PAIR DIFFERENCE CORDIAL LABELING OF GRAPHS

R. PONRAJ¹,* A. GAYATHRI²,† S. SOMASUNDARAM²

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India
²Department of Mathematics, Manonmaniam sundarnar university, Abishekappatig, Tirunelveli-627012, Tamilnadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let \(G = (V, E) \) be a \((p, q)\) graph.

Define
\[
\rho = \begin{cases}
 \frac{p}{2}, & \text{if } p \text{ is even} \\
 \frac{p-1}{2}, & \text{if } p \text{ is odd}
\end{cases}
\]
and \(L = \{\pm 1, \pm 2, \pm 3, \ldots, \pm \rho\} \) called the set of labels.

Consider a mapping \(f : V \rightarrow L \) by assigning different labels in \(L \) to the different elements of \(V \) when \(p \) is even and different labels in \(L \) to \(p-1 \) elements of \(V \) and repeating a label for the remaining one vertex when \(p \) is odd.

The labeling as defined above is said to be a pair difference cordial labeling if for each edge \(uv \) of \(G \) there exists a labeling \(|f(u) - f(v)| \) such that \(|\Delta_{f_1} - \Delta_{f_1'}| \leq 1 \), where \(\Delta_{f_1} \) and \(\Delta_{f_1'} \) respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph \(G \) for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate the pair difference cordial labeling behavior of path, cycle, complete graph, star, bistar, comb.

Keywords: path; cycle; complete graph; star; bistar; comb.

2010 AMS Subject Classification: 05C78.

*Corresponding author

E-mail address: ponrajmaths@gmail.com

†Research Scholar, Reg. No: 20124012092023

Received February 24, 2021
1. **Introduction**

In this paper we consider only finite, undirected and simple graphs. The notion of difference cordial labeling of a graph was introduced and studied some properties of difference cordial labeling in [4]. The difference cordial labeling behavior of several graphs like path, cycle, star etc have been investigated in [4]. In this paper we introduce the pair difference cordial labeling and investigate pair difference cordial labeling behavior of path, cycle, star, comb and bistar graph.

2. **Preliminaries**

Definition 2.1. The ladder L_n is the product graph $P_n \times K_2$ with $2n$ vertices and $3n - 2$ edges.

Definition 2.2. The graph obtained by joining two disjoint cycles $u_1u_2, \cdots u_mu_1$ and $v_1v_2, \cdots v_nv_1$ with an edge u_1v_1 is called dumbbell graph and it is denoted by $Db(m, n)$.

3. **Pair Difference Cordial Labeling**

Definition 3.1. Let $G = (V, E)$ be a (p, q) graph.

Define

$$\rho = \begin{cases}
\frac{p}{2}, & \text{if } p \text{ is even} \\
\frac{p-1}{2}, & \text{if } p \text{ is odd}
\end{cases}$$

and $L = \{ \pm 1, \pm 2, \pm 3, \cdots, \pm \rho \}$ called the set of labels.

Consider a mapping $f : V \rightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to $p-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling $|f(u) - f(v)|$ such that $|\Delta f_1 - \Delta f'_1| \leq 1$, where Δf_1 and $\Delta f'_1$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph.
Theorem 3.1. If G is a (p,q) pair difference cordial graph then

$$
q \leq \begin{cases}
2p-3 & \text{if } p \text{ is even} \\
2p-1 & \text{if } p \text{ is odd}
\end{cases}
$$

Proof. Case 1. p is even.

The maximum number of edges with the label 1 among the vertex labels $1, 2, 3, \cdots, \frac{p}{2}$ respectively is $\frac{p}{2} - 1$. Also the maximum number of edges with the label 1 among the vertex labels $-1, -2, -3, \cdots, -\frac{p}{2}$ respectively is $\frac{p}{2} - 1$. Therefore $\Delta f_1 \leq \left(\frac{p}{2} - 1\right) + \left(\frac{p}{2} - 1\right) = p - 2$. That is $\Delta f_1 \leq p - 2$. This implies $\Delta f_1^c \geq q - p + 2 \rightarrow (1)$.

Type 1. $\Delta f_1^c = \Delta f_1 + 1$.

By (1), $q - p + 2 \leq \Delta f_1^c$,

$$
\leq \Delta f_1 + 1 \\
\leq p - 1. \text{This implies } q \leq 2p - 3. \rightarrow (2)
$$

Type 2. $\Delta f_1^c = \Delta f_1 - 1$.

