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Abstract. Fuzzy set, soft set and their extensions have been successful in being a raapproachment between precise

classical mathematics and imprecise real world. In particular, soft lattices as a generalization of soft set is a new

mathematical approach to study uncertainity. Soft L-topological spaces are defined over a soft lattice L with a

fixed set of parameter P and the continuity of mappings of soft L-topological spaces has also been studied. In

this paper, we introduce the concept of soft L-continuous mapping between two soft L-topological spaces. Further

some results based on soft L-homeomorphism are also obtained. Finally, the concept of cartesian product of soft

L-sets are defined and explored some results relating to this.
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1. INTRODUCTION

The concept of soft set theory begins with Molodtsov [1, 3] in the year 1999. It is completely

new approach for modelling, vagueness and uncertainties. Few applications in many directions

of soft set theory have been shown by Molodtsov in [1, 3]. Also Maji et.al [2, 3] studied soft

sets introduced by Molodtsov [1, 3] and gave the definitions based on equality of two soft sets,

subset and super set of a soft set, complement of a soft set, null soft set, and absolute soft
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set with examples and basic properties are also defined. The algebraic structure of set theory

dealing with uncertainties has also been studied by some authors [4, 5, 6, 7, 8]. The concept of

soft set has been extended to soft lattices and soft fuzzy sets by Li.F [9] in the year 2010. Soft

lattices can also expressed in terms of algebraical and set theoretical manner. Cagman et al.

[10] did a deep study on these two concepts and came to the conclusion that algebraical and set

theoretical definitions are equivalent or same. Cagman et al. (2011)[10] presented the related

properties of soft topology on a soft set. We follow the approach of M. Shabir and M. Naz [11]

who introduced the concept of soft topological spaces in the year 2011 and studied some basic

properties. In our work, we use the notion of soft set initiated by Molodtsov [1, ?] and extend

this idea to the field of soft lattices [9] and obtain the topological properties of soft lattices. In

2016, Cigdem Gunduz Aras, Ayse Sonmez and Huseyin Cakalli [12] introduced soft continuous

mappings. Some of its properties are studied by many authors [16, 17, 18]. In 2012, H.Hazra,

P.Majumdar and S.K.Samanta [13] gave the definition of continuity of soft mappings with their

properties. In 2015, Yang et al. [14] first proposed the concept of soft continuous mapping

between two soft topological spaces. In 2013, E. Peyghana, B. Samadia and A. Tayebib [15]

discussed cartesian product of soft sets and soft product topology.

Soft Lattice topological spaces (Soft L-topological spaces or Soft L-space) [19] are intro-

duced with a fixed set of parameters P over an initial universe X. We have defined some basic

properties of soft L-topological spaces and also gave the definition of soft L-open and soft L-

closed sets. The soft L-closure of a soft lattice is also defined which is a generalization of

closure of a set. The concept of parameters plays a major role with the set of parameterized

topologies on the initial universe. We define a topological space corresponding to each parame-

ter, and it is more essential. We show that a soft topological space gives a parameterized family

of topologies on the initial universe. Converse need not be true. It means if we are given some

topologies for each parameter, it is not possible to construct a soft topological space.

We introduced soft L-continuous mappings [20] which are defined over an initial universe

set with a fixed set of parameters. Further we discuss some algebraic properties of soft L-

mappings such as injectivity, surjectivity, bijectivity and composition of soft L-mappings and

study their continuity properties under soft L-topology. The continuity of mappings of soft
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L-topological spaces has defined and its properties has investigated. Also, soft open and soft

closed L-mappings, soft L-homeomorphism are defined and some interesting results are ob-

tained.

In this paper, the concept of soft L-continuous mapping between two soft L-topological

spaces is proposed and some results are proved. Also, we have proved some theorems based on

soft L-homeomorphism. Finally, cartesian product for soft L-sets are defined and some results

are discussed.

2. PRELIMINARIES AND BASIC DEFINITIONS

Throughout this paper, we consider L as a complete lattice and we denote universal bounds

as ⊥ and >. Our assumption is L is consistent i.e. floor is different from top. Therefore,

⊥ ≤ α ≤ > for every α ∈ L. Also ∨φ = ⊥ and ∧φ = >. The two point lattice {⊥,>} is

denoted by 2. A unary operation ′ : L −→ L is quasi complementation. It is an involution (i.e.,

α
′′
= α for all α ∈ L) that inverts the ordering. (i.e., α ≤ β =⇒ β ′ ≤ α ′). De Morgan’s laws

also hold in (L, ′). (i.e., (∨A)′ = ∧{α ′ : α ∈ A} and (∧A)′ = ∨{α ′ : α ∈ A} for every A⊂ L). In

addition, ⊥′ => and >′ =⊥. Based on these concepts, we use a completely distributive lattice

(L, ′) as a complete lattice equipped with an order reserving involution in this paper.

