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Abstract. We show that let P be a class of unital C∗-algebras which have tracial topological rank zero (stable

rank one). Then A has tracial topological rank zero (stable rank one) for any simple unital C∗-algebra A∈WTAP.
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1. INTRODUCTION

Inspired by Lin’s tracial approximation by interval algebras in [20], Elliott and Niu in [7]

considered the natural notion of tracial approximation by other classes of C∗-algebras. Let P be

a class of unital C∗-algebras. Then the class of C∗-algebras which can be tracially approximated

by C∗-algebras in P, denoted by TAP, is defined as follows. A simple unital C∗-algebra A

is said to belong to the class TAP if, for any ε > 0, any finite subset F ⊆ A, and any element

a≥ 0, there is a projection p ∈ A and a C∗-subalgebra B of A with 1B = p and B ∈P such that

(1) ‖xp− px‖< ε for all x ∈ F ,

(2) pxp ∈ε B for all x ∈ F , and

(3) 1− p is Murray-von Neumann equivalent to a projection in aAa.
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Let P be a class of finite dimensional C∗-algebras. Then the class of C∗-algebras which

can be tracially approximated by C∗-algebras in P is called tracial topological rank zero and

denoted by TR(A) = 0.

Hirshberg and Orovitz introduce the tracially Z -absorbing in [18], they show that tracially

Z -absorbing is equivalence Z -stability for separable simple amenable unital C∗-algebra in

[18].

Inspired by Hirshberg and Orovitz’s tracial Z -absorbing, Fu introduced some type finite tra-

cial nuclear dimension in his doctoral dissertation in [13] and introduced certain tracial approx-

imation C∗-algebras in [14], and he show that finite tracial nuclear dimension implies tracially

Z -absorbing for separable, exact simple C∗-algebra with non-empty tracial state space.

Inspired by Fu’s finite tracial nuclear dimension and the general tracial topological rank one

in [6], Fan and Yang introduced certain weak tracial approximation by a class of unital C∗-

algebras in [27]. Let P be a class of unital C∗-algebras. Then the class of unital simple C∗-

algebras which can be weak tracial approximation by P is denote by WTAP , A simple unital

C∗-algebra A is said to belong to the class WTAP if, for any ε > 0, any finite subset F ⊆ A,

any nonzero positive element a of A, there exist a unital C∗-subalgebra B of A with B ∈P

and completely positive contractive linear maps ϕ : A→ A and ψ : A→ B with ϕ(A)⊥ B, i.e.,

ϕ(A)B = 0, such that

(1) ϕ(1). a, and

(2) ‖x−ϕ(x)−ψ(x)‖< ε , for any x ∈ F .

In this paper, let P be a class of unital C∗-algebras which have stable rank one (tracial

topological rank zero). Then A has stable rank one (tracial topological rank zero) for any simple

unital C∗-algebra A ∈WTAP.

2. PRELIMINARIES

Recall that a unital C∗-algebra A is said to have stable rank one, written tsr(A) = 1, if the set

of invertible elements is dense in A.

Recall that a C∗-algebra A has SP property, if every nonzero hereditary C∗-subalgebra of A

contains a nonzero projection.
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Let a and b be positive elements of a C∗-algebra A. We write [a] ≤ [b] if there is a partial

isometry v ∈ A∗∗ with vv∗ = Pa such that, for every 0≤ c ∈ Her(a), cv ∈ A and v∗cv ∈ Her(b).

([a] ≤ [b] implies that a is Cuntz subequivalent to b, i.e. a . b. If A has stable rank one then,

by [2], [a] ≤ [b] if a . b but even in this case the preorder relation [a] ≤ [b] is not necessarily

an order relation.) We write [a] = [b] if, for some v as above, v∗Her(a)v = Her(b). Let n be

a positive integer. We write n[a] ≤ [b] if in addition there are n mutually orthogonal positive

elements b1, b2, · · · , bn ∈ Her(b) such that [a] ≤ [bi], i = 1, 2, · · · , n (see Definition 1.1 of

[23], Definition 3.2 of [22], or Definition 3.5.2 of [21].)

Let 0 < σ ≤ 1 be two positive numbers. Define

fσ (t) =


1 i f t ≥ σ

2t−σ

σ
i f σ/2≤ t ≤ σ

0 i f 0 < t ≤ σ/2.

