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Abstract. Complexity plays a vital and significant role when designing communication networks (graphs). The
more quality and perfect the network, the greater the number of trees spanning this network, which leads to greater
possibilities of connection between two vertices, and this ensures good rigidity and resistance. In this work, we
present nine network designs created by a square of different average degree 4, 6 and 8, then we deduce a simpler
and evident formula expressing the number of spanning trees of these networks using some basic properties of
orthogonal polynomials, block matrix analysis technique, and recurrence relations. In addition, we compute the
entropy of each network and determine the best by comparing these designs using network entropy. Finally, we
compare the entropy of spanning trees on our networks with other triangle and Apollonian networks and observe
the entropy of our networks, which is the highest among the triangle and Apollonian networks studied.
Keywords: complexity; recurrence relation; Chebyshev polynomials; duplication of graphs; entropy.
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1. INTRODUCTION

In crowded places and occasions telecommunications companies facing significant problems,
when someone makes contact with another person and the lines are busy. So another empty

communication channel must be provided in order for the communication to take place.
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The good company try to increase the number of communication channels, these demands
to calculate the number of different tracks (the total number of spanning trees) available within
each network and choosing the best design to grantee this increasing.

A graph is a formal mathematical illustration of a network since any network can be modeled
by a graph G where nodes are represented by vertices V(G) and links are represented by edges
E(G). Let |E(G)| be the cardinality of E(G) and |V (G)| be the cardinality of V(G). We deal
with finite and undirected with multiple edges and loops permitted graphs. The degree of a
vertex x € V(G) is the number of edges incident with the vertex, while the average degree of
a graph is applied to measure the number of edges compared to the number of vertices which
calculates by dividing the summation of all vertex degrees by the total number of nodes.

A spanning tree of any graph is a communication subgraph that guarantees connectivity be-
tween all vertices of the original graph with a minimum number of edges. In other words, a
spanning tree ensures the existence and uniqueness of a connection between any pair of ver-
tices. The number of spanning trees 7(G) is equal to the total number of various spanning
subgraphs of G that are trees, this quantity is also known as complexity 7(G) of G.

Many new graphs can be generated from a given pair of graphs using graph operations [1].
For every vertex x € V(G), the open neighborhood set N(x) is the set of all adjacent vertices to
xin G. Duplication of an edge e = xy in a graph G by a new vertex z creates a new graph
G’ such that N(z) = {x,y }. Duplication of a vertex x in a graph G by a new edge e = uv
creates a new graph G’ such that N(u) NN(v) = {x}.

There are several methods of finding this number. The celebrated matrix tree theorem of
Kirchhoff [2] tells us that: the complexity 7(G) of a graph G is equal any cofactor of Laplace
matrix L(G) = D(G)— A(G), where D(G) is the diagonal matrix of vertex degrees of G
and A(G) is the adjacency matrix of G . 7(G ) can also be calculated from the eigenvalues of
the Kirchhoff matrix H. Let yu; > tp > --- > u,(=0) denote the eigenvalues of H matrix.

Kelmans and Chenlnokov [3], have shown that

ln—l

(1) ©(G) = [T
i=1

After that Temperley [4] , has shown that:
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) T(G):%det(H%—J),

where Jis the n X n matrix all of whose elements are unity.

From Temperley’s Equation ( 2), it is easy to prove the following lemma.

Lemma 1.1. Let G be a graph with n vertices and D, A are the degree and adjacency

matrices, respectively, of G, the complement of G. Then,

3) 2(G) = ’%det(nl—ﬁ LAY

The senior advantage of the formula ( 3) is that it directly expresses 7(G ) as a determinant

rather than in terms of co-factors or eigenvalues.

For some special classes of graphs, there are simple closed formulas that make it much easier
to calculate and determine the number of corresponding spanning trees, especially when these
numbers are very large. Cayley showed that a complete graph K, has n"~2,n > 2 spanning trees
[2]. Another result is due to Sedlacek [5], he derived a formula for the wheel with n+1 vertices,
W,,+1, has a number of spanning trees (#)” + (3%6)” —2, n>2. Recently, several closed
formulas have been published for counting and maximizing the number of spanning trees for

some families of graphs ( see, [6—11]).

2. BASIC PROOF TOOLS

There exists a powerful relation concerning orthogonal polynomials, especially the Cheby-
shev polynomials of the first and second kinds and determinants that we use in our computa-
tions. For positive integer n, the Chebyshev polynomials of the first kind are defined by [12]:

For positive integer m, the Chebyshev polynomials of the first kind are defined by:
4) T,(x) = cos(narccosx) .

The Chebyshev polynomials of the second kind are defined by

1d sin(narccosx)
5 U1 (x) = =T,y (x) = ZANACCOST)
) 1) ndx (x) sin(arccosx)
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The Chebyshev polynomials of the second kind satisfy the recursion relation
(6) U, (x) —2xUp—1 (x) + Up—2(x) =0.

Let A,(x) be n x n matrix such that:

2x —1 0 0 0
-1 2x -1 0 0
0 -1 2x -1 0
An(x) = . .
0 0 0 -1 2x -1
0 0 0 0 -1 2x

From this recursion relation and by expanding det A, (x), one obtains:
(7 Un(x) =det(Ay(x)), n>1.

