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Abstract. We introduce Riesz bases in Krein spaces from a fundamental decomposition and we study some basic

properties. Among these, the non-dependence of the bases with the fundamental sitmetry and the projections from

one space to another stands out.
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1. INTRODUCTION

Let K be a vector space over C and consider a sesquilinear form [·, ·] : K×K −→ C. The

vector space (K, [·, ·]) is a Krein space if K=K+⊕K−, where (K+, [·, ·]), (K−,−[·, ·]) are Hilbert

spaces, and K+, K− are orthogonal with respect to [·, ·].

In K the following inner product is defined:

(x1,x2) = [x1
+,x2

+]− [x1
−,x2

−],{xi
± ∈ K±, xi = xi

++ xi
−.
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This inner product defines the Hilbert space (K,(·, ·)), which is called the Hilbert space associated

to K. In addition, there are unique orthogonal projections on K+ and K− which are denoted by

P+ and P− respectively. The linear, bounded and invertible operator J = P+−P− is called

fundamental symmetry and it satisfies

(1.1) [x,y]J := [Jx,y] = (x,y), ‖x‖J :=
√
[x,y]J, x,y ∈ K

It is easy to prove that J is self-adjoining, isometric, J-isometric in the sense that ‖Jx‖J = ‖x‖J

and that the following equalities are true:

J2 = IK, P+ =
1
2
(J+ IK), P− =

1
2
(IK− J)

The Hilbert space (K, [·, ·]J) is used to study linear operators that act on the Krein space (K, [·, ·]).

Topological concepts such as continuity, lock of linear operators, spectral theory, among others,

refer to the topology induced by the J -norm given in (1.1). Therefore, we can apply the

same definitions as in the theory of operators in Hilbert spaces. For example, the adjoint of

an operator T in Krein spaces T [∗] satisfies [T (x),y] = [x,T [∗](y)] but we must bear in mind that

T also has an adjoint operator in the Hilbert space (K, [·, ·]J), denoted by T ∗J , where J is the

fundamental symmetry in K. The relationship between T [∗] y T ∗J is T [∗] = JT ∗JJ. Also, let K

and K′ be Krein spaces with fundamental symmetries JK y JK′ respectively. If T ∈B(K,K′)

then T [∗] = JKT ∗JKJK′ . An operator T ∈B(K)is said self-adjoint if T = T [∗] and J-self-adjoint

if T = T ∗J . Also, a linear operator T is said to be invertible if its range and domain are all space.

(See K. Esmeral, O. Ferrer, Lora, B. [3], K. Esmeral, O. Ferrer, E. Wagner, [6])

Orthonormal systems give a criterion to generalize to spaces with indefinite inner product, the

orthogonal expansion given by the theorem 5 in terms of a Riesz basis. For this, it is necessary

to be clear about the concept of biortogonality in these spaces and give a definition of Riez bases

in spaces of indefinite metric according to what is established in Hilbert spaces.

Definition 1. Let V be a closed subspace of K. The subspace:

V [⊥] = {x ∈ K : [x,y] = 0,∀y ∈ V }
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is called the J-ortogonal complement of V with respect to [·, ·] (or simply J -ortogonal complement

of V ).

Definition 2. (Bi-orthogonality) Let (K, [·, ·]) be a Krein space. We say that {xn}n∈N ⊆ K y

{yn}n∈N ⊆ K are biortogonal, if it is satisfied that

[xk,yn] =±δkn

Remark 3. If (F , [·, ·]) is a space with inner product, the following sets are defined:

B0 = {x ∈F : [x,x] = 0} and B00 = {x ∈F : [x,x] = 0, x 6= 0}

B+ = {x ∈F : [x,x]≥ 0} and B++ = {x ∈F : [x,x]> 0, ∨ x = 0}

B− = {x ∈F : [x,x]≤ 0} and B−− = {x ∈F : [x,x]< 0, ∨ x = 0}

Theorem 4. [1, Theorem 7.19] Let (F , [·, ·]) be a space with inner product, not degenerate and

decomposable. Let

F = F+
1 ⊕F−

1 , F+
1 ⊆B++, F−

1 ⊆B−−

and

F = F+
2 ⊕F−

2 , F+
2 ⊆B++, F−

2 ⊆B−−

be two fundamental decompositions of F . If (F+
1 , [·, ·]), (F−

1 ,−[·, ·]) are Hilbert spaces, then

(F+
2 , [·, ·]), (F−

2 ,−[·, ·]) they are also Hilbert spaces and the Hilbertian norms induced by both

decompositions are equivalent.