Let A be a C∗-algebra, and let Mn(A) denote the C∗-algebra of n× n matrices with entries

elements of A. Let M∞(A) denote the algebraic inductive limit of the sequence (Mn(A),φn),

where φn : Mn(A)→Mn+1(A) is the canonical embedding as the upper left-hand corner block.

Let M∞(A)+ (resp. Mn(A)+) denote the positive elements of M∞(A) (resp. Mn(A)). For positive

elements a and b of M∞(A), write a⊕b to denote the element diag(a, b), which is also positive

of M∞(A). Given a,b ∈M∞(A)+, we say that a is Cuntz subequivalent to b (written a . b) if

there is a sequence (vn)
∞
n=1 of elements of M∞(A) such that

lim
n→∞
‖vnbv∗n−a‖= 0.

We say that a and b are Cuntz equivalent (written a ∼ b) if a . b and b . a. We write 〈a〉 for

the equivalence class of a.

Hirshberg and Orovitz introduce the tracially Z -absorbing in [18], they show that tracially

Z -absorbing is equivalence Z -stability for separable simple amenable unital C∗-algebra in

[18].

Inspired by Hirshberg and Orovitz’s tracial Z -absorbing, some finite tracial nuclear dimen-

sions were introduced by Fu in his doctoral dissertation in [13].
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Definition 2.1. ([13].) A unital C∗-algebra A is said to have type III tracial nuclear dimension

at most m, denote T3dimnuc(A) ≤ m, if for any ε > 0, any finite subset F ⊆ A, any nonzero

positive element a of A, there exist a unital C∗-subalgebra B of A with dimnuc(B) ≤ m and

contractive completely positive linear maps ϕ : A→ A and ψ : A→ B with ϕ(A) ⊥ B, i.e.,

ϕ(A)B = 0, such that

(1) ϕ(1). a, and

(2) ‖x−ϕ(x)−ψ(x)‖< ε , for any x ∈ F.

Inspired by Fu’s finite tracial nuclear dimension and the general tracial topological rank one

in [6], Fan and Yang introduced certain weak tracial approximation by a class of unital C∗-

algebras in [27].

Let P be a class of unital C∗-algebras. Then the class of unital C∗-algebras which can be

weak tracial approximated by C∗-algebras in P , denoted by WTAP , is defined as follows.

Definition 2.2. ([27].) A unital C∗-algebra A is said to belong to the class WTAP , if for any

ε > 0, any finite subset F ⊆ A, any nonzero positive element a of A, there exist a unital C∗-

subalgebra B of A with B ∈P and completely positive contractive linear maps ϕ : A→ A and

ψ : A→ B with ϕ(A)⊥ B, i.e., ϕ(A)B = 0, such that

(1) ϕ(1). a, and

(2) ‖x−ϕ(x)−ψ(x)‖< ε , for any x ∈ F.

Let P be a class of unital C∗-algebras such that dimnuc ≤ n for any B∈P , then A∈WTAP

if and only if T3dimnuc(A)≤ n.

Theorem 2.3. ([1], [18], [25], [26].) Let A be a stably finite C∗-algebra.

(1) Let a, b ∈ A+ and ε > 0 be such that ‖a−b‖< ε . Then there is a contraction d in A with

(a− ε)+ = dbd∗.

(2) Let a, p be positive elements in M∞(A) with p a projection. If p . a, then there is b in

M∞(A)+ such that bp = 0 and b+ p∼ a.

(3) The following conditions are equivalent: (1)′ a. b, (2)′ for any ε > 0, (a−ε)+ . b, and

(3)′ for any ε > 0, there is δ > 0, such that (a− ε)+ . (b−δ )+.
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(4) Let a be a purely positive element of A (i.e., a is not Cuntz equivalent to a projection).

Let δ > 0, and let f ∈C0(0,1] be a non-negative function with f = 0 on (δ ,1), f > 0 on (0,δ ),

and ‖ f‖= 1. We have f (a) 6= 0 and (a−δ )++ f (a). a.

(5) Let a,b ∈ A satisfy 0≤ a≤ b. Let ε > 0, then (a− ε)+ . (b− ε)+.

The following Theorem is lemma 3.3 in [16].