Using standard methods for solving the recursion ( 6), one obtains the explicit formula

(8) U,(x) = 2\/%[(x-l— =) =2 =D >, k=41

Lemma 2.1. [13]If

X —1 0 0 0
-1 (x+1) -1 0 0
0 — — 0
Byx) = | 1 w0t " | then det (Bu(x) = (x—1) Uy (155).
0 0 0 —1 (x+1) —1
0 0 0 0 —1 x

, then det (Ep(x)) = (x+n—1) (x—1)""1,
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Lemma 2.3. Let P, Q and R be matrices of dimension n X n, then

det = [det(P—R)]*det(P+R+2Q)det(P+R—20).

Q = Q
~ O w ©
Q T QO =
~ © ® ©

Proof. Using the properties of determinants and matrix row and column operations [17] yields:

P O R O P-R O R O P-R O R 0
P R (0] P—R R P—R
0 0 _ 0 _ 0 then
R QO P O R-P O P Q 0 O P+R 20
O R Q P O R-P Q P 0] 0O 20 P+R
P QO R 0O
P R P—R @] P+R 2
9) det ¢ ¢ = det ( )x det ( ¢ )
R QO P Q O P—R 20 P+R
O R Q P

= [det(P—R) |* det(P+R+2Q) det(P+R—20Q)

3. COMPLEXITY OF SOME FAMILIES OF GRAPHS GENERATED BY A SQUARE

Suppose we have four transmission sources in a broadcasting network, and we want to reach
all the nodes in that network without closing that circuit linking those nodes. Therefore, we are
going to study this problem in the presence of various models linking these nodes to determine

which of these models are the best to connect all nodes.
3.1. Complexity of some families of graphs generated by a square with average degree 4.

Theorem 3.1. For n > 1, the number of the spanning trees of the family of graphs ©®, is
given by:
1(®,) = ﬁ [B+V3)2+V3)" + 3-V3)2—V3)" P [2+V2)(3+2vV2)" + 2-V2)(3-2v2)"].

Proof. The Kirchhoff matrix associated with the graph G, is,
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Consider the family of graphs ©,, gen-

erated by a square, and constructed as

shown in Fig. 1, according to the con-

struction, the number of vertices in the

graph @, are |V (®,)| =4n+ 1 and edges
|E(®,)| =8n, n=1,2,---.

large, the average degree of ®, is 4.
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Thus, we get:

-1

—4

=det

7(0n)

4n.4n

]

7(0,) = [[det(P)]* x det(P+2Q) x det(P—20)].

Q0w~P
S o & X
S A, QO ©O
A O o ©
(\

b

S

1
—
Q O QA ~
S Q A~ Q
QA A O ©
A Qo Q
N———

S

S

I

=

<)

(%Y

Applying Lemma (1.1), we get:

(10)
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4 -1 0 0 0

-1 4 -1 0 0

o -1 4 -1 0
det(P) =det

0 0 o ... ... 4 -1

0 0 o ... ... —-1 3

Expanding the first seven determinants of P gives the values 3,11,41,153,571,2131,---

forn=1,2,3,4,5,6,--- , these values can be written in the form

41 =4 x11 =3, 153 =4 x41 — 11,
571 =4 x 153 —41, 2131 = 4 x571 — 153 ,---.

Consequently, we have the following homogeneous recurrence relation

(11) api2 = 4 apy1— ap.

Its characteristic equation is rP—4r+1 =0 , with two roots being 2 + V3 and2—+/3.
The general solution of the Recurrence Relation (11),isa, = a (24+v3)"+B (2—V3 )"

Using the initial conditions det(P) =3 ,11 at n= 1,2, respectively, we have:

3=a(2+V3)+ B (2-V3),
3)2.

11 =a+V3)’+B(2-V3

Solving these equations, we get: o = St 6\/§ and f = i 6\/§' Therefore
3 3 3—V3

12 da(p)= ()2 var + A=) 2-vay)
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Using induction and some properties of determinants, we obtain,

2 -1 0 0 0
-1 2 -1 0 0
o -1 2 -1 ... ... O
(13) det(P+2Q) =det | I =
0 0 2 -1
0 0 -1 1
6 -1 O 0 0
-1 6 -1 0 0
o -1 6 -1 0
det(P—2Q) =det
0 0 0 6 —1
0 0 o ... ... -1 5
Expanding the first seven determinants of (P — 2Q), gives the values
5,29,169,985,5741,33461,--- for n = 1,2,3,4,5,6,--- , these values can be written in

the form,

169= 6 x29 —5,985= 6 x169 — 29,
5741 = 6 x985 —169, 33461 = 6 x 5741 — 985 ,---

Consequently, we have the following homogeneous recurrence relation
(14) ani2 = 6 api 1 — an.

Its characteristic equation is 72 —6r+1 = 0 with two roots being 342+v/2 and 3 —2/2 .
The general solution of the Recurrence Relation (14), is a, = & (3+2v/2)"+B(3 —2v/2)".

2 2 2—+/2
Using the initial conditions, we get: o = + 4\/_ and B = \/_ Therefore:
242 2—+/2
(15) det(P—20) = [( 4f)(3+2\/§)” + ( 4f)(3—2\/§ ).