Definition 2.1. [1] Assume X as an initial universe set and P be a set of parameters. The power

set of X is denoted as ℘(X) and B⊂ P. Then a pair (P,B) is said to be a soft set over X, where

the mapping P is given by P : B→℘(X).

i.e., a soft set over X is regarded as a parametrized family of subsets of the universe X. For

b ∈ B, the set of approximate elements of the soft set (P,B) denoted by P(b).

Definition 2.2. [9] Consider M = ( f ,X ,L), where L is a complete lattice, f : X −→℘(L) is a

mapping, X is a universe set, then M is called the soft lattice denoted by f L
P .

ie, for every x ∈ X, f L
P is a soft lattice over L, if f (x) is a sub lattice of L.

Definition 2.3. [19] The relative complement of a soft lattice f L
P is denoted by ( f L

P )
′ and is

defined as ( f L
P )
′ = ( f ′LP ) where f ′ : P−→℘(L) is a mapping given by f ′(α) = L− f (α) for all

α ∈ P.
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Definition 2.4. [19] Consider X as an initial universe set and P as the non-empty set of param-

eters.

Let τ be the set of complete, uniquely complemented soft lattices over L, then τ is said to be a

soft lattice topology on L if;

(i)φ ,L belongs to τ .

(ii) The arbitrary union of soft lattices in τ belongs to τ .

(iii) The finite intersection of soft lattices in τ belongs to τ .

Then (L,τ,P) is called a soft lattice topological space (soft topological lattice space or soft L

-space) over L.

Definition 2.5. [19] Consider (L,τ,P) as a soft lattice topological space over L, then the mem-

bers of τ are called as soft L-open sets in L.

Definition 2.6. [19] Let (L,τ,P) be a soft lattice topological space over L. A soft lattice f L
P

over L is said to be a soft L-closed set in L, if its relative complement ( f L
P )
′ belongs to τ .

Definition 2.7. [19] We consider L as a lattice, P be the set of parameters and τ = {φ ,L}. Then

τ is called the soft indiscrete lattice topology on L and (L,τ,P) is said to be a soft indiscrete

lattice topological space over L.

Definition 2.8. [19] Consider L be a lattice, P be the set of parameters and let τ be the collection

of all soft lattices which can be defined over L. Then τ is called the soft discrete lattice topology

on L and (L,τ,P) is said to be a soft discrete lattice topological space over L.

Definition 2.9. [19] We consider (L,τ,P) as a soft lattice topological space over L and f L
P be

a soft lattice over L. Then the soft lattice closure of f L
P , denoted by f L

P, is the intersection of all

soft L-closed super sets of f L
P .

Definition 2.10. [19] Let (L,τ,P) be a soft lattice topological space over L and f L
P be a soft

lattice over L. Then we associate with f L
P , a soft lattice L, denoted by f L

P and defined as f (α) =

f (α), where f (α) is the soft L-closure of f (α) in τα for each α ∈ P.
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Definition 2.11. [19] Consider (L,τ,P) as a soft lattice topological space over L, gL
P be a soft

lattice over L and x ∈ L. Then x is said to be a soft L-interior point of gL
P if there exists a soft

L-open set f L
P such that x ∈ f L

P ⊂ gL
P.It is denoted by ( f L

P )
o.

Definition 2.12. [19] Let (L,τ,P) be a soft lattice topological space over L, gL
P be a soft lattice

over L and x ∈ L. Then gL
P is said to be a soft lattice neighbourhood of x if there exists a soft

L-open set f L
P such that x ∈ f L

P ⊂ gL
P.

Proposition 2.13. [19] Let (L,τ,P) be a soft L- space over L . Then the set τa = { f (a)| f L
P ∈ τ}

for all a ∈ P gives a topology on L.

Definition 2.14. [20] Consider f L
P as a soft lattice over L. The soft lattice f L

P is called a soft

L-point, denoted by (lp,P), for the element p∈ P, f (p) = {l} and f (p′) = φ for all p′ ∈ P−{l}.

Definition 2.15. [20] Let (L1,τ1,P) and (L2,τ2,P) be two soft lattice topological spaces. The

mapping fg is called a soft L-mapping from L1 to L2 denoted by fg : (L1,τ1,P) −→ (L2,τ2,P),

where f : L1 −→ L2 and g : P −→ P are two mappings. For each soft L-neighbourhood gL
P of

( f (l)p,P), if there exist a soft L-neighbourhood f L
P of (lp,P) such that fg( f L

P ⊂ gL
P), then fg is

said to be soft L-continuous mapping at (lp,P).

If fg is soft L-continuous mapping for all (lp,P), then fg is called soft L-continuous mapping.

