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Abstract. Let R be a ring with unity and I(R)∗ are all non-trivial left ideals of R. The intersection graph of ideals

of R is denoted by G(R) is an undirected simple graph with vertex set I(R)∗ and two distinct vertices I and J are

adjacent if and only if I ∩ J 6= 0. In this article, we investigate some basic properties of the line graph associated

to G(R), denoted by L(G(R)). Moreover, we investigate completeness, unicyclicness, bipartiteness, planarity,

outerplanarity, ring graph, diameter, girth and clique of L(G(Zn)). We also investigate some basic properties of

L(G(R)) for left Artinian ring and finally, we determine the domination number and bondage number of L(G(Zn)).
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1. INTRODUCTION

Recently, Chakrabarty et al. [3] introduced the intersection graphs of left ideals of a ring,

where they took all the non-trivial left ideals of a ring as the vertex set and any two distinct
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vertices are adjacent if and only if their intersection is non-zero. They studied almost all funda-

mental concepts of the intersection graphs of ideals of rings. The central part of their interpre-

tation depended upon the ring Zn. Akbari et al. [1] extended some characteristics between the

graph-theoretic properties of intersection graph of ideals and some algebraic properties of rings.

In graph theory, one can associate to a given graph G to its line graph, denoted by L(G), such

that each vertex of L(G) represents an edge of G, and any two vertices of L(G) are adjacent if

and only if their corresponding edges in G share a common vertex. Whitney (1932) [12] intro-

duced the one important theorem on the line graph, the structure of any connected graph can

be recovered from its line graph i.e., there is a one-to-one correspondence between the class of

connected graphs and the class of connected line graphs. Later, the term line graph comes from

a paper from Harary and Norman (1960) [9]. With the class of intersection graphs at hand, it is

natural to study the properties of their line graphs and seek any relation between them. There

are some papers of line graphs associated with graphs of rings, see for instance [4], [7], [11],

and [10] etc.

Let G = (V,E) be a graph. The graph G is said to be connected if there exists a path between

any two distinct vertices of G. On the other side, the graph G is called a null graph if G is a

graph with no edges while the empty graph is a graph with no vertices. The graph G is called

a complete graph if there exists an edge to every vertices of G. The distance between any

two distinct vertices x and y are denoted by d(x,y) and the diameter is defined as diam(G) =

sup{d(x,y) | x,y are vertices o f G}. The graph G is called unicyclic graph if G contains exactly

one cycle and the length of a shortest cycle is called girth gr(G) of G. The order of the maximal

complete subgraph is called clique number, denoted by ω(G). A graph G is called embedded

in the plane if it can be drawn on the plane so that no two edges intersect, such graph is called a

planar graph. A subdivision of a graph is any graph that can be obtained from the original graph

by replacing edges by paths. A planar graph G is called outerplanar if it can be embedded in

the plane such that all its vertices lie on the outer face. A chord is any edge of a graph G joining

two nonadjacent vertices in a cycle. A cycle without chord is called primitive. A graph G has
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the primitive cycle property (PCP) if any two primitive cycles intersect in at most one edge.

Let f rank(G) be the number of primitive cycles of G. The number f rank(G) is called the free

rank of G and the number rank(G) = q−n+ r is called the cycle rank of G, where |V (G)|= n,

|E(G)| = q, and r is the number of connected components of G. The cycle rank of G can be

expressed as the dimension of the cycle space of G and these two satisfy rank(G)≤ f rank(G).

Gitler et al. [[6], Theorem 2.13], showed that:

Theorem 1.1. The following conditions are equivalent for a graph G with n vertices and q

edges:

(1) G is a ring graph;

(2) rank(G) = f rank(G);

(3) G satisfies the primitive cycle property and G does not contain a subdivision of K4 as a

subgraph.

From the Theorem 1.1, it is clear that ring graphs are planar. Gitler et al. [6], stated that the

blocks of graph G are important for calculating the numbers f rank(G) and rank(G), and they

also proved that outerplanar graphs are ring graphs. Note that the class of outerplanar graph is

a proper subclass of ring graphs. A subset D⊆V is called a dominating set of G if every vertex

in V is either in D or adjacent to a vertex in D. The domination number γ(G) is the minimum

cardinality among the dominating sets of G. The bondage number b(G) is the minimum num-

ber of edges whose removal increases the domination number of G. Any undefined terminology

can be obtained in [2], [5], and [8].