Theorem 2.4. ([6]) Let 1 > ε > 0 and 1 > σ > 0 be given. There exists δ > 0 satisfying the

following condition: If A is a C∗-algebra, and if x,y ∈ A+ are such that 0≤ x,y≤ 1 and

‖x− y‖< δ ,

then there exists a partial isometry w ∈ A∗∗ with ww∗ fσ (x) = fσ (x)ww∗ = fσ (x),

wHer( fσ (x))w∗ ⊂ Her(y) and

w∗cw ∈ yAy,‖w∗cw− c‖< ε‖c‖

for all c ∈ fσ (x)A fσ (x).

3. MAIN RESULTS

The technique in the proof of the following Theorem is take from [13] or from [14].

Theorem 3.1. If the class P is closed under tensoring with matrix algebras, or closed under

passing to hereditary C∗-subalgebras, then the class WTAP is closed under tensoring with

matrix algebras or passing to unital hereditary C∗-subalgebras.

Proof. (I) Write B = qAq for some projection q ∈ A. We will prove that B ∈WTAP .

Take ε = ε

16 ,σ = ( ε

32)
2, there exits δ1 > 0 which satisfy Theorem 2.4.

Take ε = δ1
4 ,σ = (δ1

4 )
2, there exits δ2 > 0 which satisfy Theorem 2.4.

For any finite subset F ⊆ B contain a nonzero positive element a∈ B+, since A∈WTAP , for

G = F ∪{q}, any δ2 > 0, there exist a unital C∗-subalgebra B of A with B ∈P and completely

positive contractive linear maps ϕ ′ : A→ A and ψ ′ : A→C with ϕ ′(A) ⊥C, i.e., ϕ ′(A)C = 0,

such that

(1) ϕ ′(1). a, and
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(2) ‖x−ϕ ′(x)−ψ ′(x)‖< δ2, for any x ∈ F .

Let q′ = ϕ ′(q)+ψ ′(q), then ‖q−q′‖< δ2.

By Theorem 2.4, there exists a partial isometry w∈A∗∗ with ww∗ f
(

δ1
4 )2(q

′)= f
(

δ1
4 )2(q

′)ww∗=

f
(

δ1
4 )2(q

′), wHerA( f
(

δ1
4 )2(q

′))w∗ ⊂ HerA(q′) and

w∗cw ∈ q′Aq′,‖w∗cw− c‖< δ1

4
‖c‖

for all c ∈ f
(

δ1
4 )2(q′)A f

(
δ1
4 )2(q′).

Since ‖ϕ ′(q)− f
(

δ1
4 )2(q

′)ϕ ′(q) f
(

δ1
4 )2(q

′)‖< δ1
4 , then ‖ϕ ′(q) −w f

(
δ1
4 )2(q

′) ϕ ′(q) f
(

δ1
4 )2(q

′)w∗‖

< δ1
2 (since ‖w∗cw− c‖< δ1

4 ‖c‖ for all c ∈ f
(

δ1
4 )2(q′)A f

(
δ1
4 )2(q′)).

Let q = w f
(

δ1
4 )2(q

′)ϕ ′(q) f
(

δ1
4 )2(q

′)w∗, then we have ‖q−ϕ ′(q)‖< δ1
2 .

By Theorem 2.4, there exists a partial isometry v ∈ A∗∗ with vv∗ f( ε

32 )
2(ϕ ′(q)) =

f( ε

32 )
2(ϕ ′(q))vv∗ = f( ε

32 )
2(ϕ ′(q)), vHerA( f( ε

32 )
2(ϕ ′(q)))v∗ ⊂ HerA(q) and

v∗cv ∈ ϕ ′(q)Aϕ ′(q),‖v∗cv− c‖< ε

16
‖c‖

for all c ∈ f( ε

32 )
2(ϕ ′(q))A f( ε

32 )
2(ϕ ′(q)).

Since ‖ψ ′(q) − f
(

δ1
4 )2(q

′)ψ ′(q) f
(

δ1
4 )2(q

′)‖ < δ1
4 , then ‖ψ ′(q) − w f

(
δ1
4 )2(q

′)

ψ ′(q) f
(

δ1
4 )2(q

′)w∗‖< δ1
2 (since ‖w∗cw− c‖< δ1

4 ‖c‖ for all c ∈ f
(

δ1
4 )2(q)A f

(
δ1
4 )2(q)).