Definition 2.16. [20] Let (L1,τ1,P) and (L2,τ2,P) be two soft lattice topological spaces,

fg : (L1,τ1,P)−→ (L2,τ2,P) be a mapping. Then

(a) If the image fg( f L
P ) of each soft L-open set f L

P over L1 is a soft L-open set in L2, then fg is

said to be a soft L-open mapping.

(b) If the image fg(hL
P) of each soft L-closed set hL

P over L1 is a soft L-closed set in L2, then fg

is said to be a soft L-closed mapping.

Theorem 2.17. [20] We know that (L1,τ1,P) and (L2,τ2,P) are two soft lattice topological

spaces, fg : (L1,τ1,P)−→ (L2,τ2,P) be a mapping. Then the following conditions are equiva-

lent:

(1) fg : (L1,τ1,P)−→ (L2,τ2,P) is a soft L-continuous mapping.

(2) For each soft L-open set GL
P over L2, f−1

g (gL
P) is a soft L-open set over L1.
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(3) For each soft L-closed set HL
P over L2, f−1

g (hL
P) is a soft L-closed set over L1.

(4) For each soft L-set FL
P over L1, fg( f L

P )⊂ fg( f L
P ).

(5) For each soft L-set GL
P over L2, f−1

g (gL
P)⊂ fg(gL

P).

(6) For each soft L-set gL
P over L2, f−1

g ((gL
P)

o)⊂ ( f−1
g (gL

P))
o.

Theorem 2.18. [20] If fg : (L1,τ1,P) −→ (L2,τ2,P) is a soft L-continuous mapping, then for

each α ∈ P, fgα : (L1,τ1α)−→ (L2,τ2α) is a soft continuous mapping.

Proposition 2.19. [20] If fgα : (L1,τ1α)−→ (L2,τ2α) is soft L-open(closed) mapping, then for

each α ∈ P, fgα : (L1,τ1α)−→ (L2,τ2α) is an soft open(closed) mapping.

Theorem 2.20. [20] Let (L1,τ1,P) and (L2,τ2,P) be two soft lattice topological spaces,

fg : (L1,τ1,P)−→ (L2,τ2,P) be a mapping. Then

(a) fg is a soft L-open mapping if for each soft L-set f L
P over L1,

fg(( f L
P )

o)⊂ ( fg( f L
P ))

o is satisfied.

(b) fg is a soft L-closed mapping if for each soft L-set f L
P over L1,

fg(( f L
P ))⊂ fg( f L

P ) is satisfied.

Definition 2.21. [20] Consider (L1,τ1,P) and (L2,τ2,P) as two soft lattice topological spaces,

fg : (L1,τ1,P)−→ (L2,τ2,P) be a mapping. If fg is a bijection, soft L-continuous and f−1
g is a

soft L-continuous mapping, then fg is said to be soft L-homeomorphism from L1 to L2.

When a soft homeomorphism fg exists between L1 and L2, we say that L1 is soft L-homeomorphic

to L2.

Theorem 2.22. [20] Let (L1,τ1,P) and (L2,τ2,P) be two soft lattice topological spaces,

fg : (L1,τ1,P)−→ (L2,τ2,P) be a bijection mapping. Then the following conditions are equiv-

alent:

(1) fg is a homeomorphism on soft L-topological space,

(2) fg is a continuous and closed mapping on soft L-topological space,

(3) fg is a continuous and open mapping on soft L-topological space.
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3. SOFT LATTICE CONTINUOUS MAPPING BETWEEN SOFT L-TOPOLOGICAL SPACES

In this subsection, we discuss the concept of Soft lattice continuous mapping between two

soft L-topological spaces with their related properties.

Consider the two initial universe sets be X and Y and let P be a non-empty parameter. The set of

all soft L-sets over X is denoted by SL1(X). Similarly, the set of all soft L-sets over Y is denoted

by SL2(Y ).

Definition 3.1. Let fg be a mapping from X to Y . Then

(1) The soft L-set mapping induced by fg, denoted f−→g is a soft mapping from SL1(X) to

SL2(Y ) that maps f L
P to f−→g ( f L

P ) = ( f−→g ( f L),P), where f−→g ( f L
P ) is defined by f−→g ( f L)(α) =

{ fg(l)|l ∈ f L)(α)}∀α ∈ P.

(2) The inverse soft L-set mapping induced by fg, denoted by the notation f←−g is a soft mapping

from SL2(Y ) to SL1(X) that maps gL
P to f←−g (gL

P) = ( f←−g (gL),P), where f←−g (gL
P) is defined by

f←−g (gL)(α) = {l| fg(l) ∈ gL)(α)}∀α ∈ P.

Example 3.2. Suppose L1 = {l1, l2, l3},L2 = {h1,h2},P = {p1, p2}. The mapping fg is given

by fg(l1) = h1, fg(l2) = h1, fg(l3) = h2.