From Eq.( 12), Eq.( 13) and Eq.( 15) in Eq.( 10), we get:
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w00 = 117 [B+VAEHVE + (G-VA2—V3V P [2+VD)E+2VD) + 2-VD(3-2v2)"]
0

Consider the family of graphs

A, , generated by a square, and

constructed as the cross product
A, = C40JP, of a square C4 and
the path P, [1], see Fig. 2. The

graph A, has the number of ver-

tices |V (A,)| = 4n and the edges
E(Ay)| =8n—4, n=1,2,---.

When n is large, the average de-

gree of A,is4. FIGURE 2. The graph A,.

Theorem 3.2. For n > 1, the number of the spanning trees of the graph A, = C4 X P, is
given by
1

T(An) = W) [2+V3)" = (2-V3)" P [3+2v2)"~ (3-2v2)].

Proof. Applying Lemma (1.1) and Lemma( 2.3), we have:

(M) = @ det [4nl—D +A].

_ ! [det(P—J))* x det(P+J —2Q) x det(P+J+20)]

1
(16)  T(Ay) = —det pE

(4n)?

~ 0 w
Q v O

S <~ © v
v 0 <~ ©
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where P =

det

4
4

4
4
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0 1

5 0
3
-1
0

det

0
0
4 4
3 4
6 4
6 3
3 5

From Lemma (2.1), we obtain:

7)

det(P—J)=det

n.n

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 0 1
1 1 1 0
2
0 5 -1 0 0
0 -1 6 -1 0
0 o -1 6 ... 0
Xdet ) ) X
-1 0 0 6 -1
3 0 0 -1 5

=20,1(2) = = 2+ V3 - 2= V3 )]



COMPLEXITY OF SOME GRAPHS GENERATED BY SQUARE 4259

(18)
5 -1 0 0
-1 6 -1 0
o -1 6 ... ... O 1
det(P+J—2Q)=det | . . | =4U,.03) = ﬁ[(3+2\/§)” —(3-2v2)"]
0 0 6 -1
0 0 -1 5
53 4 4 4 4 2.0 1 1 11
36 3 4 ... ... 4 4 03 0 1 11
det(P+J+20Q)=det | = ¢+ .. . 1 | =4de
4 4 ... .. ... 3 6 3 11 ... .. .. 0 30
4 4 ... .. .. 4 35 11 .. . .. 1 0 2
Using the induction and the properties of determinants, we obtain the value
(19) det(P+J+2Q) = 4n®.
From Eq. (17) , Eq. (18) and Eq. (19) in Eq. (16), we get:
1
T(Ay) = Tﬁ[(2+\/§)”—(2—\/§)”]2 [(3+2V2)" = (3—2V2)"]. 0

Consider the family of graphs A,
generated by a square, and con-

structed starting with a square and

finding its line graph [1], one gets an
inner square. Repeating this process

to the new interior square given the

graph shown in Fig. 3, the graph A,

has the number of vertices |V (A,)| =

4n and the edges |E(A,)| = 8n —

w1

4, n=2,3,---. When n is large, the FIGURE 3. The graph As.

average degree of A, is 4.
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Theorem 3.3. For n > 2, the number of the spanning trees of the graph A, is given by

T(Ay) = 32777 [(644V2) +(6—4V2)" + 2" ],

1 - —
Proof. Applying Lemma 1.1, we have: T(A,) = e det [4nl—D +A].
n

P O J O
Q) ta)=tau |Z P 2 Lo (5 M L der(L+ M) x det(L— M)]
T = —-det = —=det = et X det(L—
" (4n)2 J Qt P Q (4}1)2 M L (4}’1)2
o J O P
30 1 1 1 1 1 1 1 1
0 5 0 1 1 o 1 0 1 1
1 0 5 0 ... 1 1 1 1 ) B |
where P= | . e= . T
1 1 5 0 1 1 1 1
1 1 0 5 1 1 0 O
n.n n.n
4 1 2 2 2 1 2 2
1 6 1 2 2 1 2 1 2 2
2 1 6 1 2 2 1 2 1 2
2 2 6 1 2 2 2 1
2 2 1 6 2 2 1 0 X Y
det(L+M) = det =det
2 1 2 2 4 1 2 2 Y X
1 2 1 2 2 1 6 1 2 2
2 1 2 1 2 2 1 6 1 2
2 2 2 1 2 2 6 1




det(L+M) = det
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BT~ \S e )
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S~ D oo N

4
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4

4 4 4

o N~

IO N NN
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2 6

S O O N
o o ~ O
S~ O O

X det

Using the properties of the determinants, we arrive at:

(21) det(L+M) =2"det
2 -1
-1 4
0 -1
0 0
0 0

det(L—M) = det

0 -1

NN NN

~ © O O

x 32772 =322

oSO O o o

4261
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Expanding the first seven determinants of (L — M) , gives the
36,400,4624,53824,627264,7311616,85229824--- for n = 2,3,4,5,6,7,8,---.
values can be written in the form:

53824 = 12 x 4624 —4 x400—64, 627264 = 12 x 53824 —4 x 4624 — 128,

7311616 = 12 x 627264 —4 x 53824 — 256,

85229824 = 12 x 7311616 —4 x 627264 —512.