Let q = w f
(

δ1
4 )2(q

′)ψ ′(q) f
(

δ1
4 )2(q

′)w∗, then we have ‖q−ψ ′(q)‖< δ1
2 .

By Theorem 2.4, there exists a partial isometry u ∈ A∗∗ with uu∗ f( ε

32 )
2(ψ ′(q)) =

f( ε

32 )
2(ψ ′(q))uu∗ = f( ε

32 )
2(ψ ′(q)), uHerA( f( ε

32 )
2(ψ ′(q)))u∗ ⊂ HerA(q) and

u∗cu ∈ qAq,‖u∗cu− c‖< ε

16
‖c‖

for all c ∈ f( ε

32 )
2(ψ ′(q))A f( ε

32 )
2(ψ ′(q)).

Define D = uHerC( f( ε

32 )
2(q)ψ(q′) f( ε

32 )
2(q′))u∗ ⊂ uHerA( f( ε

32 )
2(q′) ψ(q) f( ε

32 )
2(q′))u∗ ⊂ B,

we have D∼= HerC(( f( ε

32 )
2(q′)ψ(q) f( ε

32 )
2(q′)), then D ∈Ω.

We define ϕ : A→ A by taking x to v f( ε

32 )
2(ϕ ′(q))ϕ ′(x) f( ε

32 )
2(ϕ ′(q))v∗ and ψ : A→ D by

taking x to u f( ε

32 )
2(ψ ′(q))ψ ′(x) f( ε

32 )
2(ψ ′(q))u∗, then we have ϕ and ψ are completely positive

contractive linear maps with ϕ(A)⊥ D, i.e., ϕ(A)D = 0.
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We have (1)

‖x−ϕ(x)−ψ(x)‖

≤ ‖x−ϕ ′(x)−ψ ′(x)‖+‖ϕ(x)−ϕ ′(x)‖+‖ψ(x)−ψ ′(x)‖

≤ 3ε +‖v f( ε

32 )
2(ϕ ′(q))ϕ ′(x) f( ε

32 )
2(ϕ ′(q))v∗− f( ε

32 )
2(ϕ ′(q))ϕ ′(x) f( ε

32 )
2(ϕ ′(q))‖

+‖ϕ ′(x)− f( ε

32 )
2(ϕ ′(q))ϕ ′(x) f( ε

32 )
2(ϕ ′(q))‖

‖v f( ε

32 )
2(ψ ′(q))ψ ′(x) f( ε

32 )
2(ψ ′(q))v∗− f( ε

32 )
2(ψ ′(q))ψ ′(x) f( ε

32 )
2(ψ ′(q))‖

+‖ψ ′(x)− v f( ε

32 )
2(ψ ′(q))ψ ′(x) f( ε

32 )
2(ψ ′(q))v∗‖ ≤ 7ε.

(2) ϕ(q) = v fσ (
ε

32)
2(ϕ ′(q))ϕ ′(q) f( ε

32 )
2(ϕ ′(q))v∗ . ϕ ′(q) . b in A, since B is a hereditary

C∗-subalgebra of A, then we have ϕ(q). b in B.

(II) For any finite subset F ⊆Mn(A) contains a nonzero positive element b ∈Mn(A)+, any

ε > 0, as the same argument as Theorem 3.7.3 in [21], there are mutually orthogonal and mu-

tually equivalent projections e1,e2, · · · ,en in Her(b) such that each of them is equivalent to a

projection e0 ∈ A.

Take G = {ai j : (ai j)n×n ∈ F}. For δ > 0, since A ∈ WTAP , there exist a unital C∗-

subalgebra B of A with B ∈P and completely positive contractive linear maps ϕ : A→ A

and ψ : A→ B with ϕ(A)⊥ B, i.e., ϕ(A)B = 0, such that

(1)′ ϕ(1). e0, and

(2)′ ‖x−ϕ(x)−ψ(x)‖< δ , for any x ∈ F .

