

h(y) = λ for at-most finitely/countably many x ∈ X .

Let P1 = {λ ∈4 : if λ ∈ℜh for some h∈D, then h(x) = λ for at-most finitely many x ∈ X}.

and P2 = {η ∈ 4 : if η ∈ ℜg for some g ∈ D, then g(x) = η for at-most countably many

x ∈ X}. Clearly, P1 ⊆ P2.

It can be checked that

(i) if α,β ∈ P1(P2) and η ∈4 such that α < η < β , then η ∈ P1(P2).

(ii) if α ∈ P1 and η ∈4 such that η < α , then η ∈ P1.

Let L4 =


g ∈ LX : g(x) ∈ P1 for at-most finitely many x ∈ X

g(x) ∈ P2 \P1 for at-most countably many x ∈ X

g(x) ∈4\{P2} otherwise
Now two cases arise:

Case (a) : when α /∈ F,∀α ∈ P2.

Then L4 ⊆ F .

Case (b) : when α ∈ F for all / some α ∈ P2.

Let C= {α ∈ P2 : α ∈ F} and L4,C = L4∪C.

Thus either f ∈ L4 or f ∈ L4,C.

Let 4i, i ∈ Ω be the collection of those distinct c-subsets of ℜF such that corresponding

to each c-subset 4i, i ∈ Ω, exactly one set from the set
{

ŁX
4i
,L4i,L4i,C

}
denoted by Σ4i ⊂

F,∀i ∈Ω and for every non-constant L-subset h ∈ F,h ∈ Σ4i for at-least one i ∈Ω.

Let E= {β ∈ℜF : β /∈
⋃

i∈Ω4i}.

Thus F =
{

0,1,β , f : β ∈ E and f ∈ Σ4i, i ∈Ω

}
.

⇒ If F is a completely homogeneous L-topology on an uncountable set X , then F is equal to

one of the L-topologies defined in the remark 6.1.
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