Consequently, we have the following non-homogeneous recurrence relation

(22) nsn = 12 apyt —4 a, —8 2"

values

These

Leta, = b,+d 2" be the solution of the non-homogeneous Recurrence Relation Eq. (22),

where b, is the solution of the homogeneous recurrence relation b,.> —12 b,y +4b, = 0.

Substituting in Eq. (22), we get, d = % The characteristic equation of homogeneous recurrence

relation is 2 — 12r+4 = 0 with two roots being 6+ 4\/§ and 6 — 4\/§,then

b, = a (6+4+v/2)" + B(6—2v/2)" . The general solution of the non-homogeneous Recur-

rence Relation Eq. (22), is:

an =0 (6+4v2)"+B(6—42)" + 271

Using the initial conditions det(L — M) = 400 ,4624 to n = 3,4, respectively, we get

1
o= fB= 7 Therefore

(23) det(L—M) = a, :i [(644V2)"+(6—4V2)" ] +2" 1,

From Eq. (21) and Eq.( 23) in Eq. (37), we get:

T(Ap) = 32277 [(6+4V2)" + (6 — 42 )"+ 271,
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Consider the family of graphs
V,, generated by a square, and
constructed by duplicating each
vertex u of the square by ver-
tices u} i =2,3,4,--- ,n such that
N(u) = N(u}), see Fig. 4. Based
on construction, the total num-
ber of vertices |V (¥,)| and edges
|[E(¥,)| are |V(¥,| = 4n and
[E(W,)|=8n—4,n=2,34,---.

It is notice that, when n is large, FIGURE 4. The graph ¥, .

the average degree of W, is 4.

Theorem 3.4. For n > 2, the number of the spanning trees of the graph ¥, is given by
T(W,) = n? 242

Proof. Applying Lemma 1.1, we have:

P O J 0

1 R 1 O P QO J
T(lpn):wdet[4nl—D+A]:Wd€t J Q » Q
0o J QO P

Applying Lemma 2.3, with the matrix R =J where J is the unit matrix, we obtain:

“(¥,) = (4—’11)2[det(P—J)]2 « det(P+J+20) xdet(P+J—20)],

2n+1 1 1 ... 1 1 o 0 o0 ... 0 O

where P = . ] o= N

n.n n.n
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2n

4264
1
¥, =
2n+2
2
2
det
2
2
1 n\2
:(41’1)2 (n2 ) X 4ndet
1 2
= @ )2 (n2") X 4n 2" det
n

Applying Lemma (2.2), with x = 2, we get:

(n2n )2 > 2n+1 n2 % 2n+1 _

T(q’n) = @

1
1

1
1

2

n.n

X det

% 2n+1

2n+2

% 2n+1 .
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Consider the family of graphs
I, generated by a square and
constructed as shown in Fig. 5.
It is noticed that according to the
construction, the number of total
vertices |V (I',)| are |V (I',)| = 4n
and edges |E(T,)| =8n—4, n=
1,2,3,4,--- . When n is large ,

the average degree of I, is 4.

<

-~

FIGURE 5. The graph I, .

Theorem 3.5. For n > 1, the number of the spanning trees of the graph 1, is given by:

t(T,) = 2604

Proof. Applying Lemma (1.1), we have:

1 —  — 1
I'))) =——=det |4nl —D +A| = ——=
() any? et [4n +A] (@n)?
24) (F ) ! d LM
T = ——=det =
" (4n)? M L
5 1 1 1
1 5 1 1 1
1 1 5 1 1
where P = ) , @

n.n

P O J 0
P J
det ¢ ¢
J QPO
0 J o P
(4}11>2 (det(L+M) x det(L — M)].
0 0 1 1 1
0 1 0 1 1
1 0 1 0 1

n.n
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6 2

2 6 2

2 2 6
2 2 2

det(L+M) = det

0o 0 2

0o 2 0

2 2 2
2 2 0

= det(X+Y)det(X—Y) =det

2 0 1

0 3 0

1 0 3
(25) = 2" der

1 1

1 1

NS S R

[\S e N S I

[©) N ST S N

2
2
2 0
0 2
= det ,
2 Y X
2
6 2
2 4
4 6 2 0
4 2 4 2 0
2 4 0o 2 4 2
X det
8 2 0 0 4
2 6 0 0 2

% 2n+l — 2I’l+l n2 % 2n+1 — I’l2 221’!4—2.




COMPLEXITY OF SOME GRAPHS GENERATED BY SQUARE 4267

4 0
0 4
0 O

(26) det(L—M) = det

S o o o o
o o o o o

0 0

0 0

o o <9 N~

o © © N o

From Eq. (25) and Eq. (26) in Eq. (24), we get:

1

") = G

42}1—1 l’l2 22n+2 — 26n—4

0 0 0 0

0 0 0 0

0 0 0 0

00 0 0

0 0 0 . 0 _ g
40 0 0

0 4 0 0

0 0 4 0

0 0 4 0

0

2n.2n

3.2. Complexity of some families of graphs generated by a square with average degree 6.

Consider the family of graphs
Y,, generated by a square, and
constructed as shown in Fig. 6.
It is noticed that according to the
construction, the total number of
vertices and edges are |V (Y,)| =
4n and |[E(Y,)| =12n—8, n=
1,2,3,4,---. When nis large , the

average degree of Y is 6.