By (1), $q - (p - 2) \leq \Delta f_1^c$,

$$
\leq \Delta f_1 - 1, \\
\leq p - 3. \text{This implies } q \leq 2p - 5. \rightarrow (3)
$$

Type 3. $\Delta f_1^c = \Delta f_1$.

By (1), $q - (p - 2) \leq \Delta f_1^c$,

$$
\leq \Delta f_1, \\
\leq p - 2.
$$

This implies $q \leq 2p - 4 \rightarrow (4)$. By (2),(3),(4), $q \leq 2p - 3$.

Theorem 3.2. The path P_n is pair difference cordial for all values of n except $n \neq 3$.

Proof. Let P_n be the path $u_1u_2\cdots u_n$.

Case. 1 n is odd.

There are two cases arises.

Subcase. 1 $n = 4t + 1, t \in N \cup \{0\}$.

Assign the labels 1, 2 to the vertices u_1, u_2 respectively and assign the labels $-1, -2$ respectively to the vertices u_3, u_4. Next assign the labels 3, 4 respectively to the vertices u_5, u_6 and assign the labels $-3, -4$ to the vertices u_7, u_8 respectively. Proceeding like this until we reach the vertex u_{n-1}. Finally assign the label -2 to the vertex u_n. Note that the vertices u_{n-4}, u_{n-3} get the labels $\frac{n-3}{2}, \frac{n-1}{2}$ respectively and the vertices u_{n-2}, u_{n-1} receive the labels $-\frac{n-3}{2}, -\frac{n-1}{2}$ respectively. This vertex labeling gives the pair difference cordial labeling of path P_n, since $\Delta f_1 = \Delta f'_1 = \frac{n-1}{2}$.

Subcase. 2 $n = 4t + 3, t \in N$.

Assign the labels 1, 2 respectively to the vertices u_1, u_2 and assign the label $-1, -2$ to the vertices u_3, u_4 respectively. Next assign the labels 3, 4 respectively to the vertices u_5, u_6 and assign the labels $-3, -4$ to the vertices u_7, u_8 respectively. Proceeding like this until we reached u_{n-3}. Assign the label $-\frac{n-3}{2}$ to the vertex u_n. Finally assign the labels $\frac{n-1}{2}, -\frac{n-1}{2}$ respectively to the vertices u_{n-2}, u_{n-1}. Note that the vertices u_{n-6}, u_{n-5} received the labels $\frac{n-5}{2}, \frac{n-3}{2}$ respectively and the vertices u_{n-4}, u_{n-3} get the labels $-\frac{n-5}{2}, -\frac{n-3}{2}$ respectively. This vertex labeling gives the pair difference cordial labeling of path P_n, since $\Delta f_1 = \Delta f'_1 = \frac{n-1}{2}$.

Subcase. 3 $n = 3$.

Suppose f is a pair difference cordial of P_3, then $\Delta f_1 = 0$ and $\Delta f'_1 = 2$. This contradicts P_3 is not pair difference cordial.
Case. 2 \(n \) is even.

There are two cases arises.

Subcase. 1 \(n = 4t, t \in \mathbb{N} \).

Assign the labels 1,2 to the vertices \(u_1, u_2 \) respectively and assign the labels \(-1, -2\) to the vertices \(u_3, u_4 \) respectively.Next assign the labels 3,4 to the vertices \(u_5, u_6 \) respectively and assign the labels \(-3, -4\) respectively to the vertices \(u_7, u_8 \).Proceeding like this until we reach the vertex \(u_n \).Note that the vertices \(u_{n-3}, u_{n-2} \) respectively receive the labels \(\frac{n-2}{2}, \frac{n}{2} \) and the vertices \(u_{n-1}, u_n \) get the labels \(-\frac{n-2}{2}, -\frac{n}{2}\) respectively.

This vertex labeling gives a pair difference cordial labeling of the path \(P_n \), since \(\Delta f_1 = \frac{n}{2}, \Delta f_1^c = \frac{n-2}{2} \).

Subcase. 2 \(n = 4t + 2, t \in \mathbb{N} \cup \{0\} \).

Assign the labels 1,2 respectively to the vertices \(u_1, u_2 \).Now assign the labels \(-1, -2\) to the vertices \(u_3, u_4 \) respectively.Next assign the label 3,4 respectively to the vertices \(u_5, u_6 \) and assign the label \(-3, -4\) to the vertices \(u_7, u_8 \).Proceeding like this until we reach the vertex \(u_{n-2} \).Finally assign the labels \(\frac{n}{2}, -\frac{n}{2} \) to the vertices \(u_{n-1}, u_n \) respectively.Note that the vertices \(u_{n-5}, u_{n-4} \) get the label \(\frac{n-4}{2}, \frac{n-2}{2} \) respectively and the vertices \(u_{n-3}, u_{n-2} \) receive the labels \(-\frac{n-4}{2}, -\frac{n-2}{2}\) respectively.

