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Abstract. A class of quasilinear singularly perturbed two point boundary value problems in ordinary differential

equations exhibiting boundary layer at the left end of the underlying interval is considered and a new exponentially

fitted integration scheme on a uniform mesh is devised for its numerical solution. The devised scheme is obtained

by introducing a suitable constant fitting factor in a new three term recurrence relationship derived by the appli-

cation of outer region solution obtained by asymptotic expansion procedure and a combination of the exact and

approximate rules of integration with finite difference approximations of the first derivative. Value of the fitting

factor is determined using the theory of singular perturbations and used to take care of rapid changes in the solu-

tion. Resulting tridiagonal algebraic system of equations is solved by the Thomas algorithm. Convergence of the

scheme is analyzed. Three numerical example problems are solved and computational results are tabulated to show

the accuracy and efficiency of the method. It is easily observed that the derived scheme is able to produce accurate

results with minimal computational effort for all the values of the mesh size h when the perturbation parameter ε

tends to zero. Both the theoretical and numerical analysis of the method reveals that the method is able to produce

uniformly convergent results with quadratic convergence rate.
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1. INTRODUCTION

The problem of finding solution of a differential equation in which highest order derivative

term is multiplied with a small positive parameter ε is known as singular perturbation prob-

lems. The investigation of numerous physical problems in science and engineering leads to

the boundary value problems for singularly perturbed differential equations whose solutions

show the capricious behaviour when the values of the ε tends to zero. That is, there exist

sharp boundary and/or interior layer(s) in which solution varies most quickly while away from

the layers(s) solution behaves regularly and varies slowly. These sharp/thin layers are usually

referred to as shock/edge layers in solid mechanics, transition points in quantum mechanics,

skin layers in electrical applications, and the boundary layers in fluid mechanics. Singularly

perturbed problems are most ubiquitous due to such layer behaviour of the solutions. The exis-

tence and capriciousness of such problems can easily be observed in the modelling of various

modern complicated processes, such as the fluid flow at high Reynolds numbers, water quality

problems in river networks, convective heat transport problem with large Peclet numbers, drift

diffusion equation of semiconductor device modelling, magneto-hydrodynamics duct problems

at high Hartman numbers, electromagnetic field problem in moving media, chemical reactor

theory, and financial modelling of option pricing. The development of a suitable numerical or

analytical method for the solutions of singularly perturbed problems(SPPs) has been a challeng-

ing and interesting task for the applied scientists and engineers due to the failure of classical

standard methods in providing accurate reliable results in case when ε tends to zero. Existing

standard numerical methods produces an oscillatory or unsatisfactory results. The numerical

treatment of a singularly perturbed quasilinear problem exhibiting layers is more difficult than

the ordinary SPPs due to the appearance of the non linear term in the equation. A variety of

analytical and numerical techniques have been suggested for finding the solution of such type

of singularly perturbed problems. For the more detailed information about SPPs with/without

quasilinear term and its treatments, we may refer to the high level monographs [3-9, 16, 19-22,

27-28] and the articles [1, 10-14, 17-18, 23-26, 29-30].

In the recent past, the authors in the articles [13] presented an initial value technique for solv-

ing quasilinear singularly perturbed two point boundary value problems. Technique is based
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on division of the given region into two inner and outer region; the asymptotic expansion; and

reduction of the the original problem in to an asymptotically equivalent first order initial value

problem with an exponentially fitted finite difference scheme. Authors in [10] described an

approximate method in which they divided the given region into two inner and outer region and

using the deviating argument they solved first order problems over each of the regions. In this

paper, we proposed a simple and computationally efficient integration scheme for the solution

of the quasilinear singularly perturbed problem[13] exhibiting a layer at the left end point of

the underlying domain. Method is based on asymptotic expansion and the usual rules of the

exact and approximate integration with finite difference approximations of the first derivative.