FIGURE 6. The graph Y, .
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Theorem 3.6. For n > 1, the number of the spanning trees of the family of graphs Y, is given
by: t(Y,) = n® (2n+4) 3722605

Proof. Applying Lemma 1.1, we have:

PO J O
| B 0P QO J
‘C(Yn):wdetHnI—D-i—A]:Wdet Lo p o
o J O P

27 (X)) = (4’11)2[det(P—J)]2 « det(P+J+20) x det(P+J—20)] .

2n+1 1 ... 1 1 o 0 o0 ... 0 O
1 5 1 1 1 0 0 1 1 1
1 I 5 1 ... 1 0o 1 0 1 1
where P= ] . , 0= | . )
1 1 5 1 0 1 0 1
1 1 1 5 o 1 . 1 0
n.n 2 n.n
2n 0 0 2n+2 2 2
0 4 0 0 2 6 4 4
1 o o0 4 ... 0 2 4 6 ... 4
©(Y,) = ) det : N : X det : | %
0 0 4 0 2 4 6 4
0 O 0 4 2 4 4 6
2n+2 2 2 ... 2
2 6 0 0
2 0 6 0
det ,
2 0 6 0




COMPLEXITY OF SOME GRAPHS GENERATED BY SQUARE 4269

1 0

1 4

1 2
1

= W (n22"_1 )2 X 4n det 1 2
n

1 2

1 2

2

1

1
1

= —(4 )2 (n 22n—1 )2 X 4n2" et | 1
n

1

1

From Lemma 2.2, with x = 2, we obtain:

NAs NN O

1

0
2
2
2 x 2" 3"72 (2n+4) ,
4 2
2 4
1
1
1
2 x 2" 3"2 (2n+-4) .
2 1
1 2

n—1.n—1

1
T(Y,) = n N X n- x B n-—+ = n"(2n+ B o
Y 22}1 11\2 2l’l+l 2 2}’1 3n 2 2 4 2 2 4 26}1 5 3n 2 I:l

(4n)?

Consider the family of graphs
IT,, generated by a square, and
constructed as shown in Fig. 7.
The graph II, has a number of
vertices and edges are |V (I1,)| =
4n and |[E(IT,)| = 12n—8, n =
1,2,---. When n is large, the av-

erage degree of II, is 6.

FIGURE 7. The graph II,,.

Theorem 3.7. For n > 2, the number of the spanning trees of the family of graphs 11, is

given by:
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o(I,) = &ﬂ (16— 5v7 ) (1646v7)" + (1645v7 (16— 6v/7)" =9 x 21 ] .

Proof. Applying Lemma 1.1, we have:

p Qo J ¢
1 S — o P Q J
t(Ily) = ——5 det [4nl—D +A|= 5 det
o J Qo P
28 IT ! d LM ! det(L+M) xdet(L—M
e8) M= gap e | | = et b < et )
5 0 1 1 1 0 1 1 1 1
0 7 0 1 1 0 0 1 1 1
1 0 7 0 .. 1 1 0 0 1 ... 1
where P= | ] o= B
1 1 7 0 1 1 0 1
1 1 0 5 0 1 0 O
6 1 2 2 2 01 2 2 2
1 8 1 2 2 1 0 1 2 2
2 1 8 1 2 2 1 0 1 2
2 2 8§ 1 2 2 0 1
2 2 1 6 2 2 1 0 X Y
det(L+M) = det =det
o 1 2 2 2 6 1 2 2 2 Y X
1 0 1 2 21 8 1 2 2
2 1 0 1 2 2 1 8 1 2
2 2 0o 1 2 2 8 1




COMPLEXITY OF SOME GRAPHS GENERATED BY SQUARE 4271

6 2 4 4 4 4 6 0 0 O 0 O
2 8 2 4 4 4 0o 8 0 O 0 O
4 2 8 2 4 4 0O 0 8 0 0 O
det(L+M)=det | 4 4 2 4 4 | xXdet |O 0 0 8 0 0
4 4 4 4 ... 2 8 2 o o o o ... 0 8 O
4 4 4 4 ... 4 2 6 o 0o o0 o0 ... 0 0 6o
Using properties of determinants and straightforward induction, we get:
(29) det(L+M) = 2"l p? x 322304 = 32 p2 p4n=3
4 -1 0 0 0 0 1 0 0 0
-1 6 -1 0 0O -1 0 1 0 0
0O -1 6 -1 0 0O -1 0 1 0
0 0 0 6 —1 0 0 0 0 1
0 0 0 -1 4 0 0 0 -1 0
det(L—M) = det
0O -1 0 0 0 4 -1 0 0 0
1 0O -1 0 0o -1 6 -1 0 0
0 1 0 -1 0 0O -1 6 -1 0
0 0 o ... 0 -1 0 0 o ... 6 -1
0 0 o ... 1 0 0 0 o ... -1 4
Expanding the first six determinants of (L — M) gives the values

196, 6400, 204304, 6512704, 207590464, 6616846336--- for n = 2,3,4,5,6,7,--.