(1) If f L
P ∈ SL1(X) is defined by { f (p1)= {l1, l2}, f (p2)= {l2, l3}}, then f−→g ( f L

P )= ( f−→g ( f L),P)=

{ f−→g f (p1) = {h1}, f−→g f (p2) = L2} ∈ SL2(Y ).

(2) If gL
P ∈ SL2(Y ) is defined by {g(p1) = {h2},g(p2) = {h1}}, then f←−g (gL

P) = ( f←−g (gL),P) =

{ f←−g g(p1) = {l3}, f←−g g(p2) = {l1, l2}} ∈ SL1(X).

Proposition 3.3. Let us consider fg to be a mapping from Xto Y , f L
1P, f L

2P ∈ SL1(X). Then

(1) f−→g (φ) = φ .

(2) f L
1P ⊂ f L

2P⇒ f−→g (FL
1P)⊂ f−→g ( f L

2P)

(3) f−→g ( f L
1P∪ f L

2P) = f−→g ( f L
1P)∪ f−→g ( f L

2P)

(4) f−→g ( f L
1P∩ f L

2P)⊂ f−→g ( f L
1P)∩ f−→g ( f L

2P).

Proposition 3.4. When fg be a mapping from X to Y , gL
1P,g

L
2P ∈ SL2(Y ). Then

(1) f←−g (φ) = φ , f←−g (Y ) = X

(2) gL
1P ⊂ gL

2P⇒ f←−g (gL
1P)⊂ f←−g (gL

2P)
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(3) f←−g (gL
1P∪gL

2P) = f←−g (gL
1P)∪ f←−g (gL

2P)

(4) f←−g (gL
1P∩gL

2P) = f←−g (gL
1P)∩ f←−g (gL

2P)

(5) f←−g (gL
1P)
′ = ( f←−g (gL

1P))
′.

Proposition 3.5. Consider fg be a mapping from Xto Y , f L
P ∈ SL1(X) and gL

P ∈ SL2(Y ). Then

(1) f←−g ( f−→g ( f L
P ))⊃ f L

P . If fg is one to one, then f←−g ( f−→g ( f L
P )) = f L

P .

(2) f−→g ( f←−g (gL
P))⊂ gL

P. If fg is surjective, then f−→g ( f←−g (gL
P)) = gL

P.

Proof. (1) Let f−→g (gL
P) = gL

P. Then ∀α ∈ P,

f←−g (gL)(α) = {l| fg(l) ∈ gL(α)}= {l| fg(l) ∈ { fg(t)|t ∈ f L(α)} ⊃ f L(α),

which implies f←−g ( f−→g ( f L
P ))⊃ f L

P .

If fg is one to one, then {l| fg(l) ∈ { fg(t)|t ∈ f L(α)}= f L(α), thus f←−g ( f−→g ( f L
P )) = f L

P .

(2) Let f−→g (gL
P) = f L

P . Then ∀α ∈ P,

f←−g ( f L)(α) = { fg(l)|l ∈ f L)(α)}= { fg(l)|l ∈ { fg(t)|t ∈ gL(α)} ⊃ gL(α),

which implies f←−g ( f−→g (gL
P))⊂ gL

P.

If fg is surjective, then { fg(l)|l ∈ { fg(t)|t ∈ gL(α)}= gL(α), thus f−→g ( f←−g (gL
P)) = gL

P. �

Definition 3.6. Let (L1,τ1,P) and (L2,τ2,P) be two soft lattice topological spaces over X and

Y respectively and fg be a mapping from X and Y . If ∀gL
P ∈ τ2, f←−g (gL

P) ∈ τ1, then fg is called

soft L-continuous mapping from (L1,τ1,P) to (L2,τ2,P).

Example 3.7. Suppose L1 = {l1, l2, l3},L2 = {h1,h2,h3},P= {p1, p2} and τ1 = {φ ,L1, f L
1P, f L

2P}

is a soft L-topological space over X, where f L
1P, f L

2P are soft lattices over X defined by

f1(p1) = {l2}, f1(p2) = {l1},

f2(p1) = {l2, l3}, f2(p2) = {l1, l2}.

Then τ1 is a soft L-topology on X and hence (L1,τ1,P) is a soft lattice topological spaces over

X.

Also τ2 = {φ ,L2,gL
1P,g

L
2P} is a soft L-topological space over Y , where gL

1P,g
L
2P are soft lattices

over Y , defined as

g1(p1) = {h1},g1(p2) = {h2},

g2(p1) = {h1,h3},g2(p2) = {h1,h2},

If fg : L1 −→ L2 as fg(l1) = h2, fg(l2) = h1, fg(l3) = h3.
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Now f←−g (gL
P) ∈ τ1 for all gL

P ∈ τ2.

Thus fg is a soft L-continuous mapping from (L1,τ1,P) to (L2,τ2,P).