The main benefit of this proposed scheme is that it neither depend on very fine mesh [26] nor

any other parameter like deviating arguments, transition parameter [10, 13]. Further there is no

need of the reduction of the original problem into an asymptotically equivalent first order initial

value problem by approximating the zeroth order term by outer solution obtained by asymptotic

expansion[13].

The outline of this paper is as follows: Problem statement with the proposed method of solution

is described in section: 2. The convergence analysis is given in section: 3. Numerical illus-

tration with computational results for the considered three example problems are presented in

section: 4. The conclusions are presented in section: 5. The paper ends with the references.

2. STATEMENT OF THE PROBLEM

Consider a class of singularly perturbed quasilinear two point boundary value problems in

ordinary differential equations with layer behaviour of the form:

(1) εx′′(t)+ f (t)x′(t)+g(t,x) = r(t);0≤ t ≤ 1

under the boundary conditions

(2) x(0) = α and x(1) = β

where ε is a small positive perturbation parameter (0 < ε ≤ 1);α,β are given finite constants;

and the functions f (t),g(t,x), r(t) are defined in such a way that the boundary value problem

(1) with (2) is guaranteed to have a unique solution (see [13, 15] for detail) in the interval [0,1].
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Such class of singularly perturbed quasilinear boundary value problems in ordinary differen-

tial equations exhibits the layer behaviour in the neighbourhood of left end point of the underly-

ing interval [0,1] when f (t)≥M1 > 0 for all t in [0,1] while it is observed in the neighbourhood

of x = 1 when f (t) ≤ M2 < 0 for all t in [0,1], where M1 and M2 are positive and negative

constants respectively.

3. DESCRIPTION OF THE METHOD FOR LEFT-END BOUNDARY LAYER PROBLEMS

To describe the method, we consider the division of the interval [0,1] into N equal parts/

subintervals by means of the mesh/grid points t0 = 0 < t1 < t2 <,...,< tN with uniform mesh

length/size h, where ti = ih, i = 0,1,2,3...N. The points t0 and tN are called the boundary grid

points, while the points t1, t2, t2, ...., tN−1 are called interior grid points.

Now, we write the equation (1) in the form:

(3) εx′′(t)+ [ f (t)x(t)]′ = R̃(t,x);0≤ t ≤ 1,

where R̃(t,x) = r(t)−g(t,x)+ f ′(t)x(t).

Replacing x(t) by xout(t) in the right hand side expression in equation (3) we get:

(4) εx′′(t)+ [ f (t)x(t)]′ = R̃(t,xout(t)) = R(t);0≤ t ≤ 1,

where xout(t) is the asymptotic expansion for x(t) in the form[19-22]:

(5) x(t) =
∞

∑
n=0

xn(t)εn

with

(6) x0(1)+ x1(1)ε + x2(1)ε2 + ...= β

On substituting x(t) from equation (5) into equation (1) we get

(7)
ε[x′′0(t)+ x′′1(t)(ε)+ x′′2(t)(ε)

2 + ...]+ f (t)[x′0(t)+ x′1(t)(ε)+

x′2(t)(ε)
2 + ..]+g[t,x0(t)+ x1(t)(ε)+ x2(t)(ε)2 + ..] = r(t),

with the equation (6).

Expanding g[t,x′0(t)+x′1(t)(ε)+ ....] using Taylor’s series expansion procedure and equating the

coefficients of like power of ε in the equation(6) and equation(7), we get x0(t),x1(t),x2(t), ...,
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successively and hence x(t) given by equation (5) is obtained.