These values can be written in the form

204304 = 32 x 6400 —4 x 196 4- 288,
6512704 = 32 x 204304 —4 x 64004576,
207590464 = 32 x 6512704 —4 % 204304 41152,
6616846336 = 32 x 207590464 —4 x 6512704 + 2304.
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Consequently, we have the following non-homogeneous recurrence relation
(30) Anir = 32 apni 1 —4a, +9 2.

Let a, = b, +d 2" be the solution of the non-homogeneous recurrence relation, where b,
is the solution of homogeneous recurrence relation b,» —32 b, +4b, = 0. Substituting
in Eq.(30 ), we getd = g—69. The characteristic equation of homogeneous recurrence relation is
r? —32r+4 = 0 with two roots being (16+6+/7 ) and ( 16 —6+/7 ), then

b, =a (16 +6v7)"+ B (16 —6y/7)". The general solution of the non-homogeneous

recurrence relation is
9
a, = o (16+6V7)" +B(16 —6v7)" — ¢ 2nt3,

Using the initial conditions det(L — M) = 196 ,6400 at n = 2,3, respectively, we have:

196 = a (16+6+7)>+B(16 —61/7)% — 37—6,

72
6400 = o (16 +6v7)° +B(16 —61/7)3 — =
1 1
Solving these equations, we get o = 14 [16—-5V7], B = 1 [16+5+/7] . Therefore

(B1)  det(L—M) = a,,:% [(16—5vV7) (164+6V7)"+ (16+5v7 ) (16 —63/7)" —9 21 ]

From Eq. (29) and Eq. (31) in Eq. (28), we get:

9 x 24n—8

o(M,) = —— [(16—5v7) (16+63/7)"+ (16+5V7 ) (16 —6v/7)" =9 x2" 1], O
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Consider the family of graphs
®, generated by a square
and constructed as shown in
Fig. 8, the number of total ver-
tices |V(®,)| and edges |E(P,)|
are |V(®,| =4n and |E(®,)| =
12n—8, n=13,4,--- according
to the construction. Note that for
n = 2 the graph ®,, is isomor-
phic with the graph Y,. When
n is large , the average degree of

P, is 6.

®

()

FIGURE 8. The graph &, .

Theorem 3.8. For n > 3, the number of the spanning trees of the graph ®,, is given by:

T(@,) = 377224 [(45426V3)(2+V3)" P + (45-26V3)(2—V3)" 7.

1 -
Proof. let us applying Lemma 1.1, we have: 7(®,) = —— det [4nl—D +A].

(32)

o(®y) = @ det

Q ~ © v
~ © w
Q v QO <

(4n)?

_ 4,11)2 (det(P—J) 2 det(P+J+20)det(P+J —20).

T O~ ©
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5 1 1 1
1 7 1 1
1 1 7 1
where P =
1 1 7
1 1 1
(33) det(P—J) = det
(34)
6 2 4
2 8 2
4 2 8
det(P+J+2Q) = det
4 4
4 4
6 2 0
2 8 2

det(P+J—20Q) =det

00 O

00 O

n.n

8
2

2
6

0 0
0O 0
1 0
1 1
1 1
0
0
0
6
0
= 2" det
= 2"det

0 0
0 0

n.n

— 2n+2 3?[72 )

0
0

4
1

1
3

=ontly2,

= 2"det(K).

By expanding the first seven determinants of K, gives the values 30,112,418,1560,5822,---

forn=3,4,5,6,7,--- , these values can be written in the form

418 = 4 x 112 — 30,
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1560 = 4 x 418 — 112,
5822 = 4 x 1560 —418.

Consequently, we have the following homogeneous recurrence relation
(35) dnt2 = 4 apy1— an -

The general solution of the recurrence relation (35), is
an= o (243 )" 3 +B (2—V3)"3.

Using the initial conditions det( k) = 30 ,112 at n = 3,4, respectively, we get
o= 45+§6\@ and § = 45_326\@ Therefore,

(36)

det(P+J —20) = 2" det( K) = 2" [(M

3

45 —264/3

)(2+V3)"3 4 ( 3

)2-V3)"3].
From Eq. (33) , Eq. (34) and Eq. (36) in Eq. (32), we get:
T(®,) = 327524+ [(45426V3)(2+V3)"3 + (45-26V3)(2—V3 )" |

e For n =2, the graph ®; is isomorphic to the graph Y, and t(d;) = 7(Y2) = 4096 .
OJ
3.3. Complexity of a graph generated by a square with average degree 8.

Consider the family of graphs

Q, , generated by a square,

and constructed as a composition
C4[P,] of the graphs C4 and P,

as shown in Fig. 9, the graph Q,

has number of vertices |V (Q,)| =

4n and edges |E(Q,)| = 4(4n —

3), n=2,3,---. When n is large,

the average degree of €, is 8.
FIGURE 9. The graph Q,.
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Theorem 3.9. For n > 2, the number of the spanning trees of the graph €, is given by:

n—3
da, - VB

17V15)(4 —V15)" 2.