Proposition 3.8. We have (L1,τ1,P) and (L2,τ2,P) as the two soft lattice topological spaces

over X and Y respectively. If fg is soft L-continuous mapping from (L1,τ1,P) to (L2,τ2,P), then

fg is a soft continuous mapping from fg to (L1,τ1α) to (L2,τ2α) for all α ∈ P.

Proof. Using proposition 2.17, (L1,τ1α) and (L2,τ2α) are two soft lattice topological spaces for

all α ∈ P. If A ∈ τ2α , then there exists a soft L-set gL
P ∈ τ2 such that A = g(α).

Since fg is soft L-continuous mapping from (L1,τ1,P) to (L2,τ2,P), then f←−g (gL
P) ∈ τ1. Thus

f−1
g (A) = f−1

g (g(α)) = {l| fg(l) ∈ g(α)}= f←−g (g(α)) ∈ τ1α .

By the definition of soft continuous, fg is a soft continuous mapping from (L1,τ1α)−→ (L2,τ2α)

for all α ∈ P. This proposition tells that a soft L-continuous mapping gives a parameterized

family of soft continuous mapping. �

Example 3.9. Suppose L1 = {l1, l2, l3},L2 = {h1,h2,h3},P= {p1, p2} and τ1 = {φ ,L1, f L
1P, f L

2P}

is a soft L-topological space over X, where f L
1P, f L

2P are soft lattices over X defined by

f1(p1) = {l2}, f1(p2) = {l1},

f2(p1) = {l2, l3}, f2(p2) = {l1, l2}.

Then τ1 is a soft L-topology on X and hence (L1,τ1,P) is a soft lattice topological spaces over

X.

Also τ2 = {φ ,L2,gL
1P,g

L
2P} is a soft L-topological space over Y , where gL

1P,g
L
2P are soft lattices

over Y , defined as

g1(p1) = {h1},g1(p2) = {h2},

g2(p1) = {h1,h3},g2(p2) = {h1,h2},

If fg : X −→ Y as fg(l1) = h2, fg(l2) = h1, fg(l3) = h3.

Now f←−g (gL
P) ∈ τ1 for all gL

P ∈ τ2.

Thus fg is a soft L-continuous mapping from (L1,τ1,P) to (L2,τ2,P).

Here by proposition 2.17, τ1p1 = {φ ,L1,{l2},{l2, l3}} and τ1p2 = {φ ,L1,{l1},{l1, l2}} are two

topologies on X.

τ2p1 = {φ ,L2,{h1},{h1,h3}} and τ2p2 = {φ ,L2,{h1,h2}} are two topologies on Y .
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Hence fg is a soft continuous mapping from (L1,τ1p1) to (L2,τ2p1) and also a soft continuous

mapping from (L1,τ1p2) to (L2,τ2p2).

The following example shows that the inverse of proposition 3.8 does not hold in general.

Example 3.10. Suppose L1 = {l1, l2, l3},L2 = {h1,h2,h3},P= {p1, p2} and τ1 = {φ ,L1, f L
1P, f L

2P}

is a soft L-topological space over X, where f L
1P, f L

2P are soft lattices over X defined by

f1(p1) = {l2}, f1(p2) = {l1},

f2(p1) = {l2, l3}, f2(p2) = {l1, l2}.

Then τ1 is a soft L-topology on X and hence (L,τ1,P) is a soft lattice topological spaces over

X.

Let Y = {h1,h2,h3},τ2 = {φ ,L2,gL
3P} , where the soft L-set gL

3P over Y defined by g3(p1) =

{h1},g3(p2) = {h1,h2}.

If fg is a mapping from (L1,τ1,P) to (L2,τ2,P).

Here by proposition 2.17, τ1p1 = {φ ,L1,{l2},{l2, l3}} and τ1p2 = {φ ,L1,{l1},{l1, l2}} are two

topologies on X.

Also τ2p1 = {φ ,L2,{h1},{h1,h3}} and τ2p2 = {φ ,L2,{h1,h2}} are two topologies on Y .

Hence fg is a continuous mapping from (L1,τ1p1) to (L2,τ2p1) and also from (L1,τ1p2) to

(L2,τ2p2).

However, f←−g (gL
3P) = { f←−g (g3(p1) = {l2}, f←−g (g3(p2) = {l1, l2}} /∈ τ1

This implies fg is not a soft L-continuous mapping from (L1,τ1,P) to (L2,τ2,P). The following

proposition gives some equivalence characterizations of soft L-continuous mapping.

Proposition 3.11. We take (L1,τ1,P) and (L2,τ2,P) as two soft lattice topological spaces over

X and Y respectively and fg : X −→ Y . The following conditions are equivalent:

(1) fg is a soft L-topological mapping from (L1,τ1,P) to (L2,τ2,P).

(2) For each soft L-closed set gL
P in Y , f←−g (gL

P) is a soft L-closed set in X.