Integrating the equation (4) in the interval [ti−1, ti+1], i = 1,2,3, ...(N−1), we get

(8)
[
εx′ (t)

]ti+1
ti−1

+[ f (t)x(t)]ti+1
ti−1

=
ti+1
∫

ti−1

R(t)dt

Applying Simpson’s 1/3rd rule of integration in equation (8), we obtain

(9) εx′i+1− εx′i−1 + fi+1xi+1− fi−1xi−1 =
h
3
(Ri+1 +4Ri +Ri−1)

Now using the non symmetric first derivative finite difference approximations: x′i+1 =
3xi+1−4xi+xi−1

2h

and x′i−1 =
−xi+1+4xi−3xi−1

2h in the equation (9) and simplifying we get

(10)
2ε

h
[xi+1−2xi + xi−1]− fi−1xi−1 + fi+1xi+1 =

h
3
[Ri−1 +4Ri +Ri+1]

By introducing a constant fitting factor into equation (10), we obtain the proposed exponentially

fitted three term integration scheme:

(11)
2εσ(ρ)

h
[xi+1−2xi + xi−1]− fi−1xi−1 + fi+1xi+1 =

h
3
[Ri−1 +4Ri +Ri+1]

where value of the fitting factor σ(ρ) is to be determined in such a way that the solution of (11)

converges uniformly to the solution of the equations (1) with (2). The procedure for determining

the value of the fitting component introduced in the equation(10) is described in the following

subsection.

3.1. Determination of the fitting factor for Left-End Boundary Layer Problems

In this section, we will determine the value of the fitting factor introduced in the equation(10)

using the theory of singular perturbations.

Taking limits as h→ 0 in equation(11), we obtain

(12) lim
h→0

2σ(ρ)

ρ
(xi+1−2xi + xi−1)+ lim

h→0
( fi+1xi+1− fi−1xi−1) = 0

The equation(12) at t = ti = ih becomes:

(13) lim
h→0

[
2σ(ρ)

ρ
(x(ih+h)−2x(ih)+ x(ih−h))

]
+ f (0) lim

h→0
(x(ih+h)− x(ih−h)) = 0

Now, we have the solutions of equations (1) with (2) in the following form (cf.[19], pp.22-26):

(14) x(t) = x0(t)+
f (0)
f (t)

(α− x0(0))e
−

t∫
0

f (t)dt
+o(ε)



FITTED INTEGRATION SCHEME FOR A CLASS OF QUASILINEAR SPP 3057

where x0(t)is the solution of the reduced problem

(15) f (t)x′0(t) = r(t)−g(t,xout(t));x0(1) = β

Using Taylor’s expansions for f (t) about the point t = 0 upto their first terms only, the equation

(14) becomes:

(16) x(t) = x0(t)+(α− x0(0))e
−

t∫
0

f (0)dt
+o(ε)

Furthermore, considering the equation(16) at the point t = ti = ih,(i = 0,1,2, ...,N) and taking

the limit as h tends to zero, we obtain

(17) lim
h→0

x(ih) = x0(0)+(α− x0(0))e− f (0)iρ +O(ε)

Where ρ = h
ε

Using the equation(17) for x(ih−h),x(ih),x(ih+h) in equation (13) and then simplifying, we

get the value of the fitting factor as

(18) σ(ρ) =
f (0)ρ

2
coth

[
f (0)

ρ

2

]
Finally, by making use of equation (11) and σ(ρ) given by equation(18), we get the following

exponentially fitted three-term integration scheme of the form:

(19) Eixi−1−Fixi +Gixi+1 = Hi, (i = 1,2,3, ...,N−1)

where
Ei =

2εσ(ρ)
h − fi−1

Fi =
4εσ(ρ)

h

Gi =
2εσ(ρ)

h + fi+1

Hi =
h
3 [Ri−1 +4Ri +Ri+1]

Here, the relation (19) represents a system of (N− 1) equations with (N + 1) unknowns x0 to

xN . These (N− 1) equations together with the boundary conditions Equation(2) reduces to a

system of (N− 1) equations with (N− 1) unknowns x1 to xN−1. The coefficient matrix of the

resulting algebraic system of equations is tridiagonal in nature and is non singular when it is
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diagonally or irreducibly diagonally dominant. Moreover, when these conditions are satisfied,