This vertex labeling gives the pair difference cordial labeling of path \(P_n \), since \(\Delta f_1 = \frac{n-2}{2}, \Delta f_1^c = \frac{n}{2} \).

Remark. \(P_3 \) is difference cordial but not pair difference cordial [4].

Corollary 3.2.1. The cycle \(C_n \) is pair difference cordial if and only if \(n > 3 \).

Proof. Let \(C_n \) be the cycle \(u_1 u_2 \cdots u_n u_1 \). The function \(f \) in the theorem 3.3 is also a pair difference cordial labeling of the cycle \(C_n \).

□
Theorem 3.3. The star $K_{1,n}$ is pair difference cordial if and only if $3 \leq n \leq 6$.

Proof. Let $V(K_{1,n}) = \{u, u_i : 1 \leq i \leq n\}, E(K_{1,n}) = \{uu_i : 1 \leq i \leq n\}$. The graph $K_{1,n}$ has $n+1$ vertices and n edges.

Case 1. $3 \leq n \leq 6$.

Table 1 shows that the star $K_{1,n}, 3 \leq n \leq 6$ is pair difference cordial.

<table>
<thead>
<tr>
<th>n</th>
<th>u</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>u_4</th>
<th>u_5</th>
<th>u_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>-3</td>
</tr>
</tbody>
</table>

Table 1

Case 2. $n \geq 6$.

Suppose f is a pair difference cordial labeling of $K_{1,n}$. Assume $f(u) = l$, To get the edge label 1, the only possibly is that the pendant vertices receive the label $l-1$ or $l+1$.

Subcase 1. n is odd.

In this case, $\Delta_{f_1} \leq 2$. This implies $\Delta_{f_1} - \Delta_{f_1^c} \geq n - 4 > 1$, a contradiction.

Subcase 2. n is even.

In this case, we may use one vertex label as twice. This implies $\Delta_{f_1} \leq 3$. Therefore $\Delta_{f_1} - \Delta_{f_1^c} \geq n - 6 > 1$, a contradiction.

□

Remark. The star $K_{1,6}$ is pair difference cordial but not difference cordial[4].

Corollary 3.3.1. The complete graph K_p is pair difference cordial if and only if $p \leq 2$.

Proof. **Case 1.** $p \leq 2$.

By theorem 3.3, K_1, K_2 is pair difference cordial.
Case 2. $3 \leq p \leq 5$.

The Table 2 shows that K_3, K_4, K_5 is not pair difference cordial.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>Δf_1^c</th>
<th>Δf_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2

Case 2. $p \geq 6$.

Suppose K_p is pair difference cordial. By theorem 3.2, $\binom{p}{2} \leq 2p + 1$. This implies $\binom{p(p-1)}{2} \leq 2p + 1$, a contradiction to $p \geq 6$.

Theorem 3.4. The comb $P_n \oplus K_1$ is a pair difference cordial for all values of n.

Proof. Let $V(P_n \oplus K_1) = \{u_i, v_i : 1 \leq i \leq n\}$ and $E(P_n \oplus K_1) = \{u_i v_i : 1 \leq i \leq n\} \cup \{u_i u_{i+1} : 1 \leq i \leq n-1\}$.

Define a map $f : V(P_n \oplus K_1) \to \{\pm 1, \pm 2, \cdots, \pm n\}$ by

$f(u_i) = i, 1 \leq i \leq n$, and $f(v_i) = -i, 1 \leq i \leq n$. Then $\Delta f_1 = n - 1, \Delta f_1^c = n$.

Theorem 3.5. $K_2 + mK_1$ is pair difference cordial if and only if $m = 2$.

Proof. Let $V(K_2 + mK_1) = \{u, v, u_i : 1 \leq i \leq m\}$ and $E(K_2 + mK_1) = \{uu_i, vu_i : 1 \leq i \leq m\} \cup \{uv\}$.

Case 1. $m = 2$.

Define $f(u) = -1, f(v) = 1$ and $f(u_1) = 2, f(u_2) = -2$. Then $\Delta f_1^c = 3, \Delta f_1 = 2$.

Case 2. $m \geq 3$.

Suppose f is a pair difference cordial. Assume $f(u) = l_1$ and $f(v) = l_2$. To get the edge label 1, the only possibly is that the vertices with degree two receive the label $l_1 - 1$ or $l_1 + 1$ and $l_2 - 1$ or $l_2 + 1$.

