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Abstract. This study focused on the modification and probation of a Susceptible-Exposed-Infected-Recovered

(SEIR) model for non-newborn vaccination and cost effective treatment. The system of differential equations has

been derived from SEIR model to creates a bond between susceptible S, infected I, exposed E and recovered E

participants for understanding the spread out of contagious diseases. Further, the local stabilities of both disease

free equilibrium points and endemic equilibrium points were found stable at epidemic conditions i.e. epidemic

(R0 > 1) and no epidemic (R0 ≤ 1). In addition, numerical simulation has been performed to investigate the

proposed model at regular set of values of parameters. Moreover, our vaccination target is only non-newborn

individuals to protect the population without effecting the economy of country.
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1. INTRODUCTION

The construction of new models and modification of models in the field of mathematical epi-

demiology gives attainable approach for better future of science and technology. Up to now

various research have been made in the field of mathematics among them mathematical biology
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has gained much of attraction because of its vast applications in the area of medicine [1]. The

early developments in the field of mathematical biology have been carried out in 18th century

[2]. Later, these studies flourished by many researchers to develop the most appropriate mathe-

matical model to scrutinize biological diseases [2, 11]. In recent years, among all the infectious

diseases like influenza, dengue, measles, Spanish flue, etc., dengue virus which also known

as vector-borne contagious disease considered as the major threat for public health in Pakistan

[3, 7]. Therefore, epidemic models such as: SI, SIS, SIR, SEIR and SEIRS are required to

overcomes infectious problems of the whole world [6, 10]. However, these epidemic models

are based on three aims. Firstly, to understand the spreading and transmission of contagious

disease, structure of epidemic model and behaviour of concern parameters. Secondly, to calcu-

late threshold quantity which is also known as basic reproductive number which predict either

epidemic occur or not. And third aim is to construct a strategy for the control and eradication

of contagious disease [20]. In addition, these mathematical models have been derived on the

base of first order differential equations, which are helpful in analyzing the spread and control

of contagious diseases [12, 15]. Usually, these mathematical models are the categorical mod-

els, which represents four compartments such as susceptible, exposed, infected and recovered,

while each compartment represents a particular step of the epidemic. However, in these models

the change rate from one class to another class is numerically presented with the help of deriva-

tives [16]. Further, the system of ODE’s (i.e. SIR, SEIR, SEIRS mathematical model etc.) is

described by using classes of population and rate change derivatives as a function of time [4].

Herein, the SIR epidemiological model described the dynamics of infectious diseases with con-

tinue immunity and a qualitative discussion to analyze stability. More importantly, the disease-

free equilibrium points of SIR model are found locally and globally asymptotically stable if the

reproduction number R0 < 1, while the endemic equilibrium points of SIR models are locally

asymptotically stable when reproduction number is R0 > 1. However, in order to eradicate dis-

ease successfully by using SIR model, the vaccination level should be larger because disease

preventation rely on vaccination proportion as well as efficiency of the vaccine [19]. Moreover,

the SEIRS model also depicts the infectious diseases among with different parameters such as



2482 MUHAMMAD USMAN, NOOR BADSHAH

unequal birth and death rates, vaccinations for newborns and non-newborns and temporary im-

munity with the help of vital features of SI, SIS and SIR models. However, in case of SEIRS

the mathematical approach in determined the disease-free and endemic equilibrium points with

local stability were analyzed according to its epidemic conditions i.e. non-epidemic R0 ≤ 1

and epidemic R0 > 1) using the time-series and phase portraits of the susceptible S, exposed E,

infected I, and recovered R individuals [16].

In our study we discussed four classes of proposed model i.e. S = susceptible, E = exposed, I =

infected and R = recovered of with different parameters including birth rate, natural death rate,

disease death rate, vaccine for non-newborn and treatment rate. In addition, the regular set of

values will be used for these parameters in numerical simulation. Further, graphical study has

been investigated based On the numerical values. Moreover, the treatment rate function is sup-

posed which is directly proportional to number of infectious patients up to certain limit. Further

more, the stability analysis has been carried out by use of multiple endemic equilibrium points.