Thomas Algorithm (known as ‘Discrete Invariant Imbedding algorithm’)[10, 23] provides a

stable and convergent technique for its solution. Obviously, under the assumption that f (t)

is an increasing function of t with f (t) > 0 in [0,1], the inequalities: Ei > 0,Fi > 0, Gi > 0,

Fi ≥ Ei +Gi, and Ei < Gi are satisfied for the coefficient matrix of the resulting tridiagonal

system of equations. Hence, the condition system(19) together with the boundary conditions

equation(2) is irreducibly diagonally dominant and non-singular.We have utilized the Thomas

Algorithm portrayed in [10, 23] for solving the resulting tridiagonal system of equations.

4. CONVERGENCE ANALYSIS

In this section, we discuss the convergence analysis of the method in similar way as given in

[2]. For this purpose we write the tri-diagonal system (19) in matrix-vector form, we get

(20) DX = M

where D =
(
mi, j
)
, 1≤ i, j ≤ N−1 is a tri-diagonal matrix of order with

mi,i−1 = 2εσ −h fi−1

mi,i =−4εσ

mi,i+1 = 2εσ +h fi+1

and M = (di)is a column vector with di = −h2

3 [Ri−1 +4Ri +Ri+1] , where i = 1,2, ...N − 1.

with local truncation error

(21) τ(h) = h3

[
σεx(iv)

6
+

1
3

f ′′′i xi +
fix′′′i

6
+ f ′i x′′i +

f ′′i x′i
2
− 1

3
R′′i

]
+o(h)4

we also have

(22) DX− τ(h) = M,

where X =
(
X0, X1, X2, ...,XN

)t denotes the actual solution and τ(h) = (τ1(h), τ2(h), ...,τN(h))
t

is the local truncation error.
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From the equations (20) and (22), we have

(23) D
(
X−X

)
= τ(h)

Thus, we obtained the error equation is

(24) DE = τ(h)

where E = X −X = (e0, e1, e2, ..., eN)
t . Let xi be the sum of elements of ith row of D, then we

have
S1 = ∑

N−1
j=1 m1, j =−2εσ(ρ)+ f2

SN−1 = ∑
N−1
j=1 mN−1, j =−2εσ(ρ)+ fN−2

Si = ∑
N−1
j=1 mi, j = h( fi+1− fi−1)+o(h2) = hgi0 , i = 1,2,N−1.

wheregi0 = [ fi+1− fi−1].

Since 0 < ε << 1 for sufficiently small D the matrix is irreducible and monotone Hence D−1

exists and D−1 ≥ 0. Hence, from the error equation (24) we have

(25) E = D−1
τ(h)

‖E‖ ≤
∥∥D−1∥∥‖τ(h)‖

Let uk,i be the (k, i)th element of D−1since

uk,i ≥ 0,

from the theory of matrices we have,

N−1

∑
i=1

uk,iXi = 1; k = 1,2, ...,N−1

Therefore, it follows that

N−1

∑
i=1

uk,i ≤
1

min
0≤i≤N−1

Xi
=

1
hgi0
≤ 1

h‖gi0‖

for some i0 lies between 1 and N-1.

Now, we define

(26)
∥∥D−1∥∥= max

0≤i≤N−1

N−1

∑
i=1

∣∣uk,i

∣∣
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and

‖τ(h)‖= max
0≤i≤N−1

|τ(h)|

Therefore, from the equations (21), (25) and (26), we obtain

e j =
N−1

∑
i=1

uk,iτi(h); j = 1(1)N−1

and therefore ∣∣e j
∣∣≤ kh3

h |gi0|
; j = 1(1)N−1,

where k =
[

σεx(iv)
6 + 1

3 f ′′′i xi +
fix′′′i

6 + f ′i x′′i +
f ′′i x′i
2 −

1
3R′′i
]
is constant independent of h.