The organization of our article is as follow: In Sec. 2, we investigate some basic properties of

L(G(Zn)) such as completeness, bipartiteness, unicyclicness, planarity, outerplanarity and ring

graphs. In Sec. 3, we determined the diameter, girth and clique of L(G(Zn)) and L(G(R)) and

finally in Sec. 4, we determined some domination parameters of L(G(Zn)).

2. ON THE STRUCTURES AND PROPERTIES OF L(G(R))

In this section, we study some basic properties of the line graph associated with intersection

graph of ideals of ring. We denote the line graph of G(R) by L(G(R)). Vertex of the line graph
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of G(R) are all the edges of G(R) and any two distinct vertices in L(G(R)) are adjacent if and

only if their corresponding edges share a common vertex in G(R).

Remark 2.1. Chakrabarty et al. [[3], Corollary 2.5] prove that for any graph G(R) of a ring R,

whenever G(R) is not connected, it is a null graph (i.e. it has no edge). Therefore, whenever

G(R) is not connected, its line graph L(G(R)) is always empty graph. Thus, here we investigate

the line graph of all the connected graph of G(R).

Example 2.2. Let n = pm1
1 pm2

2 ...pmi
i , where pi are all distinct primes and i = 1,2, ...,n. In the

following we observed the intersection graph of G(Zn) and its line graph L(G(Zn)) for certain

values of n.

(a) G(Zp3) (b) L(G(Zp3))

FIGURE 1. G(Zp3) & L(G(Zp3))

(a) G(Zp4) (b) L(G(Zp4))

FIGURE 2. G(Zp4) & L(G(Zp4))



2740 LAITHUN BORO, MADAN MOHAN SINGH, JITUPARNA GOSWAMI

(a) G(Zp5) (b) L(G(Zp5))

FIGURE 3. G(Zp5) & L(G(Zp5))

(a) G(Zp2q) (b) L(G(Zp2q))

FIGURE 4. G(Zp2q) & L(G(Zp2q))

(a) G(Zpqr) (b) L(G(Zpqr))

FIGURE 5. G(Zpqr) & L(G(Zpqr))
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Theorem 2.3. Let n,m are any two positive integers. Then L(G(Zn)) is complete if and only if

n = pm, where p is a prime number and m = 3 or 4.

Proof. Let m = 3 or 4, then it is easy to see that the line graph is either K1 or K3 by figures 1

(b), 2 (b).

Conversely, let L(G(Zn)) is a complete graph. Therefore, G(Zn) is either a star graph or a

complete graph of K3; Otherwise L(G(Zn)) is not a complete graph. Therefore, n = 3 or 4.

Theorem 2.4. Let R be a left Artinian ring. Then L(G(R)) is complete graph if and only if

R∼= Zpi , where i = 3 or 4.

Proof. The sufficiency is obvious. For necessity, assume that L(G(R)) = Kn, (n 6= 3). Then

G(R) is a star graph. Therefore, R ∼= Zp3 . Again, let L(G(R)) = K3, then either G(R) = K1,3

or K3. Since, G(Zn) 6= K1,3 Therefore we conclude that G(R) = K3 by [[3], Theorem 2.9].

Therefore, R∼= Zp4 .

Theorem 2.5. Let n = p4 or p2q, then L(G(Zn)) is a unicyclic graph.

Proof. Let n = p4, then L(G(Zn)) is K3 by Theorem 2.3 and if n = p2q, then from the figure 4

(b), L(G(Zn)) is C4. Which yields L(G(Zn)) is a unicyclic graph.

The above Theorem 2.5 has an important consequence. We know that a graph G is a bipartite

graph if and only if G has no odd cycle [[5], König (1936)]. Since, it also satisfied in the case

of line graph. So, we immediately have the following Theorem:

Theorem 2.6. Let n be any positive integer. Then L(G(Zn)) is a complete bipartite graph if and

only if n = p2q.

Theorem 2.7. Let n is any positive integer. Then L(G(Zn)) has a cycle (of length 3 or 4) if and

only if n = mt, where m = p4, p2q or pqr, p,q,r are distinct primes and t ∈ N.