Define Φ := ϕ ⊗ id : A⊗Mn → A⊗Mn and Ψ : ψ ⊗ id : A⊗Mn → B⊗Mn, if we take δ

sufficiently small, then, we have

(1) ϕ(1A⊗Mn) = ∑1⊗ ei,i . ∑e0⊗ ei,i . b, and

(2) ‖x−ϕ(x)−ψ(x)‖< ε , for any x ∈ F .

�

Theorem 3.2. Let P be a class of unital C∗-algebras which have tracial topological rank zero.

Then A has tracial topological rank zero for any simple infinite dimensional unital C∗-algebra

A ∈WTAP .
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Proof. We need to show that for any ε > 0, any finite subset F of A, any nonzero positive

element b of A, there exist a projection p ∈ A and unital C∗- subalgebra D of A and D is finite

dimensional algebra with 1D = p such that

(1) ‖px− xp‖< ε for any x ∈ F ,

(2) ‖pxp ∈ε D for any x ∈ F , and

(3) [1− p]≤ [b].

Since A is an infinite dimensional simple unital C∗-algebra there exist non-zero positive ele-

ments b1, b2 ∈ A+, such that b1b2 = 0 and b1 +b2 . b.

Since A ∈WTAP , for ε > 0, finite subset F ∪{1A} of A, non-zero positive element b1 of A,

there exist a unital C∗- subalgebra B of A with B∈WTAP and 1D = q, and completely positive

contractive linear maps ϕ ′ : A→ A and ψ ′ : A→ B with ϕ ′(A)⊥ B, such that

(1)′ ϕ ′(1A). b1,

(2)′ ‖x−ϕ ′(x)−ψ ′(x)‖< ε , for any x ∈ F and

(3)′ ‖1A−ϕ ′(1A)−ψ ′(1A)‖< ε .

By (2)′, we have

ε > ‖x−ϕ ′(x)−ψ ′(x)‖

≥ ‖qxq−qϕ ′(x)q−qψ ′(x)q‖

= ‖qxq−ψ ′(x)‖

and

ε > ‖x−ϕ ′(x)−ψ ′(x)‖

≥ ‖(1−q)x(1−q)− (1−q)ϕ ′(x)(1−q)− (1−q)ψ ′(x)(1−q)‖

= ‖(1−q)x(1−q)−ϕ ′(x)‖.

Therefore, we have ‖x−qxq− (1−q)x(1−q)‖< ε .

By Theorem 2.3 (1), and by (3)′, we have ((1A−ψ ′(1A))− ε)+ . ϕ ′(1A), i.e., 1A− q .

ϕ ′(1A).

Since 1A−q≤ 1−ψ ′(1A), by Theorem 2.3 (5), we have ((1A−q)−ε)+ . ((1A−ψ ′(1A))−

ε)+ . ϕ ′(1A). So, 1A−q. ϕ ′(1A) (since 1A−q is a projection).

Since B has topological rank zero, for G = {ψ ′(x),x ∈ F}, any ε > 0, there exist a projection

p ∈ A and unital C∗- subalgebra D of A and D is finite dimensional algebra with 1D = p such

that
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(1)′′ ‖pψ ′(x)−ψ(x)′p‖< ε for any x ∈ F ,

(2)′′ ‖pψ ′(x)p ∈ε D for any x ∈ F , and

(3)′′ [q− p]≤ [b2].

Therefore, we have

(1) ‖px− p(qxq−(1−q)x(1−q))‖< ε , i.e., ‖px− pqxq‖< ε , then we have ‖px− pψ ′(x)‖<

2ε , as the same argument we have ‖xp−ψ ′(x)p‖< 2ε , by (1)′′, we have ‖px− xp‖< 4ε .

(2) ‖pxp− pψ ′(x)p‖ ≤ ‖pxp− p(qxq−(1−q)x(1−q))p‖+‖pqxqp− pψ ′(x)p‖< 2ε , then

we have ‖pxp ∈2ε D for any x ∈ F , and

(3) 1− p = 1−q+ p−q. ϕ ′(1A)+ p−q. b1+b2 . b, since tsr(A) = 1, we have [1− p]≤

[b]. �

Theorem 3.3. Let P be a class of unital C∗-algebras which have stable rank one. Then A has

stable rank one for any simple stably finite infinite dimensional unital C∗-algebra A ∈WTAP

and A has SP property.