(27) ‖E‖= o(h2)

The above results can be summarized as follows:

Theorem 1. Let x(t) be the exact solution of singularly perturbed second-order quasilinear

differential equation (1) with the boundary conditions (2) and let xi be the numerical solution

obtained by the scheme (19) with the boundary conditions equation(2). Then, for sufficiently

small h, relation (19) with equation(2) provides the solution with the quadratic convergence rate

on uniform mesh.

5. NUMERICAL ILLUSTRATION

To examine the effectiveness of the derived scheme, we carried out the numerical analyses on

the three standard test model for different values of N = 1/h and perturbation parameter ε , and

presented the computational results in term of maximum absolute errors (Eε) and numerical

rate of convergence (RN) in the Tables: 1, 2 and 3 respectively. One can easily observe from

the tables that the method is capable of solving the problems accurately with quadratic rates of

convergence.

It should be noted that the maximum absolute errors (Eε) and numerical rate of convergence

(RN) for all the three example problems are computed by the double mesh principle[5]: Eε =

max
0≤i≤N

∣∣XN
i −X2N

2i

∣∣ and the formula [5]: RN =
log|EN

ε /E2N
ε |

log2 , respectively.
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Example 1: Consider the following non-linear singular perturbation problem from [13]:

εx
′′
(t)+2x

′
(t)+ ex(t) = 0, 0≤ t ≤ 1

with boundary conditions x(0) = 0 and x(1) = 0.

For this example, outer region solution is xout = log
( 2

1+t

)
The exact solution of this example problem-1 is given by

x(t) = log
(

2
1+ t

)
− exp

(
−2t

ε

)
log(2)

The computational results (Maximum absolute errors and numerical rates of convergence) for

example problem-1 are introduced in Table-1, for different estimations of ε and N.

TABLE 1. The computational results (Eε ) and rate of convergence (RN) for var-

ious estimations of N and ε for example problem- 1.

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2−1 1.6917E-04 4.2241E-05 1.0560E-05 2.6403E-06 6.6010E-07 1.6500E-07 4.1300E-08

RN 2.0018 2.0000 1.9998 1.9999 2.0002 1.9983

2−2 5.4884E-04 1.3734E-04 3.4382E-05 8.5953E-06 2.1489E-06 5.3720E-07 1.3440E-07

RN 1.9986 1.9980 2.0000 1.9999 2.0001 1.9989

2−3 1.3747E-03 3.5021E-04 8.7705E-05 2.1945E-05 5.4870E-06 1.3719E-06 3.4300E-07

RN 1.9728 1.9975 1.9988 1.9998 1.9998 1.9999

2−4 2.9672E-03 7.9208E-04 2.0021E-04 5.0192E-05 1.2557E-05 3.1397E-06 7.8500E-07

RN 1.9054 1.9841 1.9960 1.9990 1.9998 1.9999

2−5 5.5036E-03 1.6242E-04 4.2682E-04 1.0833E-04 2.7174E-05 6.8003E-06 1.7004E-06

RN 1.7606 1.9280 1.9782 1.9951 1.9986 1.9997

2−6 7.1156E-03 2.8362E-03 8.4858E-04 2.2392E-04 5.6785E-05 1.4254E-05 3.5668E-06

RN 1.3270 1.7408 1.9221 1.9794 1.9941 1.9987

2−7 7.3811E-03 3.6610E-03 1.4392E-03 4.3404E-04 1.1516E-04 2.9218E-05 7.3321E-06

RN 1.0116 1.3470 1.7294 1.9142 1.9787 1.9946

2−8 7.3860E-03 3.7970E-03 1.8564E-03 7.2696E-04 2.2102E-04 5.8508E-05 1.4853E-05

RN .9599 1.0324 1.3526 1.7177 1.9175 1.9779

2−9 7.3861E-03 3.7995E-03 1.9251E-03 9.3465E-04 3.6760E-04 1.1152E-04 2.9537E-05

RN .9590 .9809 1.0424 1.3463 1.7208 1.9167

2−10 7.3861E-03 3.7995E-03 1.9264E-03 9.6924E-04 4.6894E-04 1.8483E-04 5.6028E-05

RN .9590 .9799 .9910 1.0475 1.3432 1.7220
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Example 2: Consider the following homogeneous singular perturbation problem from [13]:

(28) εx′′(t)+
(

1− t
2

)
x′(t)− 1

2
x(t) = 0,0≤ t ≤ 0,x(0) = 0,x(1) = 1,

where outer region solution is xout =
1

2−t .