)4+ V15)" — (4 — V15)"[(—60 + 17V15)(4 + V15)" + (=60 —

1 _ _
Proof. let us applying Lemma (1.1), we have: 7(Q,)) = —— det [4nl —D +A].

(4n)?
(37)
P Q Q J
Q] = ——d e rse Lo [PV [det(L+M) x det(L—M)]
T = —- det = et = et(L+ X det(L— .
" (4”)2 Q J P Q (4”)2 M L (47’[)2
J O QO P
6 0 1 1 1 0o 0 1 1 1
0 9 0 1 1 0o 0 O 1 1
1 0 9 0 ... 1 1 0 0 o0 ... 1
where P= | S 0= | . . )
1 1 9 0 1 1 0 O
1 1 0 6 1 1 0 O
6 0 2 2 2 1 1 2 2 2
0o 9 0 2 2 1 1 1 2 2
2 0 9 0 2 2 1 1 1 2
2 2 9 0 2 2 1 1
2 2 0o 6 2 2 1 1 X Y
det(L+M) = det =det ,
1 1 2 2 2.6 0 2 2 2 Yy X
1 1 1 2 2 0 9 0 2 2
2 1 1 1 2 2 0 9 0 2
2 2 1 1 2 2 9 0
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7 1 4 4 4 5. -1 0 0 0
1 10 1 4 4 -1 8 -1 0 0
4 1 10 1 ... ... 4 0o -1 8 -1 0
= det | L | X det ,
4 4 4 10 1 0 0 0 8 -1
4 4 4 1 7 0 0 0 -1 5
2 0 1 1 1 5. -1 0 0 0
0 3 0 1 1 -1 8 -1 0 0
1 0 3 0 ... ... 1 0o -1 8 -1 0
=431 ger | o | xdet | ,
11 1 ... ... 3 0 0 o o ... ... 8 -1
11 1 2 ... 0 2 0 0 o ... ... =1 5

= 43" 10?2 x det(X 7).

Expanding the first seven determinants of (X — Y) yields the values
24,190, 1496, 11778,92728,730046,5747640 - for n = 2,3,4,5.6,7,8,--- , these values
have the following recurrence relation a,.» = 8a,+; — a,. Its characteristic equation is
r>—8r+1 = 0, with the roots being 4++/15 and 4 —+/15.

The general solution of the recurrence relation is a, = o (4++/15)" + B (4 —+/15)". Using

o " . —60+ 1715
the initial conditions a, =24 ,190 at n = 2,3, respectively, we get: o = er_\ﬁ and
p = —00-17V1s
B 15 '
—60417+/15 —60— 1715
Therefore, det(X —Y)=a, = (+—\/>)(4—|—m)"+ (—\/»)(4_ VIs)",

15 15

(38) det(L+M) = 4n*3"! [(M)(H\/ﬁ)u (M)@—\/ﬁ)n].
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6 0 0O -1 -1 0 0
0 9 0 o -1 -1 -1 0 0
0 0 9 0 0 o -1 -1 -1 0
0 0 0 9 0 0 0 0 -1 -1
0 0 0 0 6 0 -1 -1
det(L—M) =det
-1 -1 0 0 0 6 0 0
-1 -1 -1 0 0 0 9 0 0
o -1 -1 -1 0 0 0 9 0 0
0 0 -1 -1 0 0 9 0
0 0 -1 -1 0 0 0 6
K
= det = det(K+H) x det(K—H) ,
H K
5 -1 0 0 0 7 1 0O O 0
-1 8 -1 0 0 1 8 1 0 0
o -1 8 -1 ... ... O 0 1 8 1 0
=det | o ) X det
0 0 o ... ... 8 -1 o 0 o ... ... 8 1
0 0 o ... ... -1 5 o o o ... ... 1 17
Expanding the first seven determinants of (K — H) yields the values
48,378,2976,23430,184464,1452282,11433792--- for n = 2,3,4,5,6,7,8,--- , these
values have the recurrence relation
an+2 = 8apy+1 — ay. Its characteristic equation is 2—8r+1 =0 , with the roots being

44+/15 and 4 —/15.
The general solution of the recurrence relation is a, = & (4++v/15)"+ B (4 —+/15)".
5

. 1
Using the initial conditions a, = 48 ,378 at n = 2,3, respectively, we get: a = \/; and
V15 V15

B = —T . Therefore, det(K—H ) =a, = (T) [(4+V15)"— (4—+/15)"].
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(39)

der(t=) = (V) [(@4vT) = (4= ISy L (CE VB oy sy (FO VB iy,
From Eq. (38) and Eq.( 39) in Eq. (37), we get:
010, = (X0 44 VIS)? — (4= VIS (60 17VTS) -+ VIS) + (—60— 17V/I5) (4~ VIS .

O

4. NUMERICAL RESULTS

In the following table 1 we enumerate some of the values of 7(G), the number of spanning

trees, of our graphs W, ,I,, Ay, A, , 09, , Y, , 11, , P, and Q,.