(3) For each soft L-set f L
P in X, f−→g ( f L

P )⊂ f−→g ( f L
P ).

(4) For each soft L-set gL
P in Y , f←−g (gL

P)⊃ f←−g (gL
P).

Proof. (1)⇒ (2): Let gL
P be a soft L-closed set in Y . Then (gL

P)
′ is a soft L-closed set in Y .

By (1) and Proposition 3.4, f←−g ((gL
P)
′) = ( f←−g (gL

P))
′ is a soft L-closed set in X .
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Hence f←−g (gL
P) is a soft L-closed set in X .

(2)⇒ (3): Let f L
P be a soft L-set in X .

By theorem 2.16, f−→g ( f L
P )⊂ f−→g ( f L

P ).

Then by Proposition 3.4 and Proposition 3.5, f L
P ⊂ f←−g ( f−→g ( f L

P ))⊂ f←−g ( f−→g ( f L
P )).

Since f−→g ( f L
P ) is a soft L-closed set in Y , then by (2), f←−g ( f−→g ( f L

P )) is a soft L-closed set in

X .

Thus ( f L
P )⊂ f←−g ( f−→g ( f L

P )).

Also by Proposition 3.3 and Proposition 3.5,

f−→g ( f L
P ))⊂ f−→g ( f←−g ( f−→g ( f L

P )))⊂ f−→g ( f L
P ).

So f−→g ( f L
P ))⊂ f−→g ( f L

P ).

(3)⇒ (4): Let gL
P be a soft L-set in Y .

By (3), Proposition 3.5 and theorem 2.16,

f−→g ( f←−g (gL
P))⊂ f−→g ( f←−g (gL

P))⊂ (gL
P).

Then by Proposition 3.4 and Proposition 3.5,

f←−g (gL
P)⊃ f←−g ( f−→g ( f←−g (gL

P)))⊃ f←−g (gL
P).

So f←−g (gL
P)⊃ f←−g (gL

P).

(4)⇒ (1): Let gL
P be a soft L-closed set in Y . Then (gL

P)
′ is a soft L-closed set in Y .

By (4) and theorem 2.16, f←−g ((gL
P)
′)⊂ f←−g ((gL

P)
′).

Obviously, f←−g ((gL
P)
′)⊃ f←−g (gL

P)
′).

Thus f←−g ((gL
P)
′) = f←−g ((gL

P)
′) = ( f←−g (gL

P))
′ [By 2] which soft L-closed set in X .

Therefore f←−g (gL
P) is a soft L-closed set in X .

Hence fg is a soft L-topological mapping from (L1,τ1,P) to (L2,τ2,P). �

4. SOFT L-CONTINUOUS MAPPING - SOFT L-HOMEOMORPHISM

Theorem 4.1. We consider (L1,τ1,P) and (L2,τ2,P) be two soft lattice topological spaces,

fg : (L1,τ1,P)−→ (L2,τ2,P) be a mapping. Then fg is soft L-continuous if and only if fg( f L
P )⊂

fg(( f L
P )).

Proof. Consider fg be soft L-continuous. Since fg(( f L
P )) is a soft L-closed set in L2, f−1

g fg(( f L
P ))

is soft L-closed set in L1 containing f L
P .
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Also, ( f L
P ) is the smallest soft L-closed set in L1 containing f L

P .

Therefore, ( f L
P )⊂ f−1

g fg(( f L
P )).

Hence fg( f L
P )⊂ fg(( f L

P )).

Conversely, let fg( f L
P )⊂ fg(( f L

P )).

Let f L
P be a soft L-closed set in L2. Then

fg f−1
g ( f L

P )⊂ fg f−1
g ( f L

P )⊂ ( f L
P ) = f L

P .

Hence f−1
g ( f L

P )⊂ f−1
g ( f L

P ).

Therefore f−1
g ( f L

P ) is soft L-closed set.

Thus fg be soft L-continuous. �

Theorem 4.2. A bijection soft L-continuous mapping fg is a soft L-homeomorphism if and only

if fg( f L
P (α)) = fg( f L

P )(α)∀α ∈ P.

Proof. Let fg be soft L-homeomorphism.

Then by theorem 4.1, fg is soft L-continuous and soft L-closed mapping.

By theorem 2.19, if fg is soft L-closed mapping if for each soft L-set f L
P over L and for every

α ∈ P, fg( f L
P (α))⊂ fg( f L

P )(α) is satisfied.

Now we need to show that fg( f L
P )(α)⊂ fg( f L

P (α)).

Since ( f L
P ) is a soft L-closed set in L1 and fg is soft L-closed mapping, fg( f L

P )(α) is a soft

L-closed set in L2 which is containing fg( f L
P ).

Since fg( f L
P ) is the smallest soft L-closed set containing fg( f L

P ), we have fg( f L
P ) = fg( f L

P ).