Subcase 1. m is even.

In this case $\Delta f_1 \leq 2, \Delta f_1^c \geq 2m - 1$. This implies $\Delta f_1^c - \Delta f_1 \geq 2m - 3 > 1$, a contradiction.
Subcase 2. \(m \) is odd.

In this case we may use one vertex label as twice. This implies \(\Delta f_i \leq 3, \Delta f_i^c \geq 2m - 2 \). Therefore \(\Delta f_i^c - \Delta f_i \geq 2m - 5 > 1 \), a contradiction.

\[\square \]

Theorem 3.6. The bistar \(B_{1,n} \) is pair difference cordial if and only if \(2 \leq n \leq 6 \).

Proof. Let \(V(B_{1,n}) = \{ u, v, u_1, v_i : 1 \leq i \leq n \} \) and \(E(B_{1,n}) = \{ uu_1, vv_i, uv : 1 \leq i \leq n \} \).

Case 1. \(2 \leq n \leq 6 \). Define \(f(u) = 2, f(u_1) = 1, f(v) = -2 \) and Table 3 shows that the bistar \(B_{1,n} \), \(2 \leq n \leq 6 \) is pair difference cordial.

\[
\begin{array}{cccccc}
 n & u_1 & u_2 & u_3 & u_4 & u_5 & u_6 \\
2 & -1 & 2 & & & & \\
3 & -1 & 3 & -3 & & & \\
4 & -1 & -3 & 1 & 3 & & \\
5 & -1 & -3 & -4 & 3 & 4 & \\
6 & -1 & -3 & -4 & 3 & 4 & 1
\end{array}
\]

Table 3

Case 2. \(n \geq 7 \).

Suppose \(f(u) = l_1, f(v) = l_2 \), then the maximum value of \(\Delta f_i \) is attained when \(f(u_1) = l_1 - 1, f(v_i) = l_2 - 1, f(v_j) = l_2 + 1 \) for some \(i \) and \(j \). Therefore \(\Delta f_i \leq 1 + 2 = 3 \). That is \(\Delta f_i \leq 3 \). This implies \(\Delta f_i^c \geq n + 2 - 3 \). Therefore \(\Delta f_i^c \geq n - 1 \). Hence \(\Delta f_i^c - \Delta f_i \geq n - 1 - 3 > 1 \), a contradiction.

\[\square \]

Theorem 3.7. The bistar \(B_{m,n}, (m \geq 2, n \geq 2) \) is pair difference cordial if and only if \(m + n \leq 9 \).

Proof. Let \(V(B_{m,n}) = \{ u, v, u_i, v_j : 1 \leq i \leq m \leq j \leq n \} \) and \(E(B_{3,n}) = \{ uu_i, vv_j, uv : 1 \leq i \leq n, 1 \leq j \leq n \} \).

There are two cases arises.
Case 1. $m + n \leq 9$.

There are two subcases.

Subcase 1. $n = m = 2$.

Define $f(u) = 1, f(v) = -1, f(u_1) = 2, f(v_1) = -3, f(v_2) = -2, f(v_2) = 3$. Here $\Delta f_i = 2$ and $\Delta f_i = 3$.

Subcase 2. $n > 2, m > 2$.

Define $f : \{\pm 1, \pm 2, \pm 3, \ldots, \pm \frac{m+n}{2}\}$ by $f(u) = 2, f(v) = -2, f(u_1) = 1, f(u_2) = 3, f(v_1) = -1, f(v_2) = -3$. Next assign the remaining labels to the remaining vertices in any order.

Case 2. $m + n \geq 10$.

There are two subcases.

Subcase 1. $m + n$ is even.

Suppose $f(u) = l_1, f(v) = l_2$, then the maximum value of Δf_i is attained when $f(u_i) = l_1 - 1, f(u_j) = l_1 + 1$ for some i and j. Therefore $\Delta f_i \leq 2 + 2 = 4$. This implies that $\Delta f_i \geq m + n - 4$. Therefore $\Delta f_i \geq m + n - 3$. Hence $\Delta f_i - \Delta f_i \geq m + n - 7$, a contradiction.

Subcase 2. $m + n$ is odd.

When $m + n$ is odd, either m or n is odd. Hence one vertex label is repeated. Therefore $\Delta f_i \leq 3 + 2$. That is $\Delta f_i \leq 5$. This implies $\Delta f_i \geq m + n - 4$. Hence $\Delta f_i - \Delta f_i \geq m + n - 9 > 1$, a contradiction.