Also, experimental work has been made on the bases of these equilibrium points and local sta-

bility. Thus, this research work will be helpful for the future study in the field of mathematical

biology.

2. SEIR MODEL AND ITS BASIC REPRODUCTIVE NUMBER

The proposed SEIR model with limited (non-newborn only) vaccination and cost effective

treatment will provide the whole portrait of contagious diseases and its corresponding with

ecology. Figure 1 shows the block diagram of modified SEIR model, which is constructed by

dividing the whole population Π in four epidemic categories (classes) those are Susceptible (S),

Exposed (E), Infected (I) and Recovered (R) [4, 9].

The four categories S, E, I and R of the SEIR model are depict for detail in Table 1. For the

proposed SEIR model, the model permits with different birth and death rates, vaccinations only

for non-newborns (i.e children and adults) and cost effective treatment for individuals from sus-

ceptible category.

The Table 2 summarizes the details of different +ive parameters lodge in the SEIR model for

each of the four categories.
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FIGURE 1. SEIR model with limited Vaccination and Cost effective treatment

TABLE 1. Categories

Categories Names Units Meanings

S Susceptible specimens No of Individuals Individuals of susceptible to contagious who

are limited vaccinated and are to be exposed

Individuals of Exposed to contagious who

E Exposed specimens No of Individuals contract the disease but not yet become

infectious and not capable of transmit infection

I Infected specimens No of Individuals Individuals of Infected specimen can pass the

infection to other individuals of susceptible

R Recovered specimens No of Individuals Individuals of Recovered from contagious

disease who are treated from infection
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TABLE 2. Parameters

Parameters Names Units Meanings

∏ Birth rate
birth

Person
day Birth rate of (non-newborn)

susceptible per year

µ Natural Death rate
deaths
Person
day Natural death rate of recovered, exposed, infected

and susceptible per year

v Vaccination non-newborn Per day ( 1
day ) Rate of limited vaccination to susceptible

ε Transmission rate per day The rate at which individuals leave exposed

(Exposed to Infected) category and enter into infected category

γ Transmission rate per day The rate at which individuals leave infected

(Infected to Recovered) category and enter into recovered class

F(t) Treatment Rate per day The rate at which the infected individual are treated

∆ Disease Death Rate
deaths
Person
day Disease death rate of infected inviduals
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Arithmetically, the SEIR model is explicit as a system of ordinary differential equations given

by [16, 17]:

(1)

S′ =
dS
dt

= Π−βSI−µS,

E ′ =
dE
dt

= βSI−µE− εE +(1− v)E,

I′ =
dI
dt

= εE−µI−∆I− γI−F(t),

R′ =
dR
dt

= βv+ γI +F(t)−µR.

In this research, the treatment function is defined as

F(t) =


kI i f 0 < I ≤ I0

0 i f I = 0

c i f I > I0

where c = kI0 this tells that F(t) ∝ I as well as the number of infectious individuals are less

or equal to a static value I0 but later on treatment rate turn into constant. This research has main

concern with cost effective treatment, in which medication and bedding in hospitals may or may

not be sufficient.

The reduce system of (1) is enough to analyze because in first three equations of system (1) R

is not use

(2)

S′ =
dS
dt

= Π−βSI−µS,

E ′ =
dE
dt

= βSI−µE− εE +(1− v)E,

I′ =
dI
dt

= εE−µI−∆I− γI−F(t).

From system (2)

(3) S′+E ′+ I′ = ≤Π−µ(S+E + I)
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Supposing we get

(4) Σ≤ Π

µ

Thus we have lim
n→∞

sup(S + I + R) ≤ Π

µ
so the possible and reasonable region for the set of

equations of system (1) is

(5) Λ = {(S,E, I) : S+E + I ≤ Π

µ
,S > 0,E ≥ 0, I ≥ 0}.