The exact solution for this example problem-2 is given by

x(t) =
1

(2− t)
− 1

2
exp

(
t2

4 − t
ε

)
The computational results (Maximum absolute errors and numerical rates of convergence) for

example problem-2 are introduced in Table-2, for different estimations of ε and N.

TABLE 2. The computational results (Eε ) and rate of convergence (RN) for var-

ious estimations of N and ε for example problem- 2.

ε N= 16 N=32 N=64 N=128 N= 256 N=512 N=1024

2−1 1.5183E-04 3.7930E-05 9.4893E-06 2.3722E-06 5.9310E-07 1.4830E-07 3.7100E-08

RN 2.0010 1.9990 2.0001 1.9999 1.9998 1.9990

2−2 4.3783E-04 1.0954E-04 2.7406E-05 6.8518E-06 1.7130E-06 4.2830E-07 1.0710E-07

RN 1.9989 1.9989 1.9999 2.0000 1.9998 1.9997

2−3 1.3028E-03 3.2881E-04 8.2423E-05 2.0617E-05 5.1551E-06 1.2889E-06 3.2220E-07

RN 1.9863 1.9961 1.9992 1.9998 1.9999 2.0001

2−4 3.7014E-03 9.5757E-04 2.4150E-04 6.0512E-05 1.5137E-05 3.7847E-06 9.4620E-07

RN 1.9506 1.9874 1.9967 1.9991 1.9998 2.0000

2−5 8.6745E-03 2.3971E-03 6.1565E-04 1.5497E-04 3.8808E-05 9.7061E-06 2.4268E-06

RN 1.8555 1.9611 1.9901 1.9976 1.9994 1.9998

2−6 1.5636E-02 5.1266E-03 1.3925E-03 3.5588E-04 8.9468E-05 2.2398E-05 5.6016E-06

RN 1.6088 1.8803 1.9682 1.9919 1.9980 1.9995

2−7 2.0245E-02 8.9107E-03 2.8278E-03 7.5986E-04 1.9362E-04 4.8640E-05 1.2175E-05

RN 1.1840 1.6559 1.8959 1.9725 1.9930 1.9982

2−8 2.1038E-02 1.1433E-02 4.8038E-03 1.4936E-03 3.9877E-04 1.0143E-04 2.5470E-05

RN .8798 1.2510 1.6854 1.9052 1.9751 1.9936

2−9 2.1053E-02 1.1868E-02 6.1262E-03 2.5020E-03 7.6894E-04 2.0456E-04 5.1983E-05

RN .8269 .9540 1.2919 1.7021 1.9103 1.9764

2−10 2.1053E-02 1.1877E-02 6.3555E-03 3.1796E-03 1.2781E-03 3.9032E-04 1.0364E-04

RN .8259 .9021 .9992 1.3148 1.7113 1.9131

Example 3: Consider the following singular perturbation problem from [13]:

(29) x
′′
(t)+ x

′
(t)+ x(t)2 = 0, 0≤ t ≤ 1x(0) = 0,x(1) =

1
2
,



FITTED INTEGRATION SCHEME FOR A CLASS OF QUASILINEAR SPP 3063

with outer region solution xout(t) = 1
1+t .

The exact solution for this example problem-3 is given by

x(t) =
1

1+ t
− e−

t
ε

(1+ t)2

The computational results (Maximum absolute errors and numerical rates of convergence) for

example problem-3 are introduced in Table-3, for different estimations of ε and N.