Proof. Let n = mt, where m = p4, p2q or pqr, p,q,r are distinct primes and t ∈ N. Then

L(G(Zn)) will contain a subgraph isomorphic to L(G(Zm)). Now from the figures: 2 (b), 3 (b),

4 (b) and 5 (b), it is clear that L(G(Zn)) contains a cycle (of length 3 or 4).

Conversely, let L(G(Zn)) contains a cycle (of length 3 or 4). Let n = p1.p2...pk (k > 1), where

pi’s are prime numbers but may not be all distinct. If k < 3, then L(G(Zn)) is empty graph.

Therefore, n = p3, p2q, pqr, where p,q,r are distinct primes. If n = p3, then L(G(Zn)) is K1

(cf. Fig. 1 (b)). In other two cases L(G(Zn)) contain cycles and satisfy the required condition.
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If k ≥ 4, then n is always a multiple of m, where m = p4, p2q or pqr for some distinct primes

p,q,r. Which complete the proof.

In the following, we investigate the planarity and non-planarity properties of L(G(Zn)).

Theorem 2.8. Let n be any positive integer. If n = pm(m≤ 5) or p2q, where p and q are distinct

primes, then the line graph L(G(Zn)) of G(Zn) is planar.

Proof. Follows directly from the figues: 2 (b), 3 (b), and 4 (b).

Theorem 2.9. Let n be any positive integer. If n = pm(m ≥ 6), p3q, p2q2, p2qr, pqr or pqrs,

where p,q,r, and s are distinct primes, then the line graph L(G(Zn)) of G(Zn) is non-planar.

Proof. Let n = pm(m≥ 6), p3q, p2q2, p2qr, pqr or pqrs, where p,q,r, and s are distinct primes.

Then L(G(Zn)) contains a subdivision of K5 and hence they are non-planar.

In the following, we investigate the outerplanar properties of L(G(Zn)).

Theorem 2.10. Let n be any positive integer. If n = pm(m ≤ 4) or p2q, where p and q are

distinct primes, then L(G(Zn)) is outerplanar.

Proof. For the proof of the theorem, we have the following two cases:

Case 1. Let n = 2,3,4, then L(G(Zn)) is an empty graph, K1, and K3, which shows that

L(G(Zn)) is outerplanar graph.

Case 2. Let n = p2q, then L(G(Zn)) is a unicyclic graph by Theorem 2.5. Which shows that

L(G(Zp2q)) is outerplanar graph.

Theorem 2.11. Let n be any positive integer. If n = pm, where m ≥ 5, then the line graph of

G(Zn) is not outerplanar.

Proof. Let n = pm, where m ≥ 5. Then it is clear that L(G(Zn)) contains a subdivision of K4

(cf. fig. 4 for m = 5). Which yields L(G(Zn)) is not outerplanar graph.

Since, every outerplanar graph is a ring graph. Therefore, we have the following two results:

Theorem 2.12. Let m≤ 4 be any positive integer and m > 1. If n = pm, then L(G(Zn)) is a ring

graph.

Theorem 2.13. Let m≥ 5 be any integer. If n = pm, then L(G(Zn)) is not a ring graph.

3. DIAMETER, GIRTH & CLIQUE

In this section we determined the diameter, girth and clique number of L(G(Zn)) and L(G(R)).

We begin with the following Theorem.
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Theorem 3.1. Let n is any positive integer such that L(G(Zn)) is not empty graph. Then,

diam(L(G(Zn))) ∈ {0,1,2}.

Proof. Let n = pm1
1 pm2

2 ...pmi
i , where pi are distinct primes and i = 1,2, ...,n. If i = 1, then

m1 > 2, then G(Zpm1 ) is a complete graph. Since, d−1≤ diam(L(G(Zpm1 )))≤ d+1, where d

is the diameter of G(Zpm1 ). Therefore, diam(L(G(Zn))) ∈ {0,1,2}. Now, for other values of n,

the proof is straight forward from the figure 5.

Theorem 3.2. If L(G(Zn)) contains a cycle, then gr(L(G(Zn))) ∈ {3,4}.