Therefore the system (2) is well posed by arithmetically and endemically in Λ because the

region Λ is positively invariant w.r.t system (2).

For finding R0 (i.e Basic Reproductive Number), the most reliable method is next generation

method (N.G.M) [8, 18].

System (2) always gives Disease free equilibrium points i.e X0
d f e = (S0,E0, I0) = (

Π

µ
,0,0).

Moreover for these disease free equilibrium points I < I0, therefore the system(2) turns to

(6)

S′ =
dS
dt

= Π−βSI−µS,

E ′ =
dE
dt

= βSI− (µ + ε− (1− v))E,

I′ =
dI
dt

= εE− (µ +∆+ γ + k)I.

Then system(6) may be written as

(7)
dY
dt

=z(Y )−ϒ(Y ),

dY
dt

=

 βSI

0

−
 (µ + ε)E− (1− v)E

−εE +µI +∆I + γI + kI

 .
The Jacobian matrices of transmission matrix z(Y ) and transition matrix ϒ(Y ) at disease free

equilibrium points X∗0 are, respectively [5, 18]

Dz(X∗0 ) =

 F 0

0 0

 , Dϒ(X∗0 ) =

 V 0

J1 J2


where

F =

 0 β
Π

µ

0 0
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and

V =

 µ + ε− (1− v) 0

−ε µ + γ +∆+ k

 .
To remove confusion we suppose Ω = FV−1 and the N.G.M of system (2) is

Ω = FV−1 =

 εβΠ

µ(µ+ε−(1−v))(µ+γ+∆+k)
βΠ

µ(µ+γ+∆+k)

0 0

 .
Now we will find the spectral radius of N.G.M [14] that is defined as ρ(Ω)=max{eigen value o f Ω}

⇒

∣∣∣∣∣∣∣∣∣
εβΠ

µ(µ+ε−(1−v))(µ+γ+∆+k) −λ
βΠ

µ(µ+γ+∆+k)

0 −λ

∣∣∣∣∣∣∣∣∣= 0.

Hence the basic reproductive number R0 of system (2) is given by

(8) R0 =
εβΠ

µ(µ + ε− (1− v))(µ + γ +∆+ k)
> 0

3. EQUILIBRIUM POINTS OF SEIR MODEL

Here we will find and discuss equilibrium points of our proposed model. First we known

that, the disease free equilibrium points of system (2) X0
d f e = (S0,E0, I0) = (

Π

µ
,0,0) always

exits when I ≤ I0 [16, 13]. Now we will find the endemic equilibrium points of system (2)

which satisfies

(9)

Π−βSI−µS = 0,

βSI− (µ + ε− (1− v))E = 0,

εE− (µ +∆+ γ)I−F(t) = 0.
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For above system, if 0 < I ≤ I0, then F(t) = kI and if I > I0, then F(t) = c, Moreover If R0 > 1,

system (8) confess a unique positive result i.e X∗ee = (S∗,E∗, I∗) given by

(10)

Π−βS∗I∗−µS∗ = 0,

βS∗I∗− (µ + ε− (1− v))E∗ = 0,

εE∗− (µ +∆+ γ + k)I∗ = 0.

From system (10)

(11) S∗ =
Π

β I∗+µ
=

Π

µ(1+ β I∗
µ
)

in system (10)

(12) E∗ =
(µ +∆+ γ + k)I∗

ε

From third equation of system (10)

(13) I∗ =
εE∗

µ +∆+ γ + k
.

Put the value of I∗ in equation (12) we get

(14)
E∗ =

βΠε−µ(µ +∆+ γ + k)(µ + ε− (1− v))
βε(µ + ε− (1− v))

.

Put the value of E∗ from system (14) in equation (13) we get

(15) I∗ =
βΠε−µ(µ +∆+ γ + k)(µ + ε− (1− v))

β (µ + ε− (1− v))(µ +∆+ γ + k)
.