T(\¥,) T(Ty) T(An) T(An) 7(0n) T(Y,) T(IT,) T(P,) T(Q)
n=1 4 4 4 4 45 4 4 4 4
n=2| 256 256 216 384 3509 4096 3528 4096 20736
n=3| 9216 16384 19200 31500 284089 2211840 1843200 2211840 30703050

n=4| 262144 1048576 1775616 2558976 23057865 905969664 941432832 1189085184 44957265408
n=>5 6553600 67108864 165347328 207746836 1871801381 317089382400 219 x 3% x 101761 222 x 3% x 209 37 x 3009731890

TABLE 1. Some values of spanning trees of our graphs.

According to the results in table 1, it is easily seen that:

(1) Of all the graphs of average degree 4, the graph ©®, has a number of spanning trees
greater than the other four graphs ¥, , I, , A,, and A,,.
(i1) Of all the graphs of average degree 6, the graph &, has a number of spanning trees
greater than the other two graphs Y, , and 7.
(1i1) The number of the spanning trees of the graph Q,, of average degree 8 is the largest

among all the graphs at different values of n > 2.
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5. ENTROPY OF OUR NETWORKS

Because the complexity of a network 7(G) increases exponentially with the number of ver-

tices, there exists a constant p(G), called the entropy of spanning trees [15], described by this

relation:

.. Int(G)

By calculating the entropy of graphs (networks), we hope to determine the best one. The
entropy of spanning trees of a network is a quantitative measure of the number of spanning
trees to evaluate the goodness and the resistance of a network and to describe its structure. The
most goodness and resistance network is the network that has the highest spanning-tree entropy.
According to the definition of the entropy of spanning trees of a network, the bigger the entropy

value, the more the number of spanning trees, so there are more possibilities of connections

between two vertices.

/ Wy l 224n72

o (W) = tim L] It 2 0693147

n—yoo n n—oo 4n

. In[z(@Ty)] . 2%t 32
p (Ty) = Jim — == = lim —— = = 1.03972.
3n—7 n o n n+1

b (A,) = lim n {327 [(6+4v2)"+(6-4v2)"+2"']}  TIn2 _ 1213007 .

n—yoo 4n

T In[n* 2n+4)273"2]  In3 +6In2 1314373
p (Tu) = lim 4n - 4 - ‘
. In[t(IL)]  4mm2+In(16+ 6V7)
p (M) = lim ——~ = 1 — 1.558598 .
In [t(® 21 4 In2+1In(2

p (@) = tim S F @) ] _ 2103 +41n2+ In( V3 _ | s71602

n—voo 4n 4

Q 44+/1 1

p(Oy) = lim In[1(Q)] _ In3 x(3In (4+15)/In34+1) _ .

n—oo 4n 4

n[ 55 [@+V3)" = 2= V3" [3+2v2)" - (3-2v2 )]
p (A,) = lim
n—soc0 41’1
I (2+4V3)

= 1.866025 .
2
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In[t(@)] _ In(2+V3) _ 1.866025 .
2

The following table 2 illustrates the values of entropy and average degree of studying net-

works.
Graphs ¥, r, A, A, |, Y, 11, D, Q,
V(G)| 4n 4n 4n 4n 4n+1 4n 4n 4n 4n
|E(G)| 8n-4 8n-4 8n-4 8n-4 8n 12n-8 12n-8 12n-8  16n-12
Average degree 4 4 4 4 4 6 6 6 8
p(G) 0.693147 1.03972 1.213007 1.866025 1.866025 1.314373 1.558598 1.571692 1.82223

TABLE 2. The entropy of the studied graphs .

Comparing the value of entropy in our design networks (graphs), we have found that:

(1) Of all our different design networks (graphs) of average degree 4 , the entropy of the
graphs A, and ®,, is the largest.
(1)) Among all our different design networks (graphs) of average degree 6 , the entropy of
the graph @, is the largest.
(i) The entropy of the graphs A, and ®, of average degree 4 is larger than the entropy of

all graphs of average degrees 6 and 8.

Now we compare the value of entropy in our design networks (graphs) with other networks:

In 2013, Zhang et all [16] proved that the Apollonian graph of average degree 6 has entropy
1.354 . In 2019, Daoud [17] introduced some networks generated by a triangle with average
degree 4 and 6, and proved that the graph Y, of average degree 6 has entropy 1.514280 . Itis
clear that the entropy of our studied networks II, and &, with the same average degree 6 is
larger than the entropy of the Apollonian graph, and the graphs generated by a triangle with the
same average degree 6. Finally, the entropy of spanning trees of our studied (graphs) networks

®, and A, of average degree 4 are the highest among these networks.
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6. CONCLUSIONS

The complexity which is the number of spanning trees in the networks is a significant invari-
ant. The enumerating of this number is not only helpful from a combinatorial standpoint, but
it is also an important measure of the network reliability and electrical circuit design. In this
paper, we introduce nine network designs that are created by a square of average degree 4, 6
and 8, then we obtain a simple and evident expression for the number of spanning trees of
these networks using some basic properties of orthogonal polynomials, block matrix analysis
technique, and recurrence relations. Finally, we compute the entropy of these networks and
compare the entropy of spanning trees on our networks with the other triangle and Apollonian
networks. We deduce that the entropy of our networks is the highest among the studied triangle
and Apollonian networks and the networks ®, and A, of average degree 4 are the highest

among these networks.
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