Taking into account the fundamental decomposition of a Krein space, it is possible to guarantee

the existence of these bases in spaces of indefinite metric taking into account the Riesz bases

for the subspaces corresponding to the decomposition.

Remark 5. By virtue of [4, Theorem 3.4] If (F , [·, ·]) is a space with inner product and if

{e j} j∈N is an orthonormal system in F , then following conditions are equivalent:
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a) We have to:

(1.2) ∑
j∈N

[x,e j]
2 < ∞, x ∈F

and

− ∑
[e j,e j]=−1

[x,e j]
2 ≤ [x,x]≤ ∑

[e j,e j]=1
[x,e j]

2, (x ∈F )

b) Are fulfilled (1.2) and

[x,y] = ∑
j∈N

[e j,e j][x,e j][e j,y], (x,y ∈F )

c) The function

‖x‖=

(
∑
j∈N

[x,e j]
2

) 1
2

, (x ∈F )

is a quadratic norm in F and it defines a larger topology. With respect to said topology, it is

true that:

x = ∑
j∈N

[e j,e j][x,e j]e j, (x ∈F )

Lema 6. Let (K, [·, ·]) a Krein space with associated fundamental symmetry J and P an orthogonal

projection that commutes with J, then the spaces PK y (I−P)K they are Krein spaces with

fundamental symmetries PJ and (I−P)J respectively.

Definition 7. Let H be a Hilbert space. It is said that the succession {xn}n∈N ⊆ H is a

Riesz basis for H if there are T : H −→H linear, continuous and invertible operator and

{en}n∈N ⊆H orthonormal basis of H such that Ten = xn for each n ∈ N.

The results about Riesz bases in Hilbert spaces and their elemental properties can be seen in

C. Heil [2] and R. Young [5].

In the next section we will show the main results of this work as a generalization of the Riesz

bases for Hilbert spaces to spaces with indefinite metrics.
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2. MAIN RESULTS

2.1. Riesz bases in Krein spaces.

Proposition 8. Let (K, [·, ·]) be a Krein space with fundamental symmetry J associated with the

decomposition K= K+⊕K−. If T ∈B(K) then K+ is T , T [∗]-invariant if and only if T J = JT .

Proof. ⇒) Suppose TK+ ⊆ K+ and T [∗]K+ ⊆ K+, we must show that TK− ⊆ K−. Note that if

y ∈ K− and z ∈ K+ then

(2.1) [Ty,z] = [y,T [∗]z] = 0

and since z ∈ K+ is arbitrary it follows that Ty ∈ K−, this is, TK− ⊆ K−. Now, let x ∈ K,

x = x++ x−, then as Jx+ = x+ and Jx− =−x− we have following:

T Jx = T J(x++ x−) = T (x+− x−)

= T x+−T x− = JT x+− JT x−

= J(T x++T x−) = JT x

⇐) Suppose T J = JT . Note that:

0 = JT −T J = JT IK− IKT J

= (P+−P−)T (P++P−)− (P++P−)T (P+−P−)

= (P+T −P−T )(P++P−)− (P+T +P−T )(P+−P−)

= 2(P+T P−−P−T P+).

Then P+T P− = P−T P+ and since P−P+ = 0 = P+P−, we conclude that TK+ ⊆ K+. In

addition, with a ragument similar to the equation (2.1) it follows T [∗]K+ ⊆ K+. �

Remark 9. Let (K, [·, ·]) be a Krein space with fundamental symmetry J. If T ∈ B(K) is

invertible and commutes with J, then T−1 also commutes with J since T J = JT implies T JT−1 =

J and therefore

T−1J = T−1(T JT−1) = (T−1T )(JT−1) = JT−1
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Definition 10. (Riesz bases in Krein spaces) Let (K, [·, ·]) be a Krein space with fundamental

symmetry J associated with the decomposition K = K+⊕K−. We say that {xn}n∈N ⊆ K is

a Riesz basis for K with respect to J if there are T : K −→ K linear, continuous and inverse

operator and {en}n∈N ⊆ K orthonormal basis of K such that T Jen = Jxn for each n ∈ N.