Putting the value of I∗ in equation (11) we get the value of S∗ i.e.

(16) S∗ =
Π

µR0
.

We know that from equation (11) S∗ = Π

β I∗+µ
putting this value in equation (16) we get

(17) I∗ =
µ(R0−1)

β
.

Putting the value of I∗ in equation (13) we get

(18) E∗ =
µ(µ +∆+ γ + k)(R0−1)

βε
.
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Hence from equation (17) R0 ≤ 1+ β I0
µ
∼= Q0 iff I∗ ≤ I0. Therefore X∗ee = (S∗,E∗, I∗) are

endemic equilibrium points of system (2) iff 1 < R0 ≤ Q0. In system (9) when I > I0, to get

the positive solution of system (2), we solve S and E from first and third equation of system

(9) respectively and substitute the value of S and E in second equation of system (9). We have

S = Π

µ+β I and E = (µ+γ+∆)I+c
ε

after substitution in second equation of system (9) we get

(19)

(µ + ε− (1− v))(µ + γ +∆)β I2

+[(µ + ε− (1− v))((µ + γ +∆)µ + cβ )−βΠε]I

+c(µ + ε− (1− v))µ = 0

Suppose that

(20)

(µ + ε− (1− v))(µ + γ +∆)β = d,

(µ + ε− (1− v))((µ + γ +∆)µ + cβ )−βΠε = e,

(µ + ε− (1− v))µ = f .

After putting the values in equation (19) we get

(21) dI2 + eI + f = 0.

The system (21) gives us discriminant i.e. D = e2−4d f with two positive real roots e < 0 and

D≥ 0.

As we know form equation (8)

(22) εβΠ = [µ(µ + ε− (1− v))(µ + γ +∆+ k)]R0

so

(23) e =(µ + ε− (1− v))[(µ + γ +∆)µ + cβ −µ(µ + γ +∆+ k)R0].

Putting the values of d, e and f in the equation of discriminant D. We get

(24)
D =[(µ + ε− (1− v))((µ + γ +∆)µ + cβ −µ(µ + γ +∆+ k)R0)]

2

−4[(µ + ε− (1− v))(µ + γ +∆)β ][c(µ + ε− (1− v))µ].
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For positive real root D≥ 0 we have

(25)
[((µ + γ +∆)µ + cβ −µ(µ + γ +∆+ k)R0)]

≥ 2
√
(µ + γ +∆)cβ µ.

After simplification of above equation and for e < 0 the R0 is equivalent to

(26)
R0 ≥ 1+

cβ −µk
µ(µ + γ +∆+ k)

.

Therefore for equation(21) has two positive roots I∗1 and I∗2.

when R0 ≥ Q1 where

(27) I∗1 =
−e−

√
D

2d
and I∗2 =

−e+
√

D
2d

then set

(28) S∗1 =
Π

µ +β I∗1
and S∗2 =

Π

µ +β I∗2

and

(29) E∗1 = E∗2 =
µ(µ + γ +∆+ k)

βε
(R0−1)

then X∗i = (S∗i,E∗i, I∗i), i = 1,2 are endemic equilibrium points of system (2) if I∗i > I0. As

we know

(30) I∗1 > I0 iff 2β (µ + ε− (1− v))(µ + γ +∆)I0 + e <−
√

D.

In above equation right hand side is negative and greater than the value at left hand side so if

negative value is greater therefore the left hand value is always less than zero i.e.

(31) e+2β (µ + ε− (1− v))(µ + γ +∆)I0 < 0.

It follows the definition of e that is

(32)
µ(µ + γ +∆+ k)R0 > 2β I0(µ + γ +∆)

+µ(µ + γ +∆)+ cβ .
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Adding and subtracting kµ in above equation we get:

(33) R0 > 1+
2β I0(µ + γ +∆)

µ(µ + γ +∆+ k)
+

cβ − kµ

µ(µ + γ +∆+ k)
∼= Q2.