Therefore $B_{m,n}, m + n \geq 10$ is not pair difference cordial.

\[\square\]

Theorem 3.8. The ladder graph $P_2 \times P_n$ is pair difference cordial for all values of n.

Proof. Let $V(P_2 \times P_n) = \{u_i, v_i : 1 \leq i \leq n\}$ and $E(P_2 \times P_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \leq i \leq n - 1\} \cup \{u_i v_i : 1 \leq i \leq n\}$.

Case 1. $n = 2$.

Let $P_2 \times P_2 \cong C_4$, is pair difference cordial by theorem 3.3.

Case 2. $n \geq 3$.

First we assign the labels $-1, -2, -3, \ldots, -n$ to the vertices $u_1, u_2, u_3, \ldots, u_n$ respectively. Now consider the vertices $v_i, (1 \leq i \leq n)$. There are four cases arises.
Subcase 1. \(n \equiv 0 \pmod{4} \).
Assign the labels 1, 2 to the vertices \(v_1, v_2 \) respectively. Next assign the labels 3, 5 respectively to the vertices \(v_3, v_4 \) and assign the labels 4, 6 to the vertices \(v_5, v_6 \) respectively. Now assign the labels 7, 9 to the vertices \(v_7, v_8 \) respectively and assign the labels 8, 10 to the vertices \(v_9, v_{10} \) respectively. Proceeding like this until we reach \(v_n \). Note that in this process the vertex \(v_n \) get the label \(n - 1 \).

Subcase 2. \(n \equiv 1 \pmod{4} \).
As in Subcase 1, assign the labels to the vertices \(v_i \), \(1 \leq i \leq n \). Here the vertex \(v_n \) receive the label \(n - 1 \).

Subcase 3. \(n \equiv 2 \pmod{4} \).
Assign the labels to the vertices \(v_i \), \(1 \leq i \leq n \) as in Subcase 1. In this case the vertex \(v_n \) get the label \(n \).

Subcase 4. \(n \equiv 3 \pmod{4} \).
Similar to Subcase 1 assign the labels to the vertices \(v_i \), \(1 \leq i \leq n \). Note that the vertex \(v_n \) receive the label \(n \).

The Table 4 given below establish that this vertex labeling \(f \) is a pair difference cordial of \(P_n \times P_2 \).

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(\Delta_{f_c})</th>
<th>(\Delta_{f_1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is odd</td>
<td>(\frac{3n-3}{2})</td>
<td>(\frac{3n-1}{2})</td>
</tr>
<tr>
<td>(n) is even</td>
<td>(\frac{3n-2}{2})</td>
<td>(\frac{3n-2}{2})</td>
</tr>
</tbody>
</table>

\(\square \)

Theorem 3.9. The dumbbell graph \(Db(n, n) \) is pair difference cordial for all values \(n \).

Proof. The vertex set and the edge set of \(Db(n, n) \) is given in definition 2.2.
There are four cases arises.
Case 1. $n \equiv 0 \pmod{4}$.
Assign the labels 1, 2 respectively to the vertices u_1, u_2 then assign the labels 4, 3 to the vertices u_3, u_4. Secondly assign the labels 5, 6 to the vertices u_5, u_6 then assign the labels 8, 7 to the vertices u_7, u_8. Proceeding like this until we reach the vertex u_n. Note that in this the vertex u_{n-1} get the label $n-1$. Next assign the label to the vertices $v_i, 1 \leq i \leq n$. Assign the labels $-1, -2$ to the vertices v_1, v_2 then assign the labels $-4, -3$ to the vertices v_3, v_4. Secondly assign the labels $-5, -6$ to the vertices v_5, v_6 then assign the labels $-8, -7$ to the vertices v_7, v_8. Proceeding like this until we reach the vertex v_n. Note that in this the vertex v_n receive the label $-n+1$.

Case 2. $n \equiv 1 \pmod{4}$.
Assign the labels 1, 2, 3 to the vertices u_1, u_2, u_3 then assign the labels 5, 4 to the vertices u_4, u_5. Secondly assign the labels 6, 7 to the vertices u_6, u_7 then assign the labels 9, 8 to the vertices u_8, u_9. Proceeding like this until we reach the vertex u_n. Note that in this the vertex u_n receive the label $n-1$. As in case 1 assign the label to the vertices $v_i, 1 \leq i \leq n$. Note that in this the vertex v_{n-1}, v_n get the label $-n+2, -n$.