The previous concept generalizes the Riesz bases given in the definition 7 since in Hilbert

spaces the fundamental symmetry J is the identity operator. From now on, when talking about

continuity in a Krein space, it will be with respect to the J -norm.

Theorem 11. Let (K, [·, ·]) be a Krein space with fundamental decomposition given by K =

K+
1 ⊕K−1 , J1 the associated fundamental symmetry and {xn}n∈N a Riesz basis for K with respect

a J1. If J2 is the fundamental symmetry associated with the decomposition K = K+
2 ⊕K−2 , then

{xn}n∈N also is a Riesz basis for K with respect to J2.

Proof. Let T be the linear, continuous and invertible operator that makes the sequence {xn}n∈N⊆

K a Riesz basis with respect to symmetry fundamental J1 associated with the decomposition

K = K+
1 ⊕K−1 . Then, there is {en}n∈N orthonormal basis of the Krein space K that satisfies

T J1en = J1xn. Well, if J2 is the fundamental symmetry associated with the decomposition

K= K+
2 ⊕K−2 y Γ : K→ K is the operator defined by

Γ := J2J1T J1J2

so Γ is also linear, continuous and invertible. Finally, it is shown that Γ makes {xn}n∈N ⊆ K a

Riesz basis with respect to the fundamental symmetry J2. Indeed, considering the orthonormal

basis {en}n∈N we obtain

ΓJ2en = (J2J1T J1J2)J2en = (J2J1T J1)J2
2 en = (J2J1T J1)en

= (J2J1)T J1en = (J2J1)J1xn = J2J2
1 xn = J2xn

�

The previous result shows that the Riesz basis condition T Jen = Jxn for each n∈N associated

with the T operator, is independent of the fundamental symmetry J. Therefore, in the definition
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10 we can simply speak of the Riesz basis for the Krein space K.

Theorem 12. Let (K, [·, ·]) be a Krein space with fundamental symmetry J associated with the

decomposition K = K+⊕K− y T the operator that makes the sequence {xn}n∈N ⊆ K a Riesz

basis for K. If K+ is T , T [∗] - invariant, then there is a unique succession {yn}n∈N ⊆ K and an

orthonormal base {zn}n∈N ⊆ K such that

k = ∑
n∈N

[zn,zn][k,yn]xn

for each k ∈ K and also, {yn}n∈N is biortogonal to {xn}n∈N.

Proof. If {xn}n∈N ⊆ K is a Riesz basis for K with respect to J, there are T : K −→ K linear

operator, continuous (with respect to the J-norm) and invertible and {en}n∈N ⊆ K orthonormal

basis of K such that T Jen = Jxn for each n ∈ N. Thus, being {en}n∈N orthonormal basis of K,

due to [4, Theorem 3.4] it is true that:

T−1k = ∑
n∈N

[en,en][T−1k,en]en

Also, if K+ is T , T [∗] - invariant then T commutes with J due to the statement 8. Then,

k = T T−1k = T

(
∑

n∈N
[en,en][T−1k,en]en

)
= ∑

n∈N
[en,en][T−1k,en]Ten

= ∑
n∈N

[en,en][T−1k,en]T JJen = ∑
n∈N

[en,en][T−1k,en]JT Jen

= ∑
n∈N

[en,en][T−1k,en]JJxn = ∑
n∈N

[en,en][T−1k,en]xn

= ∑
n∈N

[en,en]
[
k,
(
T−1)[∗] en

]
xn = ∑

n∈N
[zn,zn][k,yn]xn

Where yn := (T−1)[∗]en y zn := en. Also, taking into account the observation 9 it is concluded

[xk,yn] = [xk,
(
T−1)[∗] en] = [T−1xk,en] = [T−1JJxk,en]

= [JT−1Jxk,en] = [T−1Jxk,Jen]

= [Jek,Jen] = [ek,en] = ±δkn

Therefore, {yn}n∈N and {xn}n∈N they are biortogonal. �
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Remark 13. Since every Hilbert space (H ,〈·, ·〉), it can be seen as a Krein space with fundamental

decomposition H = H ⊕ {0}, where (H + = H ,〈·, ·〉) is positive definite, and (H − =

{0},〈·, ·〉) is negative definite. Then if {xn}n∈N is a Riesz basis for H , the Theorem 2.2 is

the already known result for the Riesz bases in Hilbert spaces, that is, we have that:

h = ∑
n∈N
〈zn,zn〉〈h,yn〉xn = ∑

n∈N
〈h,yn〉xn,∀h ∈H

since it is known that {zn}n∈N is the orthonormal basis of H and that in this case the invariance

of H + is easy to check.