Similarly if

(34) I∗2 > I0 iff2β (µ + ε− (1− v))(µ + γ +∆)I0 + e <
√

D.

Then

(35) R0 < 1+
2β I0(µ + γ +∆)

µ(µ + γ +∆+ k)
+

cβ − kµ

µ(µ + γ +∆+ k)
∼= Q2.

By a comparable statement we get that I2 < I0 iff R0 > Q2 now we will sum up the above

discussion as following:

(36)
Let Q0 = 1+

β I0

µ
, Q1 = 1+

cβ −µk
µ(µ + γ +∆+ k)

+
2
√

(µ + γ +∆)cβ µ

µ(µ + γ +∆+ k)

and Q2 = 1+
2β I0(µ + γ +∆)

µ(µ + γ +∆+ k)
+

cβ − kµ

µ(µ + γ +∆+ k)
.

1. Disease free equilibrium points i.e.X0
d f e = (S0,E0, I0) = (Π

µ
,0,0) always exist in system (2).

2. There is existence of endemic equilibrium points i.e. X∗ee = (S∗,E∗, I∗) of system (2) iff

1 < R0 ≤ Q0.

3. There is existence of two more endemic equilibrium points i.e. X∗i = (S∗i,E∗i, I∗i), i = 1,2 iff

R0 > Q1 and R0 > Q2.

4. LOCAL STABILITY OF EQUILIBRIUM POINTS

In this section we analyze the eigenvalues of Jacobian matrices of system (2) and check the

local stability of disease free equilibrium points and endemic equilibrium points [16]. The
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Jacobian matrix is calculated from equilibrium points as:

dS
dt

dE
dt

dI
dt


=



Π−βSI−µS

βSI− (µ + ε)E +(1− v)E

εE−µI−∆I− γI− kI


.

Where Jacobian matrix w.r.t equilibrium points is

J(X0
d f eorX∗ee) = J(S,E, I) =



∂S
∂S

∂S
∂E

∂S
∂ I

∂E
∂S

∂E
∂E

∂E
∂ I

∂ I
∂S

∂ I
∂E

∂ I
∂ I



=



−µ 0 −βS

0 −(µ + ε− (1− v)) 0

0 ε −(µ + γ +∆+ k)


by using the jacobian matrix we evaluate the eigenvalues from |J(X0

d f eorX∗ee)−λ I| = 0. then

we check our system either it is stable or not. If all the eigenvalues are negative then system is

stable otherwise if at least one eigenvalue is positive the system is unstable.

4.1. Disease free equilibrium points X0
d f e. By using the Disease free equilibrium points i.e.

X0
d f e = (S0,E0, I0) = (Π

µ
,0,0) , for system (6) the jacobian matrix J(X0

d f e) is given as:

J(X0
d f e) =



−µ 0 −β
Π

µ

0 −(µ + ε− (1− v)) 0

0 ε −(µ + γ +∆+ k)


.



STABILITY ANALYSIS OF SEIR MODEL 2493

Now eigenvalues are found by using the characteristic equation which we discuss below:

(37) |J(X0
d f eorX∗ee)−λ I|= 0

∣∣∣∣∣∣∣∣∣


−µ 0 βπ

µ

0 −(µ + ε− (1− v)) 0

0 ε −(µ + γ +∆+ k

−λ


1 0 0

0 1 0

0 0 1


∣∣∣∣∣∣∣∣∣=


0

0

0



(38)

(−µ−λ )[(−(µ + ε− (1− v))−λ )(−(µ + γ +∆+ k)−λ )−0] = 0

⇒ λ =−µ, −(µ + ε− (1− v)), −(µ + γ +∆+ k).

Similarly when F(t) = 0

(39) ⇒ λ =−µ, −(µ + ε− (1− v)), −(µ + γ +∆).