Conversely, if fg is bijective and the condition holds.

i.e., fg( f L
P (α)) = fg( f L

P )(α)∀α ∈ P.

Then by theorem 2.21, fg is soft L-continuous.

Let f L
P be a soft L-closed set in L1. Then ( f L

P ) = f L
P .

Therefore, fg( f L
P ) = fg( f L

P ).

Then by the given condition, fg( f L
P ) = fg( f L

P ).

Hence f L
P be a soft L-closed set in L2. �



MAPPINGS AND PRODUCTS IN SOFT L-TOPOLOGICAL SPACES 4955

Theorem 4.3. Let us consider (L1,τ1,P) and (L2,τ2,P) to be two soft lattice topological spaces.

Then fg is a soft L-homeomorphism if and only if fg : (L1,τ1,P)−→ (L2,τ2,P) is a soft home-

omorphism.

Proof. The proof follows from theorem 2.21. �

5. CARTESIAN PRODUCT OF SOFT L-SETS AND SOFT L-PRODUCT TOPOLOGY

Definition 5.1. Let SS(L)P be the collection of all soft L-sets with a set of parameter P over L

and A and B are subsets of P.

The cartesian product of soft L-sets f L
P ∈ SS(L1)A and gL

P ∈ SS(L2)B is a soft L-set ( f L
P ×gL

P,A×

B) in SS(L1×L2)A×B, where

f L
P ×gL

P : A×B−→ P(L1)×P(L2) is a mapping given by

( f L
P ×gL

P)(a,b) = f L
P (a)×gL

P(b) for each (a,b) ∈ A×B.

Definition 5.2. Let f L
P1

, f L
P2

be soft L-sets in SS(L)P1 and SS(L)P2 respectively, where P1 and P2

are two different parameters. Then the cartesian product of f L
P1

and f L
P2

denoted by f L
P1
× f L

P2
in

SS(L)P1×P2 is defined as ( f L
P1
× f L

P2
)(p1, p2) = f L

P1
(p1)× f L

P2
(p2).

Definition 5.3. Let (L1,τ1,P1) and (L2,τ2,P2) be two soft lattice topological spaces. The soft

lattice topological space (L1×L2,τ,P1×P2), where τ is the collection of all soft lattice unions

of elements of { f L
P1
× gL

P2
: f L

P1
∈ τ1,gL

P2
∈ τ2} is called soft L-product topological space over

L1×L2.

Symbolically, we write τ = τ1× τ2.

Proposition 5.4. Let f L
1P1

, gL
1P1
∈ SS(L)P1 and f L

2P2
, gL

2P2
∈ SS(L)P2 . Then

(i)φ L
P1
× f L

2P2
= f L

1P1
×φ L

P2
= φ L

P1×P2

(ii)( f L
1P1
× f L

2P2
)∩ (gL

1P1
×gL

2P2
) = ( f L

1P1
∩gL

1P1
)× ( f L

2P2
∩gL

2P2
)

Proof. (i) Let φ L
1 = φ L

1P1
,φ L

2 = φ L
2P2

and f L
1 = f L

1P1
, f L

2 = f L
2P2

. Then we have

( f L
1 ×φ L

2 )(p1, p2) = f L
1 (p1)×φ L

2 (p2)

= f L
1 (p1)×φ L

= φ L
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= φ L× f L
2 (p2)

= φ L(p1)× f L
2 (p2)

= (φ L
1 × f L

2 )(p1, p2)

This implies (i).

(ii) Let ( f L
1 × f L

2 ,P1×P2)∩ (gL
1 × gL

2 ,P1×P2) = (hL,P1×P2), ( f L
1P1
∩ gL

1P1
) = iLP1

and ( f L
2P2
∩

gL
2P2

) = jL
P2

. Then

hL(p1, p2) = ( f L
1 × f L

2 )(p1, p2)∩ (gL
1×gL

2)(p1, p2)

= ( f L
1 (p1)× f L

2 (p2))∩ (gL
1(p1)×gL

2(p2))

= ( f L
1 (p1)∩ f L

2 (p2))× (gL
1(p1)∩gL

2(p2))

= iL(p1)× jL(p2)

= (iL× jL)(p1, p2)

Hence (hL,P1×P2)× jL
P2

. �

Proposition 5.5. Let (L1,τ1,P1) and (L2,τ2,P2) be two soft lattice topological spaces. Let

B = { f L
P1
× gL

P2
| f L

P1
∈ τ1,gL

P2
∈ τ2} and τ be the collection of all arbitrary union of elements of

B. Then τ is a soft L- topology over L1×L2.

Proof. We have

φ L
1 = φ L

1P1
∈ τ1,φ

L
2 = φ L

2P2
∈ τ2.

Then by proposition 5.12;

φ L
1P1
×φ L

2P2
= φ L

P1×P2
.