Case 3. $n \equiv 2 \pmod{4}$.
As in case 1 assign the label to the vertices $u_i, 1 \leq i \leq n$. Note that in this the vertex u_{n-1}, u_n receive the label $n-1, n$. Assign the label as in case 1 to the vertices $v_i, 1 \leq i \leq n$. Note that in this way the vertex v_{n-1}, v_n get the label $-n+1, -n$.

Case 4. $n \equiv 3 \pmod{4}$.
As in case 1 assign the label to the vertices $u_i, 1 \leq i \leq n$. Note that in this process the vertex u_{n-1}, u_n receive the label $n-1, n$. Assign the label as in case 1 to the vertices $v_i, 1 \leq i \leq n$. Note that here the vertices v_{n-1}, v_n get the label $-n, -n+1$.

The Table 5 given below establish that this vertex labeling f is a pair difference cordial of $D_b(n, n)$.

Theorem 3.10. The dumbbell graph $D_b(n+1, n)$ is pair difference cordial for all values n.

Proof. The vertex set and the edge set of $D_b(n+1, n)$ is given in definition 2.2.

Case 1. $n \equiv 0 \pmod{4}$.

Subcase 1. $n > 4$.
\[
\begin{array}{|c|c|c|}
\hline
\text{Nature of } n & \Delta f_i & \Delta f_c \\
\hline
n \equiv 0 \pmod{4} & n + 1 & n \\
\hline
n \equiv 1 \pmod{4} & n & n + 1 \\
\hline
n \equiv 2 \pmod{4} & n & n + 1 \\
\hline
n \equiv 3 \pmod{4} & n + 1 & n \\
\hline
\end{array}
\]

Table 5

Assign the labels 1, 2 respectively to the vertices \(u_1, u_2\) then assign the labels 4, 3 to the vertices \(u_3, u_4\). Secondly assign the labels 5, 6 to the vertices \(u_5, u_6\) then assign the labels 8, 7 to the vertices \(u_7, u_8\). Proceeding like this until we reach the vertex \(u_n\). Next assign the label 2 to the vertex \(u_{n+1}\). Now we consider the vertices \(v_i, 1 \leq i \leq n\). Assign the labels \(-1, -2\) to the vertices \(v_1, v_2\) then assign the labels \(-4, -3\) to the vertices \(v_3, v_4\). Secondly assign the labels \(-5, -6\) to the vertices \(v_5, v_6\) then assign the labels \(-8, -7\) to the vertices \(v_7, v_8\). Proceeding like this until we reach the vertex \(v_n\). Note that in this the vertex \(v_n\) receive the label \(-n + 1\).

Subcase 2. \(n = 4\).

As in case 1, assign the labels to the vertices \(u_i, 1 \leq i \leq 4\) and \(v_i, 1 \leq i \leq 4\). Finally assign the label 1 to the vertex \(u_5\).

Case 2. \(n \equiv 1 \pmod{4}\).

Subcase 1. \(n > 5\).

As in case 1, assign the labels to the vertices \(u_i, 1 \leq i \leq n + 1\). Next consider the vertices \(v_i, 1 \leq i \leq n\). Assign the labels \(-1, -2, -3\) to the vertices \(v_1, v_2, v_3\) then assign the labels \(-5, -4\) to the vertices \(v_4, v_5\). Secondly assign the labels \(-6, -7\) to the vertices \(v_6, v_7\) then assign the labels \(-8, -7\) to the vertices \(v_8, v_9\). Proceeding like this until we reach the vertex \(v_n\). Note that in this the vertex \(v_n\) receive the label \(-n + 1\).

Subcase 2. \(n = 5\).

As in case 1, assign the labels to the vertices \(u_i, 1 \leq i \leq 5\) and \(v_i, 1 \leq i \leq 5\). Finally assign the label 1 to the vertex \(u_5\).

Case 3. \(n \equiv 2 \pmod{4}\).

As in case 1, assign the labels to the vertices \(u_i, 1 \leq i \leq n + 1\) and \(v_i, 1 \leq i \leq n\).
Case 4. $n \equiv 2 \pmod{4}$.

Subcase 1. $n > 3$.
As in case 2, assign the labels to the vertices $u_i, 1 \leq i \leq n$ and $v_i, 1 \leq i \leq n$. Finally assign the label 1 to the vertex u_{n+1}.

Subcase 2. $n = 3$.
Assign the labels $-1, -2, -3$ to the vertices v_1, v_2, v_3. Now assign the labels 1, 2, 3 to the vertices u_1, u_2, u_3. Finally assign the label 1 to the vertex u_4.

□

Theorem 3.11. The dumbbell graph $Db(m,n)$ is pair difference cordial for all values $m > n + 1$.

Proof. Take the vertex set and edge set in definition 2.2.
There are four cases arises.