Proposition 14. Let (K, [·, ·]) be a Krein space with fundamental symmetry J associated with

the decomposition K = K+⊕K−. If {xn}n∈N ⊆ K is a Riesz basis for K, then {Jxn}n∈N ⊆ K is

also a Riesz basis for K.

Proof. We have that there are T : K −→ K linear operator, continuous (with respect to the J

norm) and invertible and {en}n∈N ⊆ K orthonormal basis of K such that T Jen = Jxn for each

n ∈ N. Well, since J fulfills the same properties mentioned, it is concluded that the operator JT

is also linear, continuous and invertible. Therefore, since

(JT )Jen = J(T Jen) = J(Jxn) ∀n ∈ N

we get that {Jxn}n∈N ⊆ K is a Riesz basis for K �

Proposition 15. Let (K, [·, ·]) be a Krein space with fundamental symmetry J associated with

the decomposition K= K+⊕K−. Si {xn
+}n∈N ⊆ K+ y {yn

−}n∈N ⊆ K− are Riesz bases for K+

and K− respectively, then
{√

2
2 (xn

++ yn
−)
}

n∈N
⊆ K is a Riesz base for (K, [·, ·]J).

Proof. By hypothesis there are T+ : K+ −→ K+ and T− : K− −→ K− linear, continuous and

invertible operators and {tn+}n∈N ⊆ K+, {zn
−}n∈N ⊆ K− orthonormal bases for K+ and K−

respectively such that T+tn+ = xn
+ and T−zn

− = yn
− for each n ∈ N. Consider the operator

T : K −→ K defined by T k = T+k++ T−k− for each k ∈ K which is linear, continuous and
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invertible and let’s see that
{√

2
2 (tn++ zn

−)
}

n∈N
⊆ K is base J-ortonormal on K. Indeed,[√

2
2

(tn++ zn
−),

√
2

2
(tm++ zm

−)

]
J

=

[√
2

2
(tn+− zn

−),

√
2

2
(tm++ zm

−)

]

=

[√
2

2
tn+,

√
2

2
tm+

]
−

[√
2

2
zn
−,

√
2

2
zm
−

]

=
1
2
[t+n , t+m ]− 1

2

−

n
,z−m]

=
1
2
(
[t+n , t+m ]− [z−n ,z

−
m]
)
= δnm

Then,
{√

2
2 (tn++ zn

−)
}

n∈N
is base J-ortonormal in K. Also like,

T

(√
2

2
(tn++ zn

−)

)
=

√
2

2
T (tn++ zn

−)

=

√
2

2
T+(tn+)+

√
2

2
T−(zn

−)

=

√
2

2
(xn

++ yn
−)

Therefore,
{√

2
2 (xn

++ yn
−)
}

n∈N
⊆ K is a Riesz base for (K, [·, ·]J). �

Proposition 16. Let K1, K2 Krein spaces, and J1, J2 be the fundamental symmetries associated

with the decompositions K1 = K+
1 ⊕K−1 and K2 = K+

2 ⊕K−2 respectively. If {xn}n∈N ⊆ K1 y

{yn}n∈N ⊆ K2 are Riesz bases, then
{√

2
2 (xn⊕ yn)

}
n∈N
⊆ K1⊕K2 is a Riesz base for K1⊕K2.