Moreover L1 = L1P1
∈ τ1 and L2 = L2P2

∈ τ2.

Then L1×L2 = (L1P1
×L2P2

,P1×P2)

such that the following holds:

(L1P1
×L2P2

)(p1, p2) = L1P1
(p1)×L2P2

(p2)

= L1P1
×L2P2

, for each (p1, p2) ∈ P1×P2.

Therefore L1×L2 ∈ τ .

Let f L
P1×P2

,gL
P1×P2

∈ τ . Then ∃ the elements f L
αP1
×gL

βP2
, f L

βP1
×gL

αP2
,α ∈ iL,β ∈ jL of B such that

f L
P1×P2

= ∪α∈iL( f L
α ×gL

α ,P1×P2),

gL
P1×P2

= ∪β∈ jL( f L
β
×gL

β
,P1×P2),

Let hL
P1×P2

= f L
P1×P2

∩gL
P1×P2

. Then we have
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hL(p1, p2) = f L(p1, p2)∩gL(p1, p2)

= [∪α∈iL( f L
α(p1)×gL

α(p2)]∩ [∪β∈ jL( f L
β
(p1)×gL

β
(p2)]

= ∪β∈ jL ∪α∈iL [[ f
L
α(p1)×gL

α(p2)]∩ [ f L
β
(p1)×gL

β
(p2)]]

= ∪β∈ jL ∪α∈iL [[ f
L
α(p1)∩gL

α(p2)]× [ f L
β
(p1)∩gL

β
(p2)]]

= ∪α∈iL ∪β∈ jL [( f L
α ∩ f L

β
)(p1)× (gL

α ∩gL
β
)(p2)]

= ∪α∈iL ∪β∈ jL ( f L
α ∩ f L

β
×gL

α ∩gL
β
)(p1, p2)

Hence hL
P1×P2

= ∪α∈iL,β∈ jL( f L
α ∩ f L

β
×gL

α ∩gL
β
)P1×P2

hL
P1×P2

= ∪α∈iL,β∈ jL( f L
α ∩ f L

β
)P1× (gL

α ∩gL
β
)P2

=⇒ hL
P1×P2

∈ τ .

Thus an arbitrary union of elements of τ is an elements in τ . �

Proposition 5.6. Let Let f L
P1

and gL
P2

be soft lattices in SS(L1)P1 and SS(L2)P2 respectively. Then

( f L
P1
×gL

P2
)′ = ( f L′

P1
×L2)∪ (L1×gL′

P2
).

Proof. Let [( f L×gL)P1×P2]
′ = ( f L×gL)′P1×P2

. Then

( f L×gL)′(p1, p2) = (L1×L2)− [( f L×gL)(p1, p2)]

= (L1×L2)− [( f L(p1)×gL(p2)]

= [(L1− f L(p1)×L2)]∪ [L1× (L2−gL(p2))]

Also ( f L′
P1
×L2)∪ (L1×gL′

P2
) = ( f L′×L2)P1×P2 ∪ (L1×gL′)P1×P2

Let us take soft lattice as hL
P1×P2

. Then

hL(p1, p2) = ( f L′×L2)(p1, p2)∪ (L1×gL′)(p1, p2)

= [ f L′(p1)×L2]∪ [L1×gL′(p2)]

= [(L1− f L(p1)×L2))]∪ [L1× (L2−gL(p2))]. �

Corollary 5.7. Let f L
P1

and gL
P2

be soft L-closed set in soft lattice topological spaces (L1,τ1,P1)

and (L2,τ2,P2) respectively. Then f L
P1
× gL

P2
is soft L-closed set in soft L-product space (L1×

L2,τ,P1×P2).

Proof. It is obvious that f L′
P1

and L1 are soft L-open sets in (L1,τ1,P1) and gL′
P2

and L2 are soft

L-open sets in (L2,τ2,P2).

Now by Proposition 5.6; ( f L
P1
×gL

P2
)′ is soft L-open in (L1×L2,τ,P1×P2).

Hence f L
P1
×gL

P2
is soft L-closed set in soft L-product space (L1×L2,τ,P1×P2). �



4958 SANDHYA S. PAI, T. BAIJU

6. CONCLUSION

Topological structures on soft sets are more generalized methods and they can be useful for

measuring the similarities and dissimilarities between the objects in a universe which are soft

sets.The concept of soft L-topological spaces are defined over a soft lattice with a fixed set

of parameter. Also soft L-continuous mappings are defined over an initial universe set with a

fixed set of parameters. This paper deals with the mappings and cartesian products in soft L-

topological spaces. The concept of soft L-continuous mapping between two soft L-topological

spaces is first proposed. Moreover, some results based on soft L-homeomorphism are also

proved. The concept of cartesian product of soft L-sets are defined and some interesting results

are obtained in the last section.
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