Case 1. $n \equiv 0 \pmod{4}$.
Assign the labels $-1, -2$ respectively to the vertices v_1, v_2 and assign the labels $-4, -3$ to the vertices v_3, v_4 respectively. Secondly assign the labels $-5, -6$ to the vertices v_5, v_6 respectively. Next assign the labels $-8, -7$ to the vertices v_7, v_8 respectively. Proceeding like this until we reach the vertex v_n. Note that in this the vertex v_n receive the label $-n + 1$. Next consider the vertices $u_i, 1 \leq i \leq m$.
Assign the labels 1, 2 to the vertices u_1, u_2 respectively and assign the labels 4, 3 respectively to the vertices u_3, u_4. Now assign the labels 5, 6 to the vertices u_5, u_6 respectively and assign the labels 8, 7 respectively to the vertices u_7, u_8. Proceeding like this until we reach the vertex u_n. Finally consider the remaining $m - n$ vertices. There are four cases arises.

Subcase 1. $m \equiv 0 \pmod{4}$.
Assign the labels $n + 1, n + 2$ to the vertices u_{n+1}, u_{n+2} respectively and assign the labels $-n - 1, -n - 2$ respectively to the vertices u_{n+3}, u_{n+4}. Secondly assign the labels $n + 3, n + 4$ to the vertices u_{n+5}, u_{n+6} respectively. Next assign the labels $-n - 3, -n - 4$ respectively to the vertices u_{n+7}, u_{n+8}. Proceeding like this until we reach the vertex u_m.

Subcase 2. $m \equiv 1 \pmod{4}$.
As in subcase 1 assign the labels to the vertices $u_i, 1 \leq i \leq m - 1$ and assign the label $m - 1$ to the vertex u_m.
Subcase 3. $m \equiv 2 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices $u_i, 1 \leq i \leq m - 1$. Next assign the label $\frac{m+n}{2}$ to the vertex u_m.

Subcase 4. $m \equiv 3 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices $u_i, 1 \leq i \leq m - 3$ and lastly assign the labels $-\frac{m+n}{2}, \frac{m+n}{2}, 2$ respectively to the vertices u_{m-2}, u_{m-1}, u_m.

The Table 6 given below establish that this vertex labeling f is a pair difference cordial of $Db(m,n)$.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>Δf_i</th>
<th>Δf_i^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m \equiv 0 \pmod{4}$</td>
<td>$\frac{m+n}{2}$</td>
<td>$\frac{m+n+2}{2}$</td>
</tr>
<tr>
<td>$m \equiv 1 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+1}{2}$</td>
</tr>
<tr>
<td>$m \equiv 2 \pmod{4}$</td>
<td>$\frac{m+n}{2}$</td>
<td>$\frac{m+n+2}{2}$</td>
</tr>
<tr>
<td>$m \equiv 3 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+1}{2}$</td>
</tr>
</tbody>
</table>

Table 6

Case 2. $n \equiv 1 \pmod{4}$.

Assign the labels as in case 1 to the vertices $v_i, (1 \leq i \leq n)$. Here note that the vertex v_n receive the label $-n + 1$.

Next consider the remaining $m - n$ vertices. There are four cases arises.

Subcase 1. $m \equiv 0 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices $u_i, (1 \leq i \leq m - 3)$ and assign the labels $\frac{m+n-1}{2}, \frac{m+n-1}{2}, 2$ to the vertices u_{m-2}, u_{m-1}, u_m respectively.

Subcase 2. $m \equiv 1 \pmod{4}$.

As in case 1, assign the labels to the vertices $u_i, 1 \leq i \leq m$.

Subcase 3. $m \equiv 2 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices $u_i, 1 \leq i \leq m - 1$. Next assign the label 2 to the vertex u_m.
Subcase 4. $m \equiv 3 \pmod{4}$.

Assign the labels as in subcase 1 to the vertices $u_i, 1 \leq i \leq m - 2$. Finally assign the labels $\frac{m+n}{2}, \frac{m+n}{2}$ respectively to the vertices u_{m-1}, u_m.

The Table 7 given below establish that this vertex labeling f is a pair difference cordial of $Db(m,n)$.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>Δ_{f_1}</th>
<th>Δ_{f_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m \equiv 0 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+1}{2}$</td>
</tr>
<tr>
<td>$m \equiv 1 \pmod{4}$</td>
<td>$\frac{m+n+2}{2}$</td>
<td>$\frac{m+n}{2}$</td>
</tr>
<tr>
<td>$m \equiv 2 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+1}{2}$</td>
</tr>
<tr>
<td>$m \equiv 3 \pmod{4}$</td>
<td>$\frac{m+n}{2}$</td>
<td>$\frac{m+n+2}{2}$</td>
</tr>
</tbody>
</table>

Case 3. $n \equiv 2 \pmod{4}$.