All the eigenvalues are negative in above result, so the disease free equilibrium points are locally

stable for system (2).

4.2. Endemic equilibrium points X∗ee. As researcher knows

J(S,E, I) =



−µ−β I∗ 0 −βS∗

β I∗ −(µ + ε− (1− v)) 0

0 ε −(µ + γ +∆+ k)


.

For system (4)

J(X∗ee) =



µR0 0 −β
Π

µR0

µ(R0−1) −(µ + ε− (1− v)) 0

0 ε −(µ + γ +∆+ k)
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now by characteristic equation i.e. |J(X∗ee)−λ I|= 0 we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µR0−λ 0 −β
Π

µR0

µ(R0−1) −(µ + ε− (1− v))−λ 0

0 ε −(µ + γ +∆+ k)−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(40)

λ
3 +[µR0 +(µ + ε− (1− v))+(µ + γ +∆+ k)]λ 2

+[µR0[(µ + ε− (1− v))+(µ + γ +∆+ k)]+(µ + ε− (1− v))(µ + γ +∆+ k)]λ

+µR0(µ + ε− (1− v))(µ + γ +∆+ k)+
βΠε(R0−1)

R0
= 0.

For our requirement to check the local stability of endemic equilibrium points Routh-Hurwitz

criteria is used [15, 16]. Suppose

(41)

`0 = 1, `1 = [µR0 +(µ + ε− (1− v))+(µ + γ +∆+ k)],

`2 = [µR0[(µ + ε− (1− v))+(µ + γ +∆+ k)]+(µ + ε− (1− v))(µ + γ +∆+ k)],

`3 = µR0(µ + ε− (1− v))(µ + γ +∆+ k)+
βΠε(R0−1)

R0
.

Then equation (41) becomes

(42) `0λ
3 + `1λ

2 + `2λ + `3 = 0.

It is clear that, `0 > 0, `1 > 0, `2 > 0, `3 > 0

(43)

`1`2− `3 = [µR0 +(µ + ε− (1− v))+(µ + γ +∆+ k)][µR0[(µ + ε− (1− v))

+(µ + γ +∆+ k)]− [µR0(µ + ε− (1− v))(µ + γ +∆+ k)

+
βΠε(R0−1)

R0
]> 0.
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Above discussion satisfies the three conditions of Routh-Hurwitz criteria given below:

(44) `1 > 0,

(45) `3 > 0

and

(46) `1`2− `3 > 0.

Hence by Routh-Herwitz criteria, all the eigenvalues of J(X∗ee) are negative therefore endemic

equilibrium points are locally stable for proposed model.

5. NUMERICAL SIMULATION

The proposed SEIR model with non-newborn vaccination and cost effective treatment was es-

timated in Matlab. Table 3 lists a regular set of mathematical values for parameters of proposed

model for all the experiments of malaria.

TABLE 3. Mathematical values for parameters of proposed model

Parameters values Parameters values

∏ 0.0000520 ε 0.33333

µ 0.0000202 γ 0.14286

v 0.70 ∆ 0.000027

β 0.20 (No epidemic) 5 (epidemic) F(t) 0.01

The value of R0 depends upon above values of parameters and computed for SEIR model in

Table 4. Moreover, we will get two values of R0 because of two conditions i.e. epidemic and

no epidemic.

TABLE 4. Mathematical values of R0

Parameters values

R0 0.8615 (No epidemic) 21.5370 (epidemic)
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5.1. Experimental outcomes. Numerical simulations is perform using the proposed SEIR

model with non-newborn vaccination and cost effective treatment along with constants and

mathematical values of parameters of our model in Table 3. So as to distinguish between the

occurrence for the epidemic conditions of R0 i.e. no epidemic (R0 ≤ 1) and epidemic (R0 >

1) are analyze separately. The local stability of disease free equilibrium points and endemic

equilibrium points for both cases i.e. no epidemic and epidemic are estimated with help of

corresponding eigenvalues and jacobian matrix.