TABLE 3. The computational results (Eε ) and rate of convergence (RN) for var-

ious estimations of N and ε for example problem- 3.

ε N= 16 N=32 N=64 N=128 N= 256 N=512 N=1024

2−1 1.6309E-04 4.0681E-05 1.0172E-05 2.5426E-06 6.570E-07 1.5890E-07 3.9800E-08

RN 2.0032 1.9998 2.0002 1.9999 2.0002 1.9973

2−2 4.1634E-04 1.0400E-04 2.6008E-05 6.5010E-06 1.6253E-06 4.0630E-07 1.0160E-07

RN 2.0012 1.9996 2.0002 2.0000 2.0001 1.9996

2−3 1.0065E-03 2.5111E-04 6.2803E-05 1.5703E-05 3.9258E-06 9.8150E-07 2.4540E-07

RN 2.0030 1.9994 1.9998 2.0000 1.9999 1.9999

2−4 2.2540E-03 5.6587E-04 1.4162E-04 3.5462E-05 8.8660E-06 2.2165E-06 5.5420E-07

RN 1.9939 1.9984 1.9977 1.9999 2.0000 1.9998

2−5 4.5783E-03 1.2160E-03 3.0754E-04 7.7207E-05 1.9314E-05 4.8297E-06 1.2074E-06

RN 1.9127 1.9833 1.9940 1.9991 1.9996 2.0000

2−6 8.3524E-03 2.4443E-03 6.4463E-04 1.6346E-04 4.1020E-05 1.0263E-05 2.5666E-06

RN 1.7728 1.9229 1.9795 1.9945 1.9989 1.9995

2−7 1.0669E-02 4.2788E-03 1.2749E-03 3.3608E-04 8.5201E-05 2.1376E-05 5.3487E-06

RN 1.3181 1.7468 1.9235 1.9799 1.9949 1.9987

2−8 1.1050E-02 5.4897E-03 2.1650E-3 6.5092E-04 1.7233E-04 4.3746E-05 1.0977E-05

RN 1.0092 1.3424 1.7338 1.9173 1.9780 1.9947

2−9 1.1057E-02 5.6889E-03 2.7840E-03 1.0888E-03 3.3080E-04 8.7616E-05 2.2238E-05

RN .9587 1.0310 1.3544 1.7187 1.9167 1.9782

2−10 1.1057E-02 5.6927E-03 2.8859E-03 1.4018E-03 5.5035E-04 1.6710E-04 4.4251E-05

RN .9578 .9801 1.0417 1.3489 1.7196 1.9169

6. CONCLUSION

We have developed and described an exponentially fitted tridiagonal scheme for solving sin-

gularly perturbed quasilinear boundary value problems with boundary layer at left end point of

the domain. To examine the performance of the proposed integration scheme, we performed the
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numerical experiments on three standard test example problems for different values of N and

ε , and tabulated the computational results in terms of the maximum absolute errors and numer-

ical rates of convergence. We carried out the convergence analysis for the proposed scheme.

The numerical investigations performed approves the theoretical rate of convergence obtained.

Further, we effectively see from these Tables: 1, 2, and 3 that the introduced fitted plan is fit

for approximating the solution well with insignificant computational exertion, when perturba-

tion parameter ε tends to zero for any fixed value of the mesh size h = 1
N . As stated in the

introduction section, the proposed scheme neither depend on very fine mesh [26] nor any other

parameter like deviating arguments and the transition parameter [10, 13]. There is no need of

the reduction of the original problem into an asymptotically equivalent first order initial value

problem by approximating the zeroth order term by outer solution obtained by asymptotic ex-

pansion[13]. Finally, the present method may considered as one of the best choices among the

methods developed for solving the considered quasilinear problem (1) with (2) with a small

amount of computational time and problems preparation.
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