Proof. Let n = pm1
1 pm2

2 ...pmi
i , where pi are distinct primes and i = 1,2, ...,n. In the observation

of factorization, suppose n has exactly one prime. Then m1 > 3. In this case, [p, p2], [p, p3] and

[p2, p3] form the shortest length of cycle. If i,= 2 such that m1 = 2 and m2 = 1, then [p, p2],

[p, pq], [q, pq] and [p,q] form a cycle of length four and the graph is a cycle graph by Theorem

2.5. Similarly, for the other values of n, we will get smallest length of three cycle. Therefore,

gr(L(G(Zn))) ∈ {3,4}.

Theorem 3.3. Let R be a left Artinian ring. Then gr(L(G(R))) ∈ {3,∞}.

Proof. Let R be a left Artinian ring and Ii (i = 1,2, ...,n) are non-trivial left ideals of R. If i = 2

then L(G(R)) is K1. Again let i≥ 3, the it is easy to see that [I1, I2], [I2, I3], [I3, I1] form a shortest

length of cycle in L(G(R)). Therefore, gr(L(G(R))) ∈ {3,∞}.

For m = 3, ω(L(G(Zp3))) = 1, since L(G(Zp3)) is K1. In the following we give the boundness

of clique number for m≥ 4.

Theorem 3.4. Let n = pm, where m≥ 4 is any integer. Then ω(L(G(Zn)))≥ 3.

Proof. We assume that m = 4, then Zp4 have (p),(p2),(p3) ideals. Now, we can easily

see that [p, p2], [p2, p3], [p3, p] form a complete graph of K3. Also for m = 5, it is clear that

ω(L(G(Zn))) = 3 from the figure 3 (b). Therefore, ω(L(G(Zn)))≥ 3.

Theorem 3.5. Let R be a left Artinian ring. Then ω(L(G(R))) = 1 or ω(L(G(R)))≥ 3.

Proof. Let R be a left Artinian ring. Suppose Ii (i = 1,2, ...,n) are non-trivial left ideals of R.

Then oviously all the ideals are adjacent to I1 in G(R). If i = 2, then L(G(R)) is K1. Let i≥ 3,

then it is easy to check that ω(L(G(R)))≥ 3. Thus the result hold.
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4. SOME DOMINATION PARAMETERS

In this section, we determined the domination number and the bondage number of the line

graph associated with the intersection graph of ideals of ring. We begin with the following

Theorem.

Theorem 4.1. Let n,m are any two positive integers such that n = pm, where p is a prime

number and m = 3,4. Then γ(L(G(Zn))) ∈ {0,1}.

Proof. Let m = 3,4. Then L(G(Zn)) is complete graph of K1 and K2, which complete the proof.

Theorem 4.2. Let n,m are any two positive integers. Then the following holds:

γ(L(G(Zn))) =


≥ 2 i f n = pm, where m≥ 5

2 i f n = p2q or pqr, where p, q, r are distinct primes

Proof. Let n = pm and m ≥ 5. If m = 5, then (p), (p2), (p3), (p4) are non-trivial ideals and

G(Zp5) is K4. Now if we draw the line graph of G(Zp5), then [p, p2] and [p3, p4] dominate all

the vertices in L(G(Zp5)) (cf. fig. 3). Therefore, γ(L(G(Zp5)))≥ 2.

Let n = p2q, then L(G(Zn)) is a cyclic graph of length four by the Theorem 2.5. Therefore,

γ(L(G(Zn))) = 2.

Let n = pqr, where p, q, r are distinct primes. Then [p,q] and [qr,r] dominate all the vertices

in L(G(Zn)) (cf. fig. 5), which yields γ(L(G(Zn))) = 2.

Theorem 4.3. Let n,m are any two positive integers. Then the following holds:

b(L(G(Zn))) =


≥ 2 i f n = pm, where m≥ 4

3 i f n = p2q, where p, q are distinct primes

4 i f n = pqr, where p, q, r are distinct primes
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[10] Z.Z. Petrović, Z. Pucanović, The line graph associated to the total graph of a commutative ring, Ars Comb.

127 (2016), 185–195.

[11] M. Sarmah, K. Patra, Line graph associated to total graph of idealization, Afr. Mat. 27 (2016), 485–490.

[12] H. Whitney, Congruent graphs and connectivity of graphs, Amer. J. Math. 54. (1932), 150-168.