5.1.1. No epidemic. The epidemic required condition R0 is calculated as R0 = 0.8615 implies

no epidemic for the contagious disease because R0 ≤ 1. The value of R0 depends upon the

mathematical values of model parameters and constants with β = 1
5 for our SEIR model. Here

β = 1
5 means that 0.2 susceptible participants becomes exposed because of infected participants

and left the susceptible category and enter the exposed category per day. The disease free

equilibrium points X0
d f e and endemic equilibrium points X∗ee and eigenvalues λi of their jacobian

matrices i.e. J(X0
d f e) and J(X∗ee) in company with local stabilities.

TABLE 5. Local stability β = 1
5(noE pidemic)

Points S E I λ1 λ2 λ3 Stability

DEF 2.5743 0 0 -0.0000202 -0.5800000 -0.14000000 Stable

EE 2.9822 -0.000014416 -0.000013991 -0.580000 -0.3400000 -0.00001 Stable

Table 5 shows that the disease free equilibrium points i.e. X0
de f are locally stable because all the

eigenvalues i.e. λ1 , λ2 and λ3 are negative with β = 1
5 . Where as the endemic equilibrium points

i.e. X∗ee are also locally stable (because all eigenvalues are negative in it) with β = 1
5 . Figure 2

describes the two dimensional phase portraits of four categories with 0.25 initial conditions of

S, E, I and R.

5.1.2. Epidemic. The epidemic required condition R0 is calculated as R0 = 21.5370 implies

epidemic for the contagious disease because R0 > 1. The value of R0 depends upon the mathe-

matical values of model parameters and constants with β = 5 for our SEIR model. Here β = 5
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(a) Susceptible (b) Exposed

(c) Infected (d) Recovered

FIGURE 2. Two dimensional phase portraits of four categories of S, E, I and R

(β = 1/5(N0E pidemic)).

means that 5 susceptible participants becomes exposed because of infected participants and left

the susceptible category and enter the exposed category per day. Table 6 shows the disease free

equilibrium points X0
d f e and endemic equilibrium points X∗ee and eigenvalues λi of their jacobian

matrices i.e. J(X0
d f e) and J(X∗ee) in company with local stabilities.

TABLE 6. Local stability β = 5(E pidemic)

Points S E I λ1 λ2 λ3 Stability

DEF 2.5743 0 0 -0.0000202 -0.5800000 -0.1400000 Stable

EE 0.1195 0.0000829 0.00008548 -0.5806000 -0.3390000 -0.0009000 Stable

Table 6 shows that the disease free equilibrium points i.e. X0
de f are locally stable because all
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the eigenvalues i.e. λ1 , λ2 and λ3 are negative with β = 5. Where as the endemic equilibrium

points i.e. X∗ee are also locally stable (because all three eigenvalues are negative in it. Moreover,

if only one value is negative then it will locally unstable) with with β = 5. Figure 3 describes

the two dimensional phase portraits of four categories with initial condition 0.25.

(a) Susceptible (b) Exposed

(c) Infected (d) Recovered

FIGURE 3. Two dimensional phase portraits of four categories of S, E, I and R

(β = 5(E pidemic)).

6. CONCLUSION

In this research work, modified SEIR model based on non-newborn vaccination and cost

effective treatment for mutual benefits is proposed. Herein, we generalize models of vaccination

and treatment for large population. The main focus was to handle a problem when hospitals has

lack of bedding and medication some time in war like conditions and in our rural areas and

villages. Further, by using basic reproductive number R0, the behaviour of our proposed model

has been found. The Disease free equilibrium points X0
d f e and endemic equilibrium points X∗ee
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exists and model is locally stable. Moreover, the proposed model is epidemic when R0 ≤ 1 and

endemic when R0 > 1. For future, we may modified the model w.r.t to age limit structure, vital

dynamics and isolations in climate behaviour to produce suitable epidemic models in the field

of mathematical biology.
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