Proof. Let x ∈ A. For any ε > 0, we will show that there exists an invertible element y ∈ A such

that ‖x− y‖< ε .

Since A is stably finite, we may assume that x is not one-sided invertible. Since A is a simple

unital and to show x is a norm limit of invertible in A, it suffice to show that ux is a norm limit

of invertible elements (for some unitary u ∈ A), by Lemma 3.6.9 in [21], we may assume that

there exist a nonzero positive element cx = xc = 0.

Since A is simple infinite dimensional and has SP property, there exist nonzero projections

p1, p2 ∈ Her(c).

By Theorem 3.1, we have (1− p1)A(1− p1) ∈WTAP .

For F = {(1− p1)x(1− p1),1− p1}, and ε > 0, since (1− p1)A(1− p1) ∈WTAP , there

there exist a unital C∗- subalgebra D of (1− p1)A(1− p1) with D ∈P , 1D = q and com-

pletely positive contractive linear maps ϕ : (1− p1)A(1− p1)→ (1− p1)A(1− p1) and ψ :

(1− p1)A(1− p1)→D with ϕ((1− p1)A(1− p1))⊥D, i. e., ϕ((1− p1)A(1− p1))D = 0, such

that

(1) ϕ(1− p1). p1,

(2) ‖(1− p1)x(1− p1)−ϕ((1− p1)x(1− p1))−ψ((1− p1)x(1− p1))‖< ε , and
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(3) ‖1− p1−ϕ(1− p1)−ψ(1− p1)‖< ε .

By Theorem 2.3 (1), and by (3), we have ((1− p1−ψ(1− p1))− ε)+ . ϕ(1− p1), since

ψ(1− p1)) ≤ q, also by Theorem 2.3 (5), we have ((1− p1− q)− ε)+ . ((1− p1−ψ(1−

p1))− ε)+ . ϕ(1− p1). p1. So we have 1− p1−q. p1 (since 1− p1−q is a projection).

By (2) and ϕ((1− p1)A(1− p1))D = 0, we have

ε > ‖(1− p1)x(1− p1)−ϕ((1− p1)x(1− p1))−ψ((1− p1)x(1− p1))‖

≥ ‖q(1− p1)x(1− p1)q−qϕ((1− p1)x(1− p1))q−qψ((1− p1)x(1− p1))q‖

= ‖q(1− p1)x(1− p1)q−qψ((1− p1)x(1− p1))q‖

= ‖q(1− p1)x(1− p1)q−ψ((1− p1)x(1− p1))‖

and

ε > ‖(1− p1)x(1− p1)−ϕ((1− p1)x(1− p1))−ψ((1− p1)x(1− p1))‖

≥ ‖(1− p1−q)(1− p1)x(1− p1)(1− p1−q)−

(1− p1−q)ϕ((1− p1)x(1− p1))(1− p1−q)

−(1− p1−q)ψ((1− p1)x(1− p1))(1− p1−q)‖

= ‖(1− p1−q)(1− p1)x(1− p1)(1− p1−q)

−(1− p1−q)ψ((1− p1)x(1− p1))(1− p1−q)‖

= ‖(1− p1−q)(1− p1)x(1− p1)(1− p1−q)−ϕ((1− p1)x(1− p1))‖.

Therefore, we have ‖x−ψ((1− p1)x(1− p1))−ϕ((1− p1)x(1− p1))‖ < 2ε , since ‖x−

qxq− (1− p1−q)x(1− p1−q)‖< ε .

Since ψ((1− p1)x(1− p1)) ∈D and tsr(D) = 1 there exist an invertible element y1 ∈D such

that ‖ψ((1− p1)x(1− p1))− y1‖< ε .

Since 1− p1−q . p1. Let v ∈ A such that v∗v = 1− p1−q and vv∗ ≤ p1. Set y2 = ϕ((1−

p1)x(1− p1))+(ε/32)v+(ε/32)v∗+(ε/8)(p1− vv∗), Then we have ϕ((1− p1)x(1− p1))+

(ε/32)v+(ε/32)v∗ is invertible in ((1− p1−q)+vv∗)A((1− p1−q)+vv∗). So y2 is invertible

in (1− p1−q)A(1− p1−q). Hence y1+y2 is invertible in A. Therefore, we have ‖x−y1+y2‖<

4ε . �
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