Assign the labels as in case 1 to the vertices $v_i, (1 \leq i \leq n)$. Here note that the vertex v_n received the label $-n$.

Finally we consider the remaining $m-n$ vertices. There are four cases arises.

Subcase 1. $m \equiv 0 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices $u_i, (1 \leq i \leq m - 2)$ and assign the labels $-\frac{m+n}{2}, \frac{m+n}{2}$ respectively to the vertices u_{m-1}, u_m.

Subcase 2. $m \equiv 1 \pmod{4}$.

Assign the labels as in subcase 1 of case 1 to the vertices $u_i, (1 \leq i \leq m - 3)$ and assign the labels $\frac{m+n-1}{2}, -\frac{m+n-1}{2}, 2$ to the vertices u_{m-2}, u_{m-1}, u_m respectively.

Subcase 3. $m \equiv 2 \pmod{4}$.

Assign the label as in subcase 1 to the vertices $u_i, (1 \leq i \leq m)$.

Subcase 4. $m \equiv 3 \pmod{4}$.

Assign the label as in subcase 1 to the vertices $u_i, (1 \leq i \leq m - 2)$ and assign the label $-\frac{m+n}{2}, \frac{m+n}{2}$ respectively to the vertices u_{m-1}, u_m.

The Table 8 given below establish that this vertex labeling f is a pair difference cordial of $Db(m,n)$.

Case 4. $n \equiv 3 \pmod{4}$.
Assign the labels as in case 1 to the vertices $v_i, 1 \leq i \leq n$ and $u_i, 1 \leq i \leq n$. Here note that the vertex v_n received the label $-n$.

We now consider the remaining $m - n$ vertices. There are four cases arises.

Subcase 1. $m \equiv 0 \pmod{4}$.
Assign the labels as in subcase 1 of case 1 to the vertices $u_i, n + 1 \leq i \leq m - 1$ and assign the labels 2 to the vertex u_m.

Subcase 2. $m \equiv 1 \pmod{4}$.
Assign the labels as in subcase 1 of case 1 to the vertices $u_i, n + 1 \leq i \leq m - 2$ and assign the labels $\frac{m+n-1}{2}, -\frac{m+n-1}{2}$ to the vertices u_{m-1}, u_m respectively.

Subcase 3. $m \equiv 2 \pmod{4}$.
Assign the labels as in subcase 1 of case 1 to the vertices $u_i, n + 1 \leq i \leq m - 3$. Finally assign the labels $\frac{m+n-1}{2}, -\frac{m+n-1}{2}, \frac{m+n-1}{2}$ respectively to the vertices u_{m-2}, u_{m-1}, u_m.

Subcase 4. $m \equiv 3 \pmod{4}$.
Assign the label as in subcase 1 to the vertices $u_i, 1 \leq i \leq m$.

The Table 9 given below establish that this vertex labeling f is a pair difference cordial of $Db(m,n)$.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>Δf_i</th>
<th>$\Delta f'_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m \equiv 0 \pmod{4}$</td>
<td>$\frac{m+n}{2}$</td>
<td>$\frac{m+n+2}{2}$</td>
</tr>
<tr>
<td>$m \equiv 1 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+1}{2}$</td>
</tr>
<tr>
<td>$m \equiv 2 \pmod{4}$</td>
<td>$\frac{m+n+2}{2}$</td>
<td>$\frac{m+n}{2}$</td>
</tr>
<tr>
<td>$m \equiv 3 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+1}{2}$</td>
</tr>
<tr>
<td>Nature of n</td>
<td>Δf_1</td>
<td>Δf_c</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>$m \equiv 0 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+2+1}{2}$</td>
</tr>
<tr>
<td>$m \equiv 1 \pmod{4}$</td>
<td>$\frac{m+n+2}{2}$</td>
<td>$\frac{m+n}{2}$</td>
</tr>
<tr>
<td>$m \equiv 2 \pmod{4}$</td>
<td>$\frac{m+n+1}{2}$</td>
<td>$\frac{m+n+1}{2}$</td>
</tr>
<tr>
<td>$m \equiv 3 \pmod{4}$</td>
<td>$\frac{m+n+2}{2}$</td>
<td>$\frac{m+n}{2}$</td>
</tr>
</tbody>
</table>

TABLE 9

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