Proof. Let T1 : K1 −→ K1, T2 : K2 −→ K2 and {en}n∈N ⊆ K1, {tn}n∈N ⊆ K2 linear, continuous

operators and invertible and the orthonormal bases that make {xn}n∈N ⊆ K1 and {yn}n∈N ⊆ K2

Riesz bases in K1 and K2 respectively. Notice that the following product

[·, ·] : K1⊕K2×K1⊕K2 −→ C

defined by

[·, ·] = [·, ·]1 +[·, ·]2

turns out to be an inner product. Consider the operator T : K1⊕K2 −→ K1⊕K2 given by

T = T1⊕T2. This operator is linear, continuous and invertible, since T1 and T2 are. It remains



RIESZ BASES IN SPACES WITH INDEFINITE METRIC 2789

to show that
{√

2
2 (en⊕ tn)

}
n∈N
⊆ K1⊕K2 is the orthonormal basis of K1⊕K2. In effect, note

that: [√
2

2
(ek⊕ tk),

√
2

2
(en⊕ tn)

]
=

[√
2

2
ek,

√
2

2
en

]
1

+

[√
2

2
tk,

√
2

2
tn

]
2

=
1
2
[ek,en]1 +

1
2
[tk, tn]2 = ±1

2
δkn +±

1
2

δkn = ±δkn

Also,

T (J1⊕ J2)

(√
2

2
(en⊕ tn)

)
= T1J1

(√
2

2
en

)
⊕T2J2

(√
2

2
tn

)

=

√
2

2
(T1J1en⊕T2J2tn) =

√
2

2
(J1xn⊕ J2yn)

= (J1⊕ J2)

(√
2

2
(xn⊕ yn)

)

∴ {
√

2
2 (xn⊕ yn)} is a Riesz base for K1⊕K2. �

Theorem 17. Let (K, [·, ·]) be a Krein space with fundamental symmetry J associated with the

decomposition into K = K+⊕K− and {xn}n∈N a Riesz basis for K. If P is an orthogonal

projector of K commuting with J, then {Pxn}n∈N is a Riesz basis for Krein’s space PK.

Proof. Let T be the linear, continuous and inverse operator that makes the sequence {xn}n∈N ⊆

K a Riesz basis for K. Now, if P is an orthogonal projector that commutes with J, it is concluded

by the Lemma 6 that PK is a Kerin space with the fundamental symmetry PJ associated with

the decomposition PK = PK+⊕PK−. On the other hand, if Γ : K→ K is the operator defined

by

Γ := PT P

then Γ is also linear, continuous and invertible and by hypothesis there is {en}n∈N orthonormal

basis of the Kerin space K that complies with T Jen = Jxn for each n ∈ N, and consequently

Jen = T−1Jxn. Then, taking into account that P commutes with J and that P2 = P we obtain

Γ(PJ)en = (PT P)(PJ)en = (PT )P2Jen = (PT )P(T−1J)xn

= (PT P)(T−1J)xn = (PT P)PP−1(T−1J)xn = (PT P2)(P−1T−1)Jxn

= P(T P)(T P)−1Jxn = PJxn = PP(Jxn) = (PJ)(Pxn)
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Therefore, it is concluded that Γ makes {Pxn}n∈N a Riesz basis for PK. �

2.2. Example. Consider the vector space C2 over C, with the usual sum and product and the

function [·, ·] : C2×C2 −→ C given by

(2.2) [(x1,y1),(x2,y2)] = x1x2− y1y2.

Well, it turns out that the space with inner product (C2, [·, ·]) is a Krein space with fundamental

decomposition C2 =K +[u]K −, where K + = {(x,0) : x∈C} and K −= {(0,y) : y∈C}.

Then, the fundamental symmetry

J((x,y)) = P+(x,y)−P−(x,y) = (x,−y)

determines the J -norm ‖ · ‖J such that

‖(x,y)‖J = [J(x,y),(x,y)]1/2 = (x · x− (−y) · y)1/2 =
√
|x|2 + |y|2

On the other hand, considering the orthonormal base {(1,0),(0,1)} and the operator T = J

linear, continuous and invertible, the Riesz base {(1,0),(0,−1)} since T J = I and therefore

T J(1,0) = (1,0) = J(1,0) and T J(0,1) = (0,1) = J(0,−1)

3. CONCLUSION

It is possible to conclude, by virtue of the theorem 11, that a Riesz basis does not depend on

the fundamental decomposition of the Krein space. Therefore, we are able to extend the Riesz

basis definition, from Hilbert spaces to indefinite metric spaces, known as Krein